

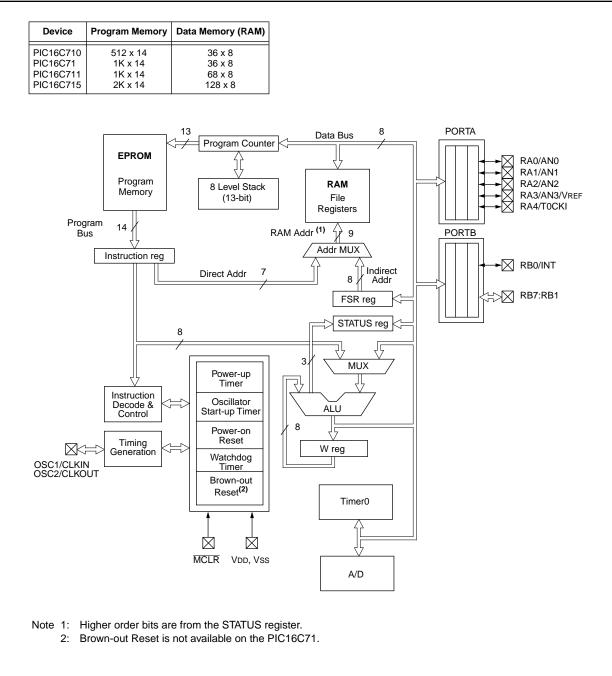
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E-XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

TABLE	4-2:	PIC16C7	'15 SPEC	CIAL FUI	NCTION	REGIST	ER SUMI	MARY			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0		-								-	
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (ne	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	RTB pins w	hen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah (1,2)	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	_	_	_	_	-0	-0
0Dh	_	Unimpleme	nted							_	_
0Eh	_	Unimpleme	nted							_	_
0Fh	_	Unimpleme	nted							_	_
10h	_	Unimpleme	nted							_	_
11h	_	Unimpleme	nted							_	_
12h	_	Unimpleme	nted							_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	_	Unimpleme	nted							_	_
16h	_	Unimpleme	nted							_	_
17h	_	Unimpleme	nted							_	_
18h	_	Unimpleme	nted							_	_
19h	_	Unimpleme	nted							_	_
1Ah	_	Unimpleme	nted							_	—
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

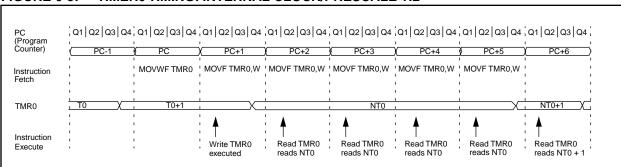
Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

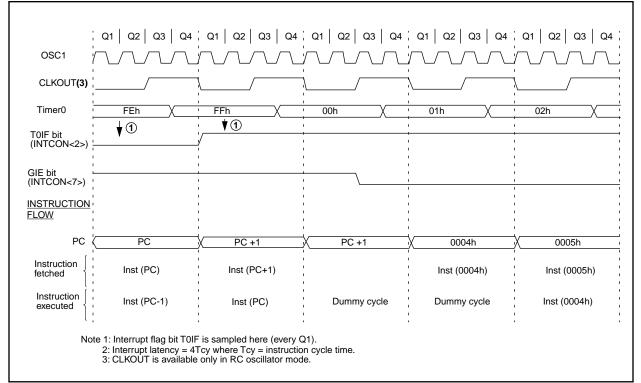
4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.2 OPTION REGISTER


Applicable Devices 710 71 711 715

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)


R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7	· · ·						bit0	W = Writable bit U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7:	RBPU: PC	RTB Pull	-up Enabl	le bit				
	1 = PORT							
	0 = PORTE	3 pull-ups	s are enab	led by ind	ividual port	latch valu	es	
bit 6:	INTEDG:	nterrupt E	Edge Sele	ct bit				
	1 = Interru	pt on risir	ng edge of	f RB0/INT	pin			
	0 = Interru	pt on falli	ng edge o	f RB0/INT	pin			
bit 5:	TOCS: TM	R0 Clock	Source S	elect bit				
	1 = Transit							
	0 = Interna	al instruct	ion cycle (clock (CLk	(OUT)			
bit 4:	TOSE: TM							
					on RA4/T00			
	0 = Increm	ent on lo	w-to-high	transition	on RA4/T00	JKI pin		
bit 3:	PSA: Pres		0					
	1 = Presca 0 = Presca				modulo			
			•		module			
bit 2-0:	PS2:PS0:	Prescale	r Rate Sel	lect bits				
	Bit Value	TMR0 R	ate WD	Γ Rate				
	000	1:2	1:					
	001	1:4	1:					
	010 011	1:8	1:					
	100	1:16		16				
	101	1:64	. 1:	32				
	110	1 : 12		64				
	111	1:25	6 1	128				

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

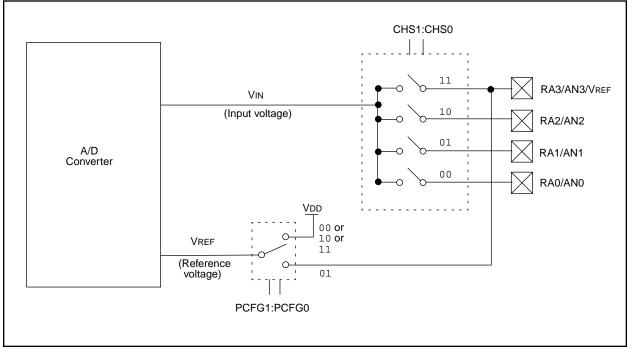
FIGURE 6-4: TIMER0 INTERRUPT TIMING

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.


2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

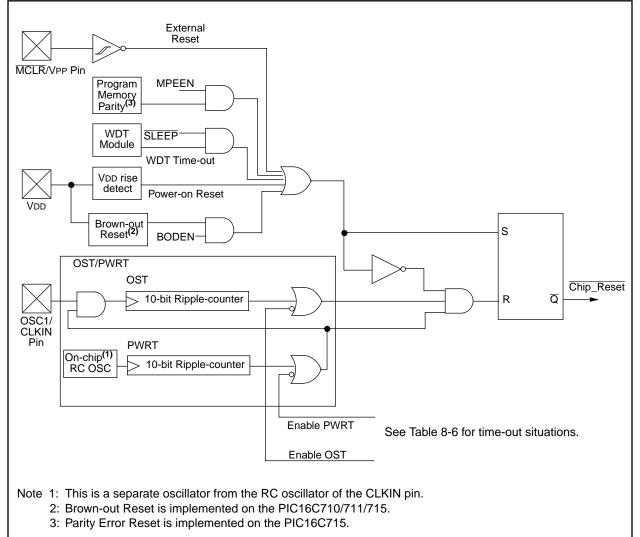
FIGURE 7-4: A/D BLOCK DIAGRAM

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

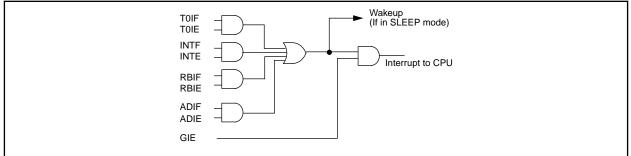
TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	

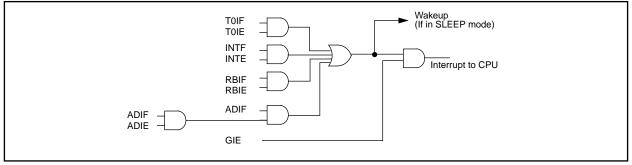
TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power	r-up	Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1(2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_ _u _(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	वेर्वेवे	luu	luu
ADCON1	00	00	


TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

FIGURE 8-17: INTERRUPT LOGIC, PIC16C710, 71, 711

FIGURE 8-18: INTERRUPT LOGIC, PIC16C715

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W
SWAPP	•	L
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

FIGURE 8-22: WAKE-UP FROM SLEEP THROUGH INTERRUP
--

CLKOUT(4)	////	(//	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		/
· .	1	1 1			/ IN	/
INTE flag		1 1	1	1 I 1 I	1 1	
(INTCON<1>)	 		1 	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	 	Processor in	1 1 1			
STRUCTION FLOW	1 1 1	SLEEP	 	1 1 1 1 1 1	1	
PC X PC	PC+1	PC+2	/ /X PC+2	↓ ↓ PC + 2 ↓	(<u>0004h</u>)	0005h
Instruction $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Δ. CLKOUT is not available in these osc modes, but shown here for timing reference.

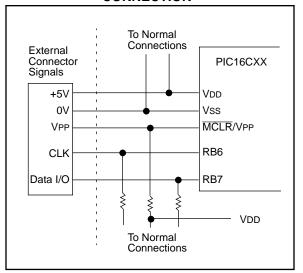
8.9 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 **ID** Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

GOTO	Unconditional Branch						
Syntax:	[label]	GOTO	k				
Operands:	$0 \le k \le 20$	047					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>						
Status Affected:	None						
Encoding:	10	1kkk	kkkk	kkkk			
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	GOTO THERE After Instruction PC = Address THERE						

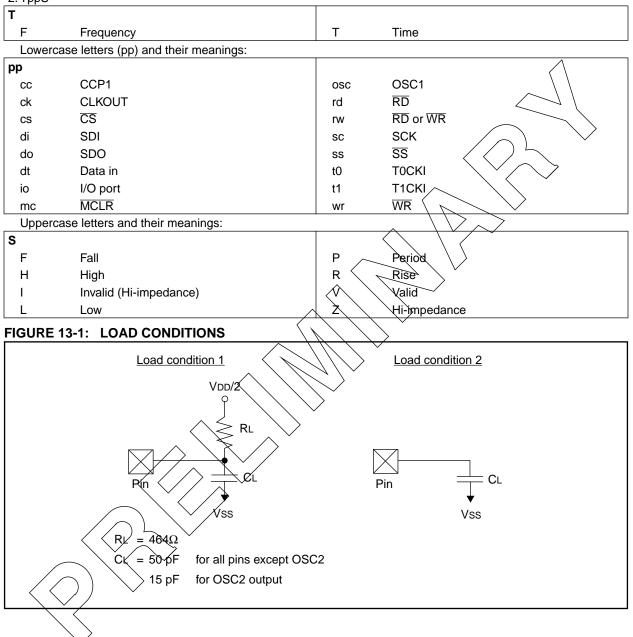
INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 1010 dfff ffff
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register data Write to dest
Example	INCF CNT, 1
	Before Instruction CNT = 0xFF Z = 0
	After Instruction
	$\begin{array}{rcl} CNT &=& 0x00 \\ Z &=& 1 \end{array}$

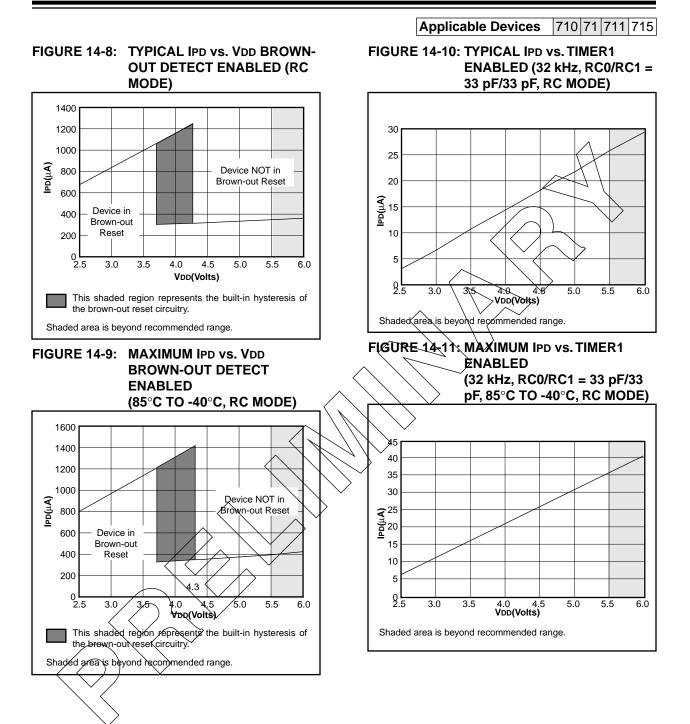
NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No opera	ition					
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No operat	ion.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	NOP	NOP	NOP			
Example	NOP	•					

RETFIE	Return from Interrupt			
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
Monda	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.			
Words:	1			
Cycles:	2			
Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack
2nd Cycle	NOP	NOP	NOP	NOP
Example	RETFIE			

Example

After Interrupt PC = TOS GIE = 1

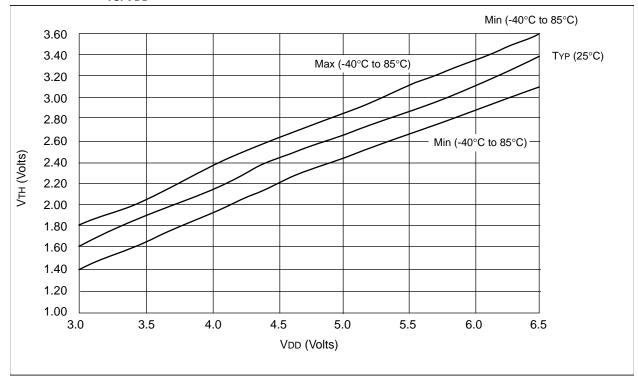

OPTION	Load Opt	tion Reg	gister	
Syntax:	[label]	OPTION	١	
Operands:	None			
Operation:	$(W)\toOF$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.			
Words:	1			
Cycles:	1			
Example				
	To mainta with futur not use th	re PIC16	CXX prod	


Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS



Applicable Devices 710 71 711 715

FIGURE 16-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

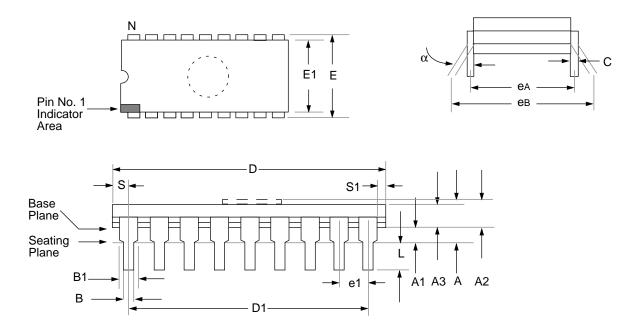
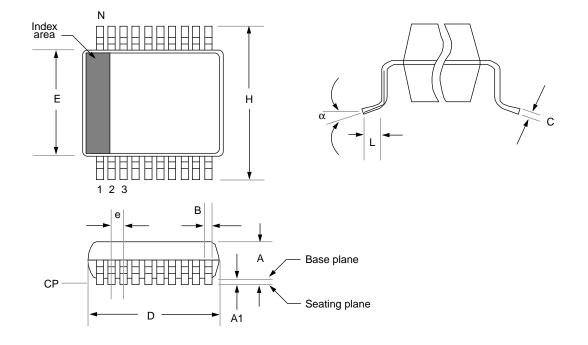


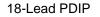
FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

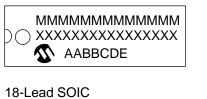

17.0 PACKAGING INFORMATION

17.1 <u>18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)</u>

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters			Inches		
Symbol	Min	Мах	Notes	Min	Мах	Notes	
α	0°	10°		0 °	10°		
А		5.080			0.200		
A1	0.381	1.7780		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.352	23.622		0.880	0.930		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.382		0.300	0.330		
E1	5.588	7.874		0.220	0.310		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	7.366	8.128	Typical	0.290	0.320	Typical	
eB	7.620	10.160		0.300	0.400		
L	3.175	3.810		0.125	0.150		
N	18	18		18	18		
S	0.508	1.397		0.020	0.055		
S1	0.381	1.270		0.015	0.050		

17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

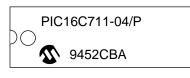



	Package Group: Plastic SSOP						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8°		0°	8°		
А	1.730	1.990		0.068	0.078		
A1	0.050	0.210		0.002	0.008		
В	0.250	0.380		0.010	0.015		
С	0.130	0.220		0.005	0.009		
D	7.070	7.330		0.278	0.289		
E	5.200	5.380		0.205	0.212		
е	0.650	0.650	Reference	0.026	0.026	Reference	
Н	7.650	7.900		0.301	0.311		
L	0.550	0.950		0.022	0.037		
N	20	20		20	20		
CP	-	0.102		-	0.004		

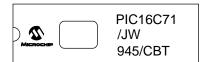
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

- 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
- 3: This outline conforms to JEDEC MS-026.

17.5 Package Marking Information


18-Lead CERDIP Windowed

20-Lead SSOP


Example

Example

Example

Example

Legend:	MMM XXX AA BB C D1 E	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will	ent the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

RA2/AN2	a
RA3/AN3/VREF	-
RA4/T0CKI	9
RB0/INT	9
RB1	-
	-
RB2	9
RB3	9
RB4	
	-
RB5	9
RB6	9
RB7	a
	-
VDD	
Vss	9
Pinout Descriptions	
PIC16C71	0
PIC16C710	9
PIC16C711	9
PIC16C715	-
PIR1 Register	21
POP	23
POR	53 54
Oscillator Start-up Timer (OST)	47, 53
Power Control Register (PCON)	54
Power-on Reset (POR)	3 57 58
	47 50
Power-up Timer (PWRT)	
Time-out Sequence	54
Time-out Sequence on Power-up	59
TO	
POR bit	22, 54
Port RB Interrupt	63
PORTA	
PORTA Register 1	4, 15, 25
PORTB	57. 58
PORTB Register1	,
Power-down Mode (SLEEP)	
Prescaler, Switching Between Timer0 and WDT	35
PRO MATE [®] II Universal Programmer	85
Program Branches	
Program Memory	
Paging	23
Program Memory Maps	
PIC16C71	11
PIC16C710	11
PIC16C711	11
PIC16C715	
Program Verification	67
PS0 bit	
PS1 bit	-
PS2 bit	
PSA bit	18
PUSH	23
PWRT	
Power-up Timer (PWRT)	53
PWRTE bit	47 48
	,
R	
RBIE bit	
KDIF DIL	
RBIF bit1	9, 27, 63
RBPU bit	9, 27, 63 18
	9, 27, 63 18
RBPU bit	9, 27, 63 18 54
RBPU bit RC RC Oscillator	9, 27, 63 18 54 51, 54
RBPU bit RC RC Oscillator Read-Modify-Write	9, 27, 63 18 54 51, 54 30
RBPU bit RC RC Oscillator	9, 27, 63 18 54 51, 54 30
RBPU bit RC RC Oscillator Read-Modify-Write	9, 27, 63 18 54 51, 54 30

DIO100711	10
PIC16C711	
PIC16C715	13
Reset Conditions	56
Summary	
Reset	47, 52
Reset Conditions for Special Registers .	
RP0 bit	12, 17
RP1 bit	17

S

	Evaluation and Programming System	n87		
Services				
	ime-Programmable (OTP) Devices .			
	-Turnaround-Production (QTP) Devic			
	ized Quick-Turnaround Production (S			
	es			
	imulator (MPLAB™ SIM)			
	atures of the CPU	47		
	nction Registers			
PIC16	SC71	14		
PIC16	6C710	14		
PIC16	6C711	14		
Special Fu	nction Registers, Section	14		
	ows			
	flow			
	egister			
01/1001				
Т				
TOCS hit		18		
		41		
Timer0				
	;	57, 58		
Timers				
Timer				
E	Block Diagram	31		
E	External Clock			
E	External Clock Timing	33		
	ncrement Delay			
	nterrupt			
	nterrupt Timing			
	Prescaler			
	Prescaler Block Diagram			
	Section			
	Switching Prescaler Assignment			
	Synchronization			
	TOIF			
	Timing			
	MR0 Interrupt	63		
Timing Dia	•			
A/D C	onversion	100, 124, 146		
Brown	n-out Reset	53, 97		
CLKO	UT and I/O	96, 119, 142		
Exterr	nal Clock Timing	95, 118, 141		
	r-up Timer			
	up Timer	,		
	out Sequence			
Timer	0	50, 121, 144		
i imer	0 Interrupt Timing			
	0 with External Clock			
	-up from SLEEP through Interrupt			
Watch	ndog Timer	97, 143		

Maps