E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711t-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:							
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68 - 100 pF	68 - 100 pF				
	2.0 MHz	15 - 68 pF	15 - 68 pF				
	4.0 MHz	15 - 68 pF	15 - 68 pF				
HS	8.0 MHz	10 - 68 pF	10 - 68 pF				
	16.0 MHz	10 - 22 pF	10 - 22 pF				
The note	se values are f	f or design guida r bage.	nce only. See				
Resonato	rs Used:						
455 kHz	Panasonic E	FO-A455K04B	± 0.3%				
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%				
4.0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz	0 MHz Murata Erie CSA16.00MX ± 0.5%						
All reso	onators used did	d not have built-in	capacitors.				

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

Crystals Used					
32 kHz	Epson C-001R32.768K-A	\pm 20 PPM			
200 kHz	STD XTL 200.000KHz	\pm 20 PPM			
1 MHz	ECS ECS-10-13-1	\pm 50 PPM			
4 MHz	ECS ECS-40-20-1	\pm 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	\pm 30 PPM			
20 MHz	EPSON CA-301 20.000M-C	\pm 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms		_

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

8.7 <u>Watchdog Timer (WDT)</u>

Applicable Devices 710 71 711 715

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 8-21: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 8-1, Figure 8-2 and Figure 8-3 for operation of these bits.

© 1997 Microchip Technology Inc.

BTFSS	Bit Test	f, Skip if S	Set		CALL	Call Sub	routine		
Syntax:	[<i>label</i>] BTFSS f,b		Syntax:	[label]	[<i>label</i>] CALL k				
Operands:	0 ≤ f ≤ 127 0 ≤ b < 7		Operands:	$0 \le k \le 2047$					
Operation:	skip if (f) = 1			Operation.	$(PC) + 1 \rightarrow TOS,$ k \rightarrow PC<10:0>, (PC) ATU (4:2) \rightarrow PC (42:44)			·11、	
Status Affected:	None				Status Affastad	None	1<4.32) -	710012	
Encoding:	01	11bb	bfff	ffff	Status Affected:	None			1
Description:	If bit 'b' in register 'f' is '0' then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.		Encoding: Description:	10 Call Subro (PC+1) is eleven bit into PC bit	0kkk outine. Firs pushed or immediate is <10:0>.	kkkk t, return a to the sta address is The upper	ddress ck. The s loaded r bits of		
Words:	1					the PC are	e loaded fi two cycle	om PCLA	TH.
Cycles:	1(2)				Words	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cvcles:	2			
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4			Push PC to Stack		
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP
Example	HERE FALSE	BTFSC GOTO	FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE	
	TRUE	•				Before In After Inst	struction PC = A ruction	ddress HE	CRE
	Before In	struction PC = a ruction if FLAG<1> PC = a if FLAG<1>	address H > = 0, address FT > = 1,	IERE			PC = A TOS = A	ddress TH ddress HH	IERE CRE+1

Applicable Devices 710 71 711 715

TABLE 12-1: RC OSCILLATOR FREQUENCIES

Cevt	Rovt	Average			
UEAL	Next	Fosc @ 5V, 25°C			
22 pF	5k	4.12 MHz	± 1.4%		
	10k	2.35 MHz	± 1.4%		
	100k	268 kHz	± 1.1%		
100 pF	3.3k	1.80 MHz	± 1.0%		
	5k	1.27 MHz	± 1.0%		
	10k	688 kHz	± 1.2%		
	100k	77.2 kHz	± 1.0%		
300 pF	3.3k	707 kHz	± 1.4%		
	5k	501 kHz	± 1.2%		
	10k	269 kHz	± 1.6%		
	100k	28.3 kHz	±1.1%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

FIGURE 12-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)

Applicable Devices 710 71 711 715

FIGURE 12-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C)

FIGURE 12-28: MAXIMUM IDD vs. FREQUENCY (XT MODE, -40°C TO 85°C)

PIC16C71X

Applicable Devices 710 71 711 715

13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715

Absolute Maximum Ratings †

Ambient temperature under bias	
Storage temperature	65°C\to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Rdis = VDD x {IDD - Σ IOH} + Σ {(VE	DD - VOH) x IOH} + Σ (VOI x IOL).
+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause	permanent damage to the

TNOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

OSC		PIC16C715-04		(PIC16C715-10)		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5X	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
RC	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at \$.5)	IDD:	2.7 mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max. >	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V /	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
VT	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at 5.5V	IDD:	2.7/mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	NPD:	1.5 µA typ at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq.	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	V&p:	4.5V/to 5,5V/			Vdd:	4.5V to 5.5V
	IDD:	13.5 mA typ. at 5.5V	IDD:	30 mA max. at 5.5V	IDD:	30 mA max. at 5.5V			IDD:	30 mA max. at 5.5V
HS	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V			IPD:	1.5 μA typ. at 4.5V
	Freq:	4 MHz max.	Freq:	10 MHz max.	Freq:	20 MHz max.	$\langle \rangle$		Freq:	10 MHz max.
LP	VDD:	4.0V to 5.5V	Do not use in LP mode				YOD:	2.5V to 5.5V	VDD:	2.5V to 5.5V
	IDD:	52.5 μA typ. at 32 kHz, 4.0V					IDD:/	48 μA max. at 32 kHz, 3.0V	IDD:	48 μA max. at 32 kHz, 3.0V
	IPD:	0.9 μA typ. at 4.0V					IPG: /	/5.0 μA max. at 3.0V	IPD:	5.0 μA max. at 3.0V
	Freq:	200 kHz max.				/	Freq:	/ 200 kHz max.	Freq:	200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

Applicable Devices 710 71 711 715

FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER TIMING

TABLE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.	$ \setminus \lor $	$\langle \frown \rangle$					
30	TmcL	MCLR Pulse Width (low)	2	—	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	< Tost	Oscillation Start-up Timer Period	-	1024Tosc		-	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—		μs	$VDD \le BVDD (D005)$
36	TPER	Parity Error Reset	_	TBD	_	μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
A01	NR	Resolution		_		8 bits	bits	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A02	EABS	Absolute error PIC16 C 71		_	_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A03	EIL	Integral linearity error	PIC16 C 71	_	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A04	Edl	Differential linearity error PIC160		_	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A05	EFS	Full scale error	PIC16 C 71	_	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A06	EOFF	Offset error	PIC16 C 71	_	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A10	—	Monotonicity	—	guaranteed		—	$VSS \leq VAIN \leq VREF$	
A20	Vref	Reference voltage	3.0V	—	Vdd + 0.3	V		
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref	V		
A30	ZAIN	Recommended impedance voltage source	_	—	10.0	kΩ		
A40	IAD	A/D conversion current (VD	—	180	_	μA	Average current consump- tion when A/D is on. (Note 1)	
A50	IREF	VREF input current (Note 2)	PIC16 C 71	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle
			PIC16 LC 71	_	_	1	mA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle

TABLE 15-6: A/D CONVERTER CHARACTERISTICS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: These specifications apply if VREF = 3.0V and if VDD \ge 3.0V. VAIN must be between VSS and VREF.

*

FIGURE 16-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD

17.5 Package Marking Information

18-Lead CERDIP Windowed

20-Lead SSOP

Example

Example

Example

Example

Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D1 E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	In the eve line, it will available	nt the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.
* 01		

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.