

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C71X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

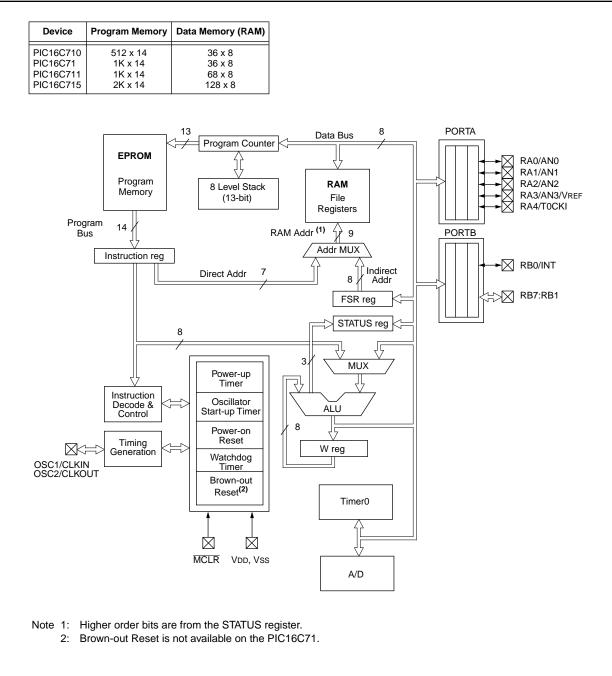
The **PIC16C710/71** devices have 36 bytes of RAM, the **PIC16C711** has 68 bytes of RAM and the **PIC16C715** has 128 bytes of RAM. Each device has 13 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C71X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C71X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C71X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility


Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

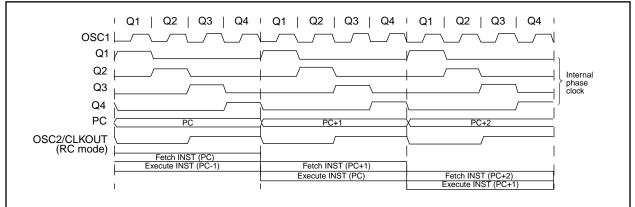
1.2 <u>Development Support</u>

PIC16C71X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 10.0 for more details about Microchip's development tools.

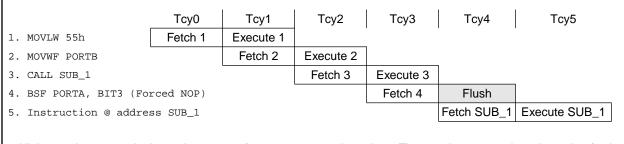
FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

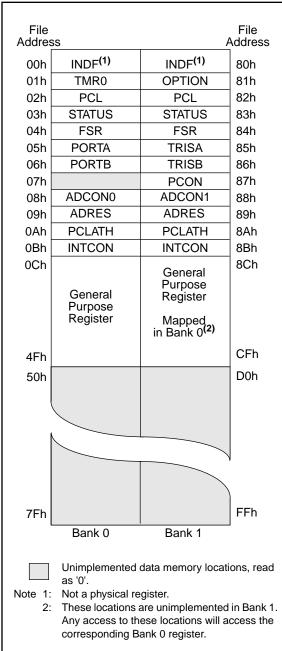
4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.


4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

	1117 \					
File Addres	s	,	File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h		PCON ⁽²⁾	87h			
08h	ADCON0	ADCON1	88h			
09h	ADRES	ADRES	89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽³⁾	8Ch			
2Fh			AFh			
30h			B0h			
3011						
l	<					
Ν						
)			
7Fh			FFh			
L	Bank 0	Bank 1	1			
 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: The PCON register is not implemented on the PIC16C71. 3: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. 						

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	
05h	PORTA	TRISA	
06h	PORTB	TRISB	
07h			87h
08h			
09h			
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			
13h			93h
14h			94h
15h			95h
16h			96h
17h			
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h	General Purpose Register	General Purpose Register	A0h
	rtogiotor		BFh
			C0h
l			
7Fh	Deels	Bank 1	_ FFh
	Bank 0	Bank 1	
e a	Jnimplemented dat as '0'. Not a physical regis	-	ns, read

TABLE	4-2:	PIC16C7	'15 SPEC	CIAL FUI	NCTION	REGIST	ER SUMI	MARY			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0		-								-	
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (ne	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	Addressing this location uses contents of FSR to address data memory (not a physical register) Fimer0 module's register							xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	RTB pins w	hen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah (1,2)	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	_	_	_	_	-0	-0
0Dh	_	Unimpleme	nted							_	_
0Eh	_	Unimpleme	nted							_	_
0Fh	_	Unimpleme	nted							_	_
10h	_	Unimpleme	nted							_	_
11h	_	Unimpleme	nted							_	_
12h	_	Unimpleme	nted							_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	_	Unimpleme	Inimplemented							_	_
16h	_	Unimpleme	Inimplemented						_	_	
17h	_	Unimpleme	Jnimplemented						_	_	
18h	_	Unimpleme	Unimplemented						_	_	
19h	_	Unimpleme	nted							_	_
1Ah	_	Unimpleme	nted							_	—
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.3 INTCON REGISTER

Applicable Devices 710 71 711 715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7				-			bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:⁽¹⁾ GI 1 = Enabl 0 = Disab	es all un-r	nasked in					
bit 6:	ADIE: A/E 1 = Enabl 0 = Disab	es A/D int	errupt	t Enable b	bit			
bit 5:		es the TM	R0 interru		bit			
bit 4:	1 = Enabl	es the RB	0/INT exte	rupt Enab ernal interi ernal inter	rupt			
bit 3:	1 = Enabl	es the RB	port char	upt Enable nge interru nge interru	pt			
bit 2:	TOIF: TMF 1 = TMR0 0 = TMR0) register h	nas overflo	wed (mus	t be cleare	d in softwa	ire)	
bit 1:								
bit 0:								
Note 1:	 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C71, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unintentionally re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 8.5 for a detailed description. 							
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to

PIC16C71X

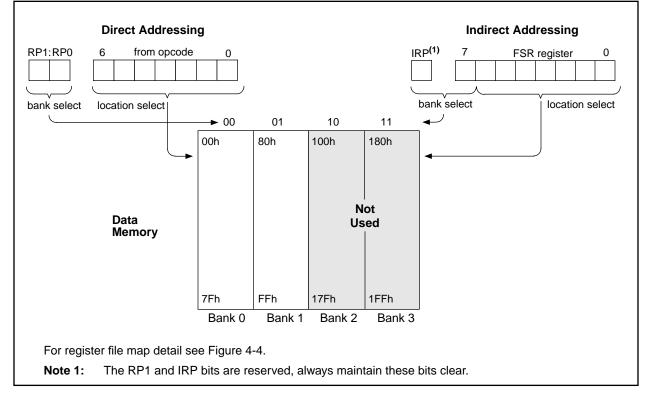
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)

4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	0x20 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

6.0 TIMER0 MODULE

Applicable Devices71071711715

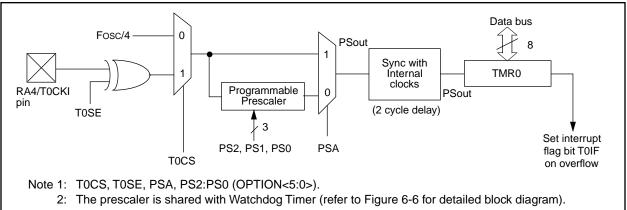
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

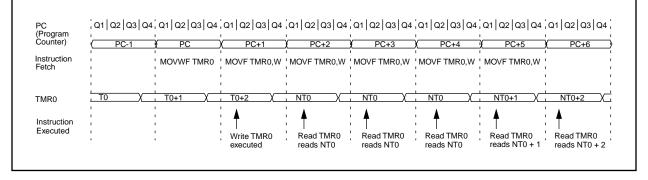
Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit TOSE (OPTION<4>). Clearing


FIGURE 6-1: TIMER0 BLOCK DIAGRAM

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	—	ADON	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7-6:	ADCS1:A	ADCS0: A	D Conver	sion Clock	Select bits			
	00 = Fos							
	01 = Fos 10 = Fos							
			rived from	an RC oso	cillation)			
bit 5:	Unused	· ·			,			
bit 6-3:	000 = cha	annel 0, (F		l Select bi	its			
		annel 1, (F						
		annel 2, (F annel 3, (F						
		annel 0, (F						
		annel 1, (F	,					
		annel 2, (F	,					
		annel 3, (F —	,					
bit 2:			nversion S	Status bit				
	If ADON :	-		<i>/</i>			• 、	
					this bit starts			lware when the A/D conver-
	sion is co		not in pro	grooo (111		ationally of	area by hare	
bit 1:	Unimple	mented: F	Read as '0'					
bit 0:	ADON: A	/D On bit						
			nodule is c					
	0 = A/D c	converter r	nodule is s	shutoff and	d consumes no	o operating	l current	

FIGURE 7-3: ADCON1 REGISTER, PIC16C710/71/711 (ADDRESS 88h), PIC16C715 (ADDRESS 9Fh)

bit, read as '0') U-0	U-0 U-0	U-0	U-0	R/W-0	R/W-0	
 U = Unimplemented: bit, read as '0' PCFG1:PCFG0: A/D Port Configuration Control bits PCFG1:PCFG0 RA1 & RA0 RA2 RA3 VREF 00 A A A A VDD 01 A A VREF RA3 10 A D D VDD 	· _		_	_	PCFG1	PCFG0	R = Readable bit
00AAAVDD01AAVREFRA310ADDVDD	2: Unimplemen	ted: Read as '0	'			bitO	U = Unimplemented
01AAVREFRA310ADDVDD	0: PCFG1:PCFC	GO: A/D Port Co	nfiguration C	Control bits			
10 A D D VDD		1	-		VREF		
	PCFG1:PCFG0	RA1 & RA0	RA2	RA3			
11 D D D VDD	PCFG1:PCFG0	RA1 & RA0 A	RA2	RA3	Vdd		
	PCFG1:PCFG0 00 01	RA1 & RA0 A A	RA2 A A	RA3 A VREF	VDD RA3		
D = Digital I/O	PCFG1:PCFG0 00 01 10 11 A = Analog input	RA1 & RA0 A A D	RA2 A A D	RA3 A VREF D	VDD RA3 VDD		

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:							
Mode	Freq	OSC2					
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF				
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF				
	These values are for design guidance only. See notes at bottom of page.						
Resonators Used:							
455 kHz	z Panasonic EFO-A455K04B ± 0.3%						
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz	Murata Erie (CSA16.00MX	± 0.5%				
All reso	onators used did	d not have built-in	capacitors.				

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
These	values are	far daalam auida	an anh Caa

These values are for design guidance only. See notes at bottom of page.

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	\pm 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power	r-up	Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

INCFSZ	Increment f, Skip if 0							
Syntax:	[label]	INCFSZ	ſ,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	0 ≤ f ≤ 127 d ∈ [0,1]						
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0				
Status Affected:	None							
Encoding:	00	1111	dfff	ffff				
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.							
Words:	1							
Cycles:	1(2)							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to dest				
If Skip:	(2nd Cyc	le)		•				
·	Q1	Q2	Q3	Q4				
	NOP	NOP	NOP	NOP				
Example HERE INCFSZ CNT, GOTO LOOP CONTINUE •								
	Before In PC After Inst CNT if CNT PC if CNT PC	$= adc$ ruction $= CN$ $= 0,$ $= adc$ $\neq 0,$	Iress HERE T + 1 Iress CONT	TINUE				

IORLW			eral with	
Syntax:	[label]	IORLW	К	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$)	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	OR'ed wit	h the eigh	W register t bit literal ne W regist	'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	IORLW	0x35		
	Before In		1	
		W =	0x9A	
	After Inst			
		W =	0xBF	

PIC16C71X

SLEEP

[label]	SLEEF)				
None						
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
TO, PD						
00	0000	0110	0011			
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped.						
1						
1						
Q1	Q2	Q3	Q4			
Decode	NOP	NOP	Go to Sleep			
SLEEP						
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP			

SUBLW	Subtract W from Literal						
Syntax:	[label]	SUBLW	/ k				
Operands:	$0 \le k \le 25$	55					
Operation:	k - (W) →	• (W)					
Status Affected:	C, DC, Z						
Encoding:	11	110x	kkkk	kkkk			
Description:	ment meth	od) from t	otracted (2's he eight bit n the W reg	iteral 'k'.			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read literal 'k'	Process data	Write to W			
Example 1:	SUBLW	0x02					
	Before In	struction					
		W = C = Z =	1 ? ?				
	After Inst	ruction					
		W = C = Z =	1 1; result is 0	s positive			
Example 2:	Before In	-	0				
Example 2.	Delete III	W =	2				
		C =	?				
		Z =	?				
	After Inst		0				
		W = C = Z =	0 1; result i 1	s zero			
Example 3:	Before In	struction					
		W =	3				
		C = Z =	? ?				
	After Inst	_					
		W =	0xFF				
		C =	0; result is	s nega-			
		tive Z =	0				

PIC16C71X

Applicable Devices 710 71 711 715

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, Ioк (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD	- VOH) x IOH} + Σ (VOI x IOL)

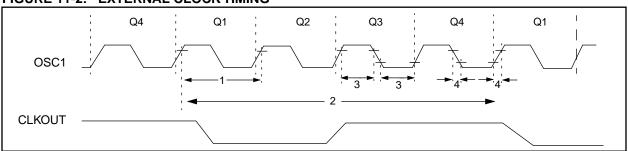
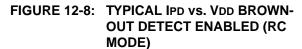

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

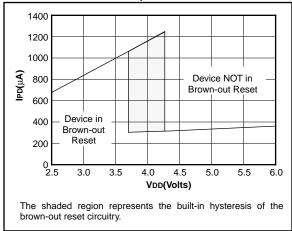
TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C710-04 PIC16C711-04	PIC16C710-10 PIC16C711-10	PIC16C710-20 PIC16C711-20	PIC16LC710-04 PIC16LC711-04	PIC16C710/JW PIC16C711/JW
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq:20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

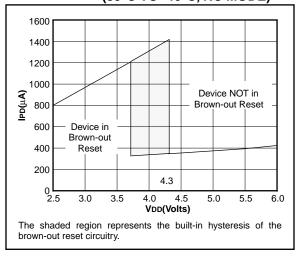
Applicable Devices 710 71 711 715

11.5 <u>Timing Diagrams and Specifications</u>

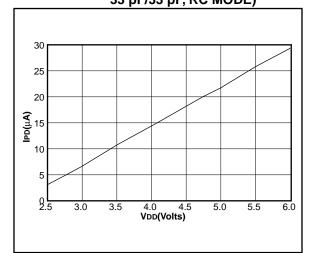

FIGURE 11-2: EXTERNAL CLOCK TIMING


TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4 5	—	20 200	MHz kHz	HS osc mode LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT osc mode
		(Note 1)	250	—	_	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	_	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100 50	_	250 250	ns ns	HS osc mode (-10) HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	—	50	ns	LP oscillator
			_		15	ns	HS oscillator


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.



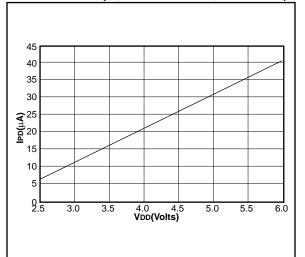


FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715

Applica	ble Devices 710 71 711 715						
15.3 [DC Characteristics: PIC16C71 PIC16C71 PIC16C71 PIC16LC7	-20 (0 1-04 (0	Commero Commero	cial, cial,	Indust Indust	rial) rial)	
							nless otherwise stated)
		OOpera	ating temp	erat			$TA \leq +70^{\circ}C$ (commercial)
DC CHAP	RACTERISTICS	Oporati			-40°(-	TA \leq +85°C (industrial) cribed in DC spec Section 15.1
			ction 15.2		Diange	as uesi	chibed in DC spec Section 15.1
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				t			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports (Note 4)	Vih		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
+ [Data in "Typ" column is at 5V, 25°C unl	ooo oth	nuico oto	tod	Those n	oromo	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

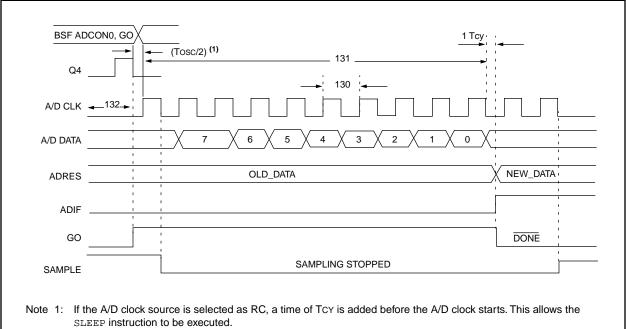
Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_		8 bits	bits	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Absolute error	PIC16 C 71		_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A03	EIL	Integral linearity error	PIC16 C 71	_	_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A04	Edl	Differential linearity error	PIC16 C 71		_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A05	EFS	Full scale error	PIC16 C 71	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A06	EOFF	Offset error	PIC16 C 71	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A10	—	Monotonicity		—	guaranteed	—	-	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref	V	
A30	Zain	Recommended impedance voltage source	of analog	—	—	10.0	kΩ	
A40	IAD	A/D conversion current (VD	D)	_	180	_	μA	Average current consump- tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	PIC16 C 71	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle
			PIC16 LC 71	_	_	1	mA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle

TABLE 15-6: A/D CONVERTER CHARACTERISTICS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.


2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: These specifications apply if VREF = 3.0V and if VDD \ge 3.0V. VAIN must be between VSS and VREF.

*

Applicable Devices 710 71 711 715

FIGURE 15-6: A/D CONVERSION TIMING

TABLE 15-7: A/D CONVERSION REQUIREMENTS

Param No.			Sym Characteristic Min	Тур†	Max	Units	Conditions	
130	TAD	A/D clock period	PIC16 C 71	2.0			μs	Tosc based, VREF ≥ 3.0V
			PIC16LC71	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 71	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC71	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H tim	e) (Note 1)	_	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	—	μs	The minimum time is the ampli fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2§	_	-	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve	$rt \rightarrow sample time$	1.5§	_	_	TAD	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ These specifications ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.