

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

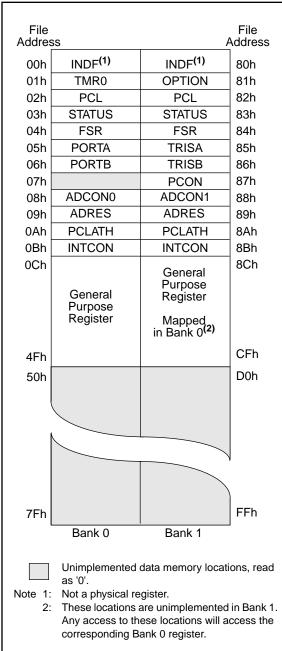
4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.


4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

	1117 \				
File Addres	s	,	File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h		PCON ⁽²⁾	87h		
08h	ADCON0	ADCON1	88h		
09h	ADRES	ADRES	89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽³⁾	8Ch		
2Fh			AFh		
30h			B0h		
3011					
l	<				
Ν					
)		
7Fh			FFh		
L	Bank 0	Bank 1	1		
 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: The PCON register is not implemented on the PIC16C71. 3: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. 					

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR						
05h	PORTA	TRISA						
06h	PORTB	TRISB						
07h			87h					
08h								
09h								
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON	8Bh					
0Ch	PIR1	PIE1	8Ch					
0Dh			8Dh					
0Eh		PCON	8Eh					
0Fh			8Fh					
10h			90h					
11h			91h					
12h								
13h			93h					
14h			94h					
15h			95h					
16h			96h					
17h								
18h			98h					
19h			99h					
1Ah			9Ah					
1Bh			9Bh					
1Ch			9Ch					
1Dh			9Dh					
1Eh	ADRES		9Eh					
1Fh	ADCON0	ADCON1	9Fh					
20h	General Purpose Register	General Purpose Register	A0h					
	rtogiotor		BFh					
			C0h					
l								
7Fh	Deels	Denk 1	_ FFh					
	Bank 0 Bank 1							
e a	Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.							

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0					•	•					
00h ⁽³⁾	INDF Addressing this location uses contents of FSR to address data memory (not a physical register)								register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's register	r						xxxx xxxx	uuuu uuuu
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	DRTB pins wł	nen read				xxxx xxxx	uuuu uuuu
07h	—	Unimpleme	nted							—	—
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	RES A/D Result Register								xxxx xxxx	uuuu uuuu
0Ah ^(2,3)	PCLATH	_	—	_	Write Buffer for the upper 5 bits of the Program Counter					0 0000	0 0000
0Bh (3)	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h ⁽³⁾	INDF Addressing this location uses contents of FSR to address data memory (not a physical register)							register)	0000 0000	0000 0000	
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Data Direction Control Register								1111 1111	1111 1111
87h ⁽⁴⁾	PCON	—	—	—	_	—	_	POR	BOR	dd	uu
88h	ADCON1	—	—	_	_	_	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	RES A/D Result Register								xxxx xxxx	uuuu uuuu
8Ah ^(2,3)	PCLATH	_	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

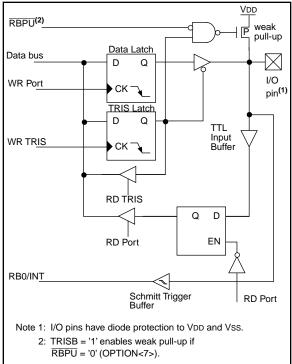
3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS, RPC	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPC	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

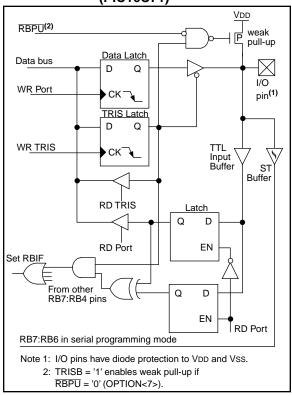
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

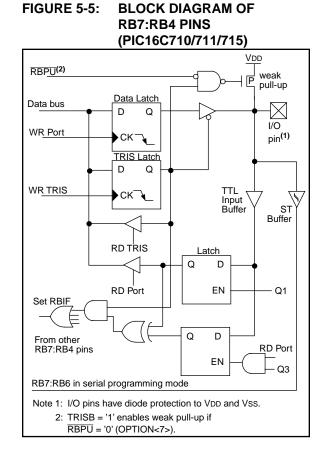
Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).


Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB Data Direction Register					1111 1111	1111 1111			
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

9.1 Instruction Descriptions

		•	_						
ADDLW	Add Lite	ral and \	N						
Syntax:	[<i>label</i>] ADDLW k								
Operands:	$0 \le k \le 255$								
Operation:	$(W) + k \to (W)$								
Status Affected:	C, DC, Z								
Encoding:	11	111x	kkkk	kkkk					
Description:	added to th	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode Read Process W literal 'k' data								
Example:	After Inst	W =	0x10 0x25						
ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] Al	DDWF	f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7							
Operation:	(W) + (f) -	ightarrow (dest)							
Status Affected:	C, DC, Z								
Encoding:	00	0111	dfff	ffff					
Description:	Add the co with regist stored in th	er 'f'. If 'd'	is 0 the re	sult is					

Encoding:	00	0111	dfff	ffff							
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.										
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Process data	Write to Dest							
Example	ADDWF	FSR,	0								
	Before In										
	W = 0x17 FSR = 0xC2										
	After Inst		0								
		W = FSR =	0xD9 0xC2								

ANDLW	AND Lite	eral with	w							
Syntax:	[<i>label</i>] ANDLW k									
Operands:	$0 \le k \le 255$									
Operation:	(W) .ANE	D. (k) \rightarrow (W)							
Status Affected:	Z									
Encoding:	11	1001	kkkk	kkkk						
Description:	The conte AND'ed wiresult is pl	ith the eig	ht bit litera	'k'.The						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal "k"	Process data	Write to W						
Example	ANDLW	0x5F								
	Before In	struction	0xA3							
	After Instruction									
		= W	0x03							

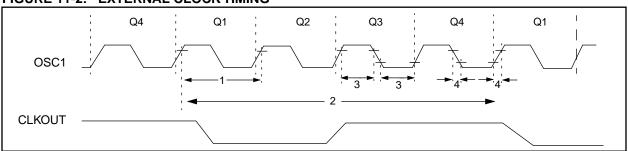
ANDWF	AND W v	vith f							
Syntax:	[<i>label</i>] A	NDWF	f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$								
Operation:	(W) .ANE	D. (f) \rightarrow (c	dest)						
Status Affected:	Z								
Encoding:	00	0101	dfff	ffff					
Description:	'd' is 0 the	result is a 'd' is 1 the	with regist stored in th e result is s	ie W					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to Dest					
Example	ANDWF	FSR,	1						
	Before In								
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02								

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine				
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	[<i>label</i>] CALL k				
Operands:	$0 \le f \le 12$				Operands:	$0 \le k \le 2047$					
	0 ≤ b < 7				Operation:	(PC)+ 1 \rightarrow TOS,					
Operation:	skip if (f<	ip if (f) = 1				$k \rightarrow PC <$		50.40			
Status Affected:	None	i				,	1<4:3>) -	\rightarrow PC<12	:11>		
Encoding:	01	11bb	bfff	ffff	Status Affected:	None					
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk		
	If bit 'b' is discarded	is execute 1', then the and a NOF aking this a	next instru is execute	ed	Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the sta address is The upper	ck. The s loaded [·] bits of		
Words:	1							rom PCLA instruction			
Cycles:	1(2)				Words:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2					
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4		
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC		
	Q1	Q2	Q3	Q4	1		Push PC to Stack				
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP		
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE			
	TRUE	•				Before Ir					
		•				After Ins		Address HE	RE		
	Before In	struction					-	ddress TH			
			address H	IERE			TOS = A	Address HE	RE+1		
	After Inst	ruction if FLAG<1>	- 0								
		-	> = 0, address F≠	ALSE							
		if FLAG<1> PC =	,								
		FU = 1	address TF	KUE							

PIC16C71X

Applica	ble Devices 710 71 711 715						
11.3		1-04 0-10 1-10 0-20 1-20 '10-04	(Comme (Comme (Comme (Comme (Comme (Comme	ercia ercia ercia ercia ercia ercia	II, Indus II, Indus II, Indus II, Indus II, Indus II, Indus	trial, E trial, E trial, E trial, E trial, E trial, E	Extended) Extended) Extended) Extended)
							less otherwise stated)
		Operati	ng tempe	ratur			$A \le +70^{\circ}C$ (commercial)
DC CHA	RACTERISTICS				-40°C -40°C		A ≤ +85°C (industrial) A ≤ +125°C (extended)
		Operati	na voltaa	e Vdi			ribed in DC spec Section 11.1 and
		Section			J		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				1			
	Input Low Voltage						
	I/O ports	Vi∟					
D030	with TTL buffer		Vss	-	0.15VDD		For entire VDD range
D030A			Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
0033	Input High Voltage		V 35	-	0.3700	V	
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$
D040A			0.25VDD	-	VDD	V	For entire VDD range
-			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range
D042	MCLR, RB0/INT		0.8Vdd	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
D060	Input Leakage Current (Notes 2, 3) I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$V_{SS} \leq V_{PIN} \leq V_{DD}$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LF osc configuration

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

11.5 <u>Timing Diagrams and Specifications</u>

FIGURE 11-2: EXTERNAL CLOCK TIMING

TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4 5	—	20 200	MHz kHz	HS osc mode LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT osc mode
		(Note 1)	250	—	_	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	_	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100 50	_	250 250	ns ns	HS osc mode (-10) HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	—	50	ns	LP oscillator
			_		15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	_	8-bits	bit	$VREF = VDD, VSS \leq AIN \leq VREF$
A02	EABS	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	_	_	<±1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	—	guaranteed	-	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	—	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			—	_	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

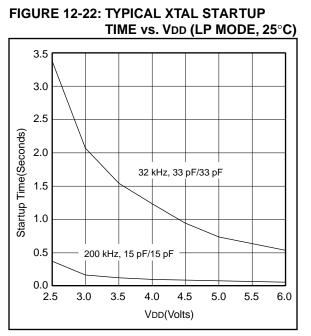
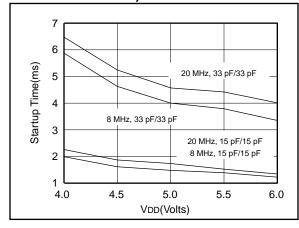
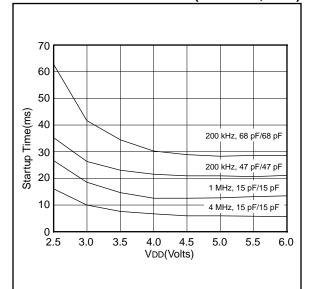




FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

		A B	a b			
Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
ХТ	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
Crystals Used						
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM			
200 kHz	STD XTL 2	00.000KHz	± 20 PPM			
1 MHz	ECS ECS-1	ECS ECS-10-13-1				
4 MHz	ECS ECS-4	± 50 PPM				
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM			
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM			

Applicable Devices 710 71 711 715

13.3 I	PIC16C71 PIC16C71 PIC16LC7	5-10 5-20 15-04	(Comme (Comme (Comme	rcia rcia ercia	il, Indus il, Indus al, Indus	strial, strial, strial))	
			ng tempe				nless otherwise stated) TA \leq +70°C (commercial)
		Operati	ng tempe	alui	-40°		TA \leq +85°C (industrial)
DC CHAI	RACTERISTICS				-40°		$TA \le +125^{\circ}C$ (extended)
		Operati	ng voltage	e Vd			cribed in DC spec Section 13.1
		and Se	ction 13.2		U		. 🔿
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	$ \langle \vee \rangle \rangle$
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2Vdd	V	
	(in RC mode)						$\langle \rangle$
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	\v ∖	Note1
	Input High Voltage				\land		
	I/O ports	Vін		-	$ \langle \rangle$		
D040	with TTL buffer		2.0	\frown	VDD	<u>v</u>	$4.5 \leq VDD \leq 5.5V$
D040A			0.8VDD	~	VDD	► Ŵ	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8V0D	`	VBD	$\neg \forall$	For entire VDD range
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD	À	Vqd>	V	
D042A	OSC1 (XT, HS and LP)		0,7700	-	VDY	V	Note1
D043	OSC1 (in RC mode)		Q.9,400	`	√∛dd	V	
D070	PORTB weak pull-up current	PURE	50	250	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)		\bigvee \land \land	\sim			
D060	I/O ports			-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI	$ \setminus \rangle$	-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1	\wedge	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and Ll osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6		IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6		IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A	$(h) \rightarrow (h)$		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

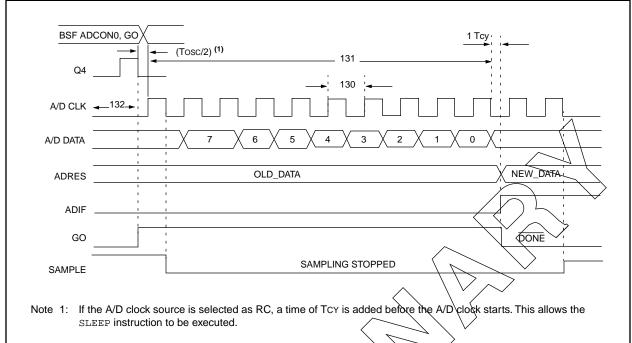
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Applicable Devices71071711715

DC CHAI	RACTERISTICS	Operati Operati	ng tempe	ratur e VDI	e 0°C -40° -40°	⊆ C ≤ C ≤	nless otherwise stated) TA ≤ +70°C (commercial) TA ≤ +85°C (industrial) TA ≤ +125°C (extended) cribed in DC spec Section 13.1
Param No.	Characteristic	Sym	Min	Тур	Max	Units	Conditions
NO.	Output High Voltage			1			
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	ІОН = -3.0 mA, VDp =\4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40% to +85%
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	₽₹	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	<	50	PF	\bigvee


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

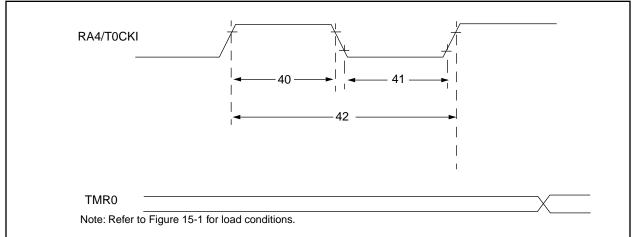
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin:

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
130	TAD	A/D clock period	1.6	$\langle // /$	× –	μs	Vref ≥ 3.0V
			2.0	$ \setminus \setminus \checkmark$	í —	μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source		$\langle \cdot \rangle$			(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time	ĬŇ-Ĭ	9.5Tad	—	_	
		(not including S/H	\sim				
		time). Note 1	$\langle \rangle$				
132	TACQ	Acquisition time	Note 2	20	—	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet parameter 42
			With Prescaler	10	-	_	ns	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet parameter 42
			With Prescaler	10	-	_	ns	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-		ns	N = prescale value (2, 4,, 256)
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (1K now as opposed to 512 before) and register file (68 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- 9. Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.