

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C71X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C71X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**71. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

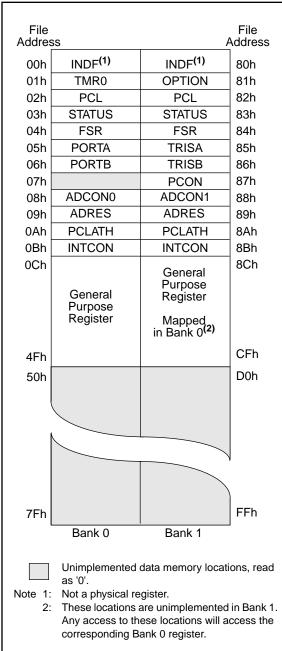
Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C71X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>


Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

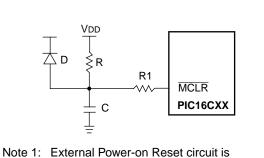
FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	
05h	PORTA	TRISA	
06h	PORTB	TRISB	
07h			87h
08h			
09h			
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			
13h			93h
14h			94h
15h			95h
16h			96h
17h			
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h	General Purpose Register	General Purpose Register	A0h
	rtogiotor		BFh
			C0h
l			
7Fh	Deels	Bank 1	_ FFh
	Bank 0	Bank 1	
e a	Jnimplemented dat as '0'. Not a physical regis	-	ns, read

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

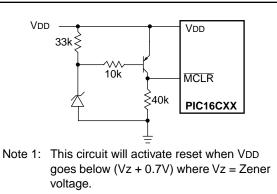

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

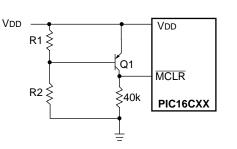

- required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 8-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

8.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

8.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

8.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

NOTES:

PIC16C71X

IORWF	Inclusive	e OR W v	with f		
Syntax:	[label]	IORWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27			
Operation:	(W) .OR. (f) \rightarrow (dest)				
Status Affected:	Z	Z			
Encoding:	00	0100	dfff	ffff	
Description:	Inclusive C ter 'f'. If 'd' the W regi placed bac	is 0 the re ster. If 'd'	esult is pla is 1 the re	ced in	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to dest	
Example	IORWF		RESULT,	0	
		struction RESULT W		-	
	After Inst			3	

MOVLW	Move Lite	eral to V	v	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight the register. The as 0's.			
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

Move f				
[label] MOVF f,d				
$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	$0 \le f \le 127$ $d \in [0,1]$			
(f) \rightarrow (des	st)			
Z				
00 1000 dfff ffff				
a destinati tus of d. lf ister. lf d = register f it	on depen d = 0, des 1, the de self. d = 1	dant upon stination is stination is is useful t	the sta- W reg- s file to test a	
1				
1				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process data	Write to dest	
1	ruction W = valu		egister	
	$\begin{bmatrix} abel \\ 0 \le f \le 12 \\ d \in [0,1] \\ (f) \to (des Z \\ \hline 00 \\ \hline Decode \\ a destinati \\ tus of d. If \\ ister. If d = \\ register f it \\ file registe \\ affected. \\ 1 \\ 1 \\ \hline Q1 \\ \hline Decode \\ \hline MOVF \\ After Inst \\ \end{bmatrix}$	$\begin{bmatrix} label \\ \end{bmatrix} MOVF$ $0 \le f \le 127$ $d \in [0,1]$ $(f) \rightarrow (dest)$ Z $\boxed{00} 1000$ The contents of reg a destination depention tus of d. If d = 0, destination depentions of the second state o	$\begin{bmatrix} label \end{bmatrix} \text{ MOVF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (f) \rightarrow (dest) \\ Z \\ \hline 00 & 1000 & dfff \\ \hline The contents of register f is m a destination dependant upon tus of d. If d = 0, destination is ister. If d = 1, the destination is register f itself. d = 1 is useful to file register since status flag Z affected. 1 \\ 1 \\ Q1 & Q2 & Q3 \\ \hline Decode & Read & Process \\ data \\ \hline MOVF & FSR, 0 \\ \hline After Instruction \\ W = value in FSR register \\ \end{bmatrix}$	

MOVWF	Move W	to f		
Syntax:	[label]	MOVW	= f	
Operands:	$0 \le f \le 12$	27		
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00	0000	lfff	ffff
Description:	Move data 'f'.	from W r	egister to	register
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	MOVWF	OPTIC	N_REG	
	Before In			_
		OPTION W	= 0xFF = 0x4F	
	After Inst	••	- 0741	
		OPTION		
		W	= 0x4F	-

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ition		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operat	ion.		
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	NOP	NOP
Example	NOP			

RETFIE	Return fi	rom Inte	rrupt	
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
Monda	and Top of the PC. Int ting Globa (INTCON- instruction	errupts a I Interrupt 7>). This	re enabled Enable bi	l by set- t, GIE
Words:	1			
Cycles:	2			
Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack
2nd Cycle	NOP	NOP	NOP	NOP
Example	RETFIE			

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister		
Syntax:	[label]	OPTION	٧		
Operands:	None				
Operation:	$(W)\toOF$	PTION			
Status Affected:	None				
Encoding:	00 0000 0110 0010				
Description:	The conter loaded in the instruction patibility with Since OPT register, the it.	he OPTIC is suppoi ith PIC16 ION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable	
Words:	1				
Cycles:	1				
Example					
	To mainta with futur not use th	re PIC16	CXX prod		

PIC16C71X

SLEEP

[label]	SLEEF)	
None			
	,	ller,	
TO, PD			
00	0000	0110	0011
cleared. T set. Watch caler are The proce mode with	ime-out s ndog Time cleared. essor is pu n the oscil	tatus bit, [*] er and its ut into SLI llator stop	TO is pres- EEP ped.
1			
1			
Q1	Q2	Q3	Q4
Decode	NOP	NOP	Go to Sleep
SLEEP			
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP

SUBLW	Subtract	W from	Literal		
Syntax:	[label]	[<i>label</i>] SUBLW k			
Operands:	$0 \le k \le 25$	55			
Operation:	k - (W) \rightarrow	$k \text{ - } (W) \to (W)$			
Status Affected:	C, DC, Z				
Encoding:	11	110x	kkkk kkkł		
Description:	ment meth	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.			
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3 Q4		
	Decode	Read literal 'k	Process Write to data		
Example 1:	SUBLW	0x02			
	Before In:	structior	ı		
		W = C = Z =	1 ? ?		
	After Inst	ruction			
		W = C = Z =	1 1; result is positive 0		
Example 2:	Before In:	structior	n		
		W = C = Z =	2 ? ?		
	After Inst	ruction			
		W = C = Z =	0 1; result is zero 1		
Example 3:	Before In	structior	ı		
Example 0.		W =	3		
Example 0.					
Example 0.		C = Z =	? ?		
	After Inst	Z =			
	After Inst	Z =			
	After Inst	Z = ruction	?		

PIC16C71X

Appli	cable Devices	710 7	1 711 715	
11.1	DC Character	istics:	PIC16C PIC16C PIC16C PIC16C	710-04 (Commercial, Industrial, Extended) 711-04 (Commercial, Industrial, Extended) 710-10 (Commercial, Industrial, Extended) 711-10 (Commercial, Industrial, Extended) 710-20 (Commercial, Industrial, Extended) 711-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS				lard O ating te		ture (aditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)		
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
			3.7	4.0	4.4	V	Extended Range Only		
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D015	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - - -	10.5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$		
D023	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V		

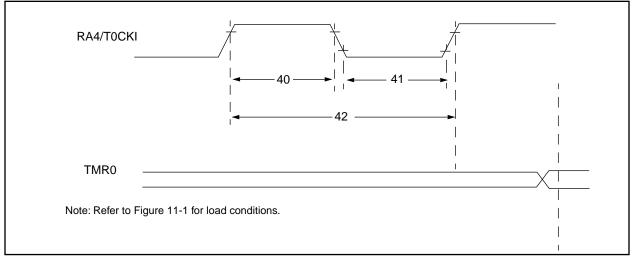
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20*	—		ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	Must also meet
			With Prescaler	10*	—	-	ns	parameter 42
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edg	2Tosc	—	7Tosc	—		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

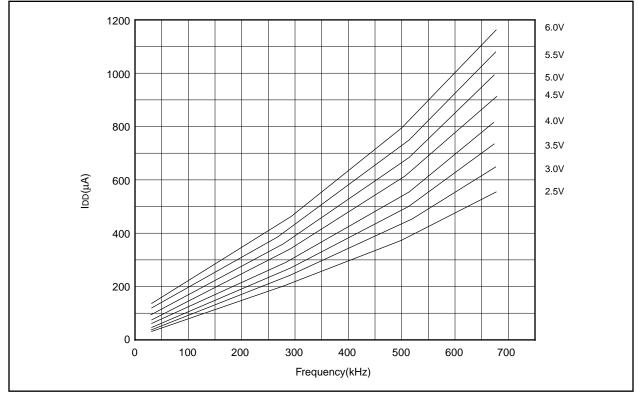
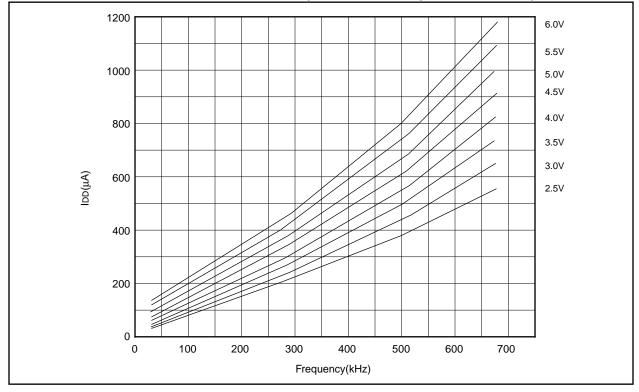
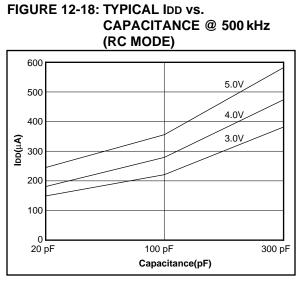




FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

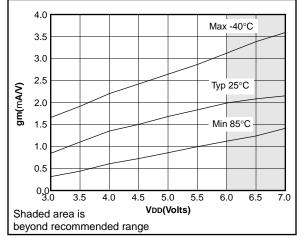
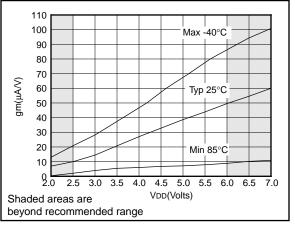


TABLE 12-1: RC OSCILLATOR FREQUENCIES


Cext	Rext	Average				
Cext	Rext	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

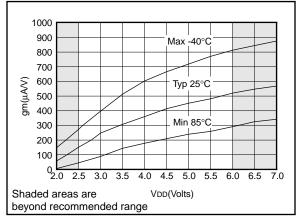

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Applicable Devices71071711715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled	
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = $3.0V$, WDT disabled	
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μΑ	BOR enabled VDD = 5.0V	
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	30 5	μ Α μΑ μΑ	$VDD = 3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ $VDD = 3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D023	Brown-out Reset Current (Note 5)		-	300*	500	μA	BOR enabled VDD = 5.0V	

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

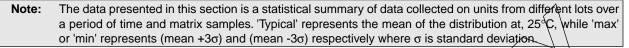
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

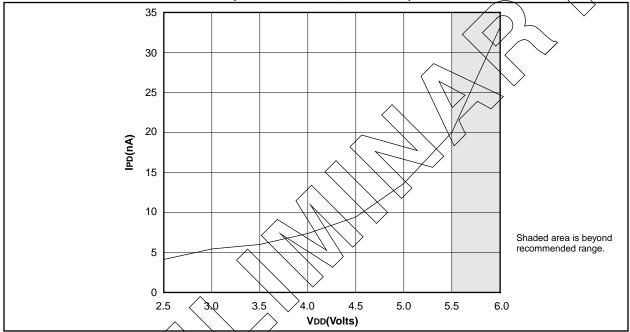
The test conditions for all IDD measurements in active operation mode are:

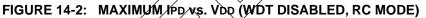
ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

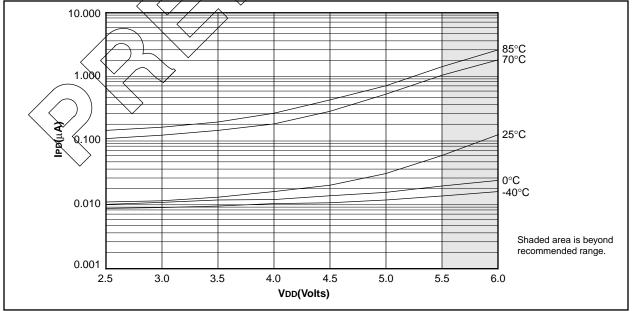
 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.


3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

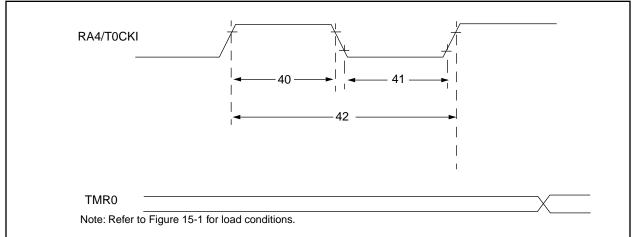
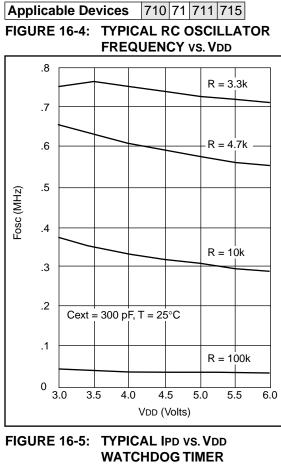
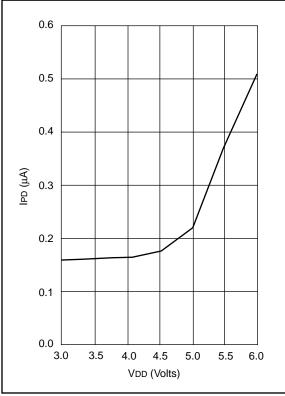


FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS


TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions	
40* Tt0H T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet		
			With Prescaler	10	-	_	ns	parameter 42	
41*	41* Tt0L T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-	_	ns	Must also meet	
			With Prescaler	10	-	_	ns	parameter 42	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-		ns	N = prescale value	
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				(2, 4,, 256)	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C71X

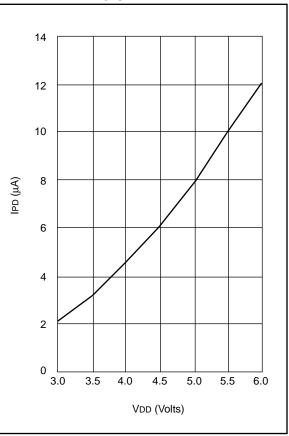


TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cext	Devt	Average				
	Rext	Fosc @	5V, 25°C			
20 pF	4.7k	4.52 MHz	±17.35%			
	10k	2.47 MHz	±10.10%			
	100k	290.86 kHz	±11.90%			
100 pF	3.3k	1.92 MHz	±9.43%			
	4.7k	1.49 MHz	±9.83%			
	10k	788.77 kHz	±10.92%			
	100k	88.11 kHz	±16.03%			
300 pF	3.3k	726.89 kHz	±10.97%			
	4.7k	573.95 kHz	±10.14%			
	10k	307.31 kHz	±10.43%			
	100k	33.82 kHz	±11.24%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

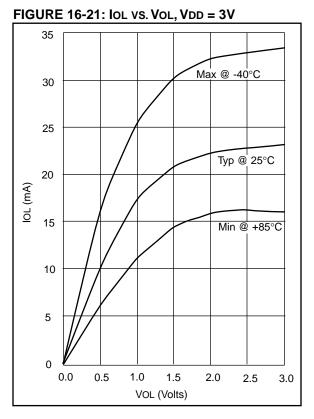
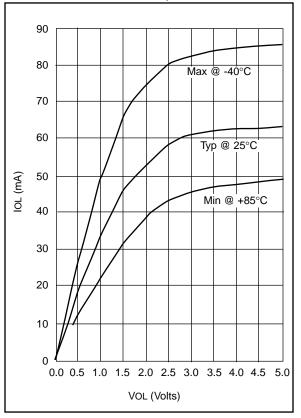
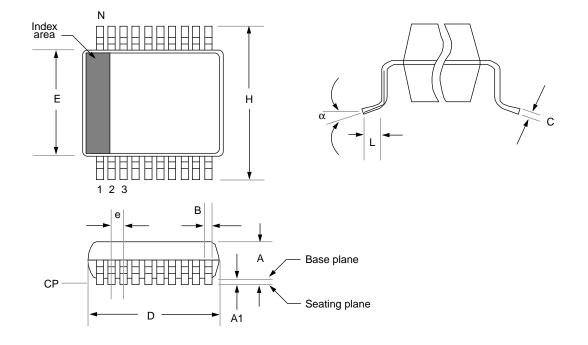
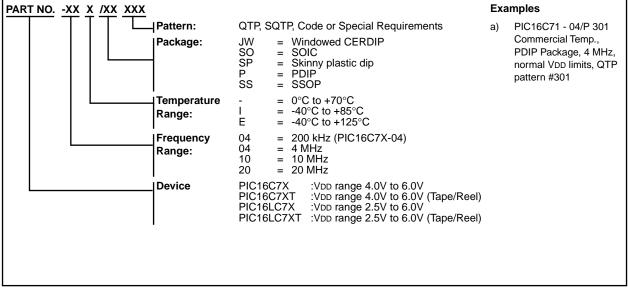




FIGURE 16-22: IOL VS. VOL, VDD = 5V

17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)


	Package Group: Plastic SSOP									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	8°		0°	8°					
А	1.730	1.990		0.068	0.078					
A1	0.050	0.210		0.002	0.008					
В	0.250	0.380		0.010	0.015					
С	0.130	0.220		0.005	0.009					
D	7.070	7.330		0.278	0.289					
E	5.200	5.380		0.205	0.212					
е	0.650	0.650	Reference	0.026	0.026	Reference				
Н	7.650	7.900		0.301	0.311					
L	0.550	0.950		0.022	0.037					
Ν	20	20		20	20					
CP	-	0.102		-	0.004					

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

- 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
- 3: This outline conforms to JEDEC MS-026.

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.