

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

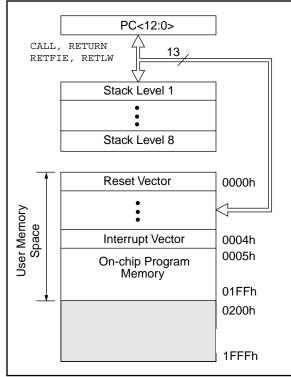
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-20-p

Email: info@E-XFL.COM

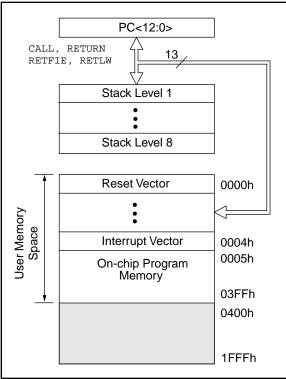
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

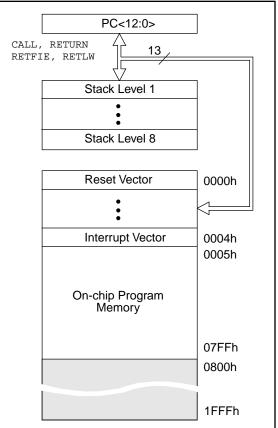
4.1 Program Memory Organization

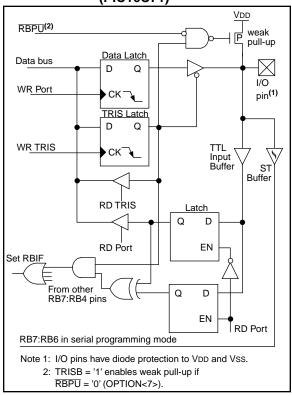

The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C710	512 x 14	0000h-01FFh
PIC16C71	1K x 14	0000h-03FFh
PIC16C711	1K x 14	0000h-03FFh
PIC16C715	2K x 14	0000h-07FFh


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.


FIGURE 4-1: PIC16C710 PROGRAM MEMORY MAP AND STACK


FIGURE 4-2: PIC16C71/711 PROGRAM MEMORY MAP AND STACK

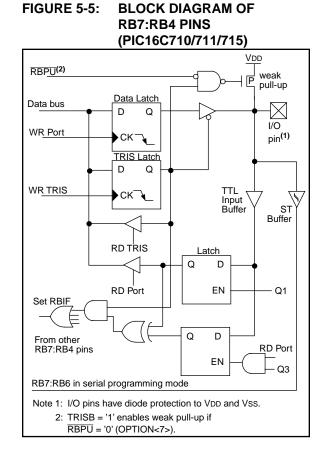
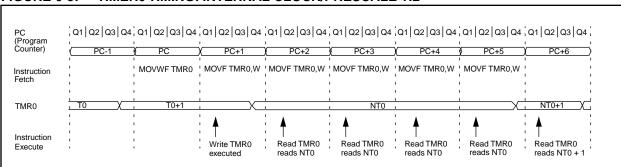

FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK

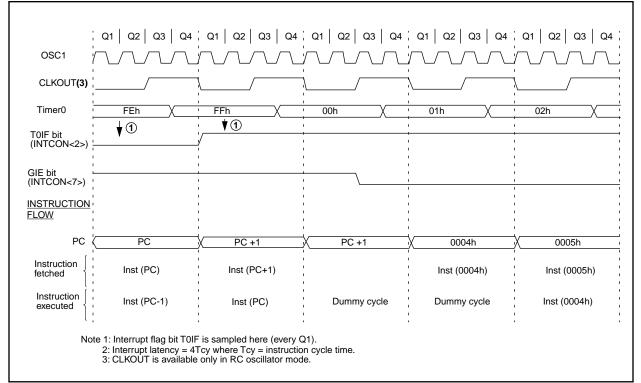
FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS



Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input


Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0 C	P0 CI	P0 CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		1										bit0	Address	2007h
bit 13-7 5-4: bit 6:	1 = Co 0 = All BODE 1 = BC	Code prote ode protec memory N: Brown OR enable OR disable	ction off is code -out Re ed	protec			Fh is w	vritable						
bit 3:	1 = PV	Ē: Power VRT disal VRT enat	bled	er Ena	ble bit	(1)								
bit 2:	1 = W	: Watchd DT enable DT disabl	ed	er Enab	le bit									
bit 1-0:	11 = F 10 = F 01 = X	1:FOSC0 RC oscilla IS oscillat (T oscillat P oscillat	tor tor tor	ator Se	lection	bits								
Note 1:	Ensur	e the Pow	er-up T	imer is	enable		ne Brov	vn-out l	Reset is	enable	d.		value of bit F	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13-8 5-4	4: 11 10 01	L = Up	de prot per hal per 3/4	ection f of pro th of p	off ogram rogran	memory	r code pr ry code p								
bit 7:	1	= Mem	ory Pa	rity Ch	ecking	or Enabl g is enat g is disal	oled								
bit 6:	1	oden : = Bor = Bor	enable	ed	Reset E	Enable b	_{it} (1)								
bit 3:	1	WRTE : = PWF = PWF	RT disa	bled	mer Ei	nable bit	(1)								
bit 2:	1	DTE: \ = WDT = WDT	enabl	ed	ner En	able bit									
bit 1-0	11 10 01	DSC1: L = RC D = HS L = XT D = LP	oscilla oscilla oscilla	ator itor tor	llator \$	Selectior	n bits								
Note 7							cally ena ed anytir		•		,	0	ess of the	value of bit	PWRTE.
	2: Al	l of the	CP1:0	CP0 pa	airs ha	ve to be	given the	e same	value	to enable	e the co	de prote	ection sch	eme listed.	

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

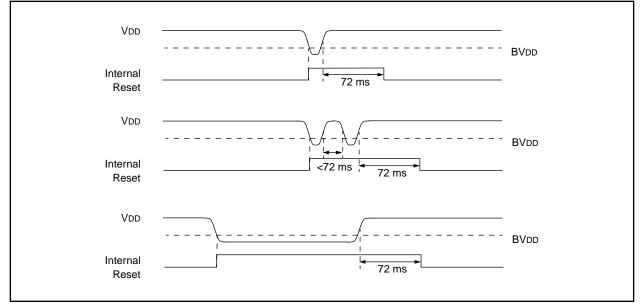
8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	CALL	<	
Operands:	$0 \le f \le 12$				Operands:	$0 \le k \le 2$	047		
	0 ≤ b < 7				Operation:	: (PC)+ 1 \rightarrow TOS,			
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC<10:0>$, (PCLATH<4:3>) $\rightarrow PC<12$			
Status Affected:	None	i				,	1<4:3>) -	\rightarrow PC<12	:11>
Encoding:	01	11bb	bfff	ffff	Status Affected:	None			
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk
	If bit 'b' is discarded	is execute 1', then the and a NOF aking this a	next instru is execute	ed	Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the state address is The upper	ck. The s loaded [·] bits of
Words:	1							rom PCLA instruction	
Cycles:	1(2)				Words:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2			
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	:le)	1st Cyc		1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4	1		Push PC to Stack		
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE	
	TRUE	•				Before Ir			
		•				After Ins		Address HE	RE
	Before In	struction					-	ddress TH	
			address H	IERE			TOS = A	Address HE	RE+1
	After Inst	ruction if FLAG<1>	- 0						
		-	> = 0, address F≠	ALSE					
		if FLAG<1> PC =	,						
		FU = 1	address TF	KUE					

XORLW	Exclusive OR Literal with W										
Syntax:	[label]	XORL	V k								
Operands:	$0 \le k \le 2$	255									
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)								
Status Affected:	Z										
Encoding:	11	1010	kkkk	kkkk							
Description:	XOR'ed v	ents of the vith the ei t is placed	ght bit lite	ral 'k'.							
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read literal 'k'	Process data	Write to W							
Example:	XORLW	0xAF									
	Before I	nstructio	n								
		W =	0xB5								
	After Ins	truction									
		W =	0x1A								

XORWF	Exclusiv	e OR W	with f	
Syntax:	[label]	XORWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27		
Operation:	(W) .XOF	$R.\left(f\right)\to($	dest)	
Status Affected:	Z			
Encoding:	00	0110	dfff	ffff
Description:	Exclusive register wi result is st is 1 the res	th registe ored in th	r 'f'. If 'd' is e W regist	o the er. If 'd'
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example	XORWF	REG	1	
	Before In	struction	1	
		REG W	0/1	AF B5
	After Inst	ruction		
		REG W	0/1	1A B5

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

11.2 PIC16LC710-04 (Commercial, Industrial, Extended) DC Characteristics: PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHAF	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - -	7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$		
D023	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

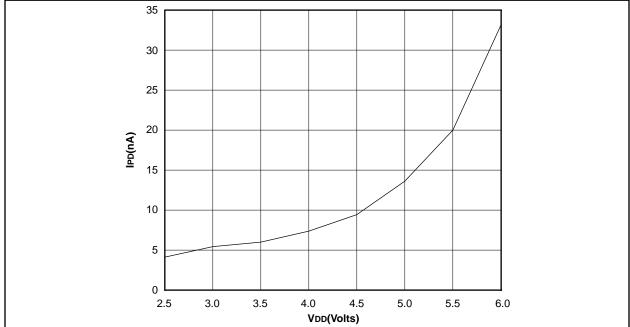
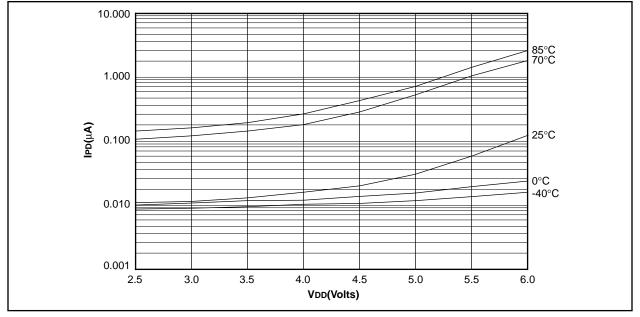
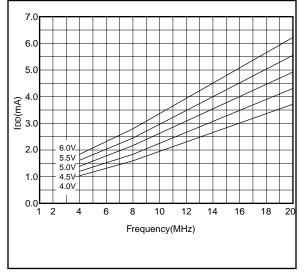
12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

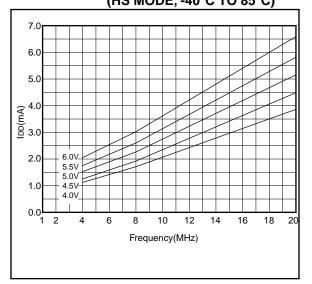

FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

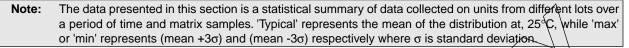
FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

Applicable Devices71071711715

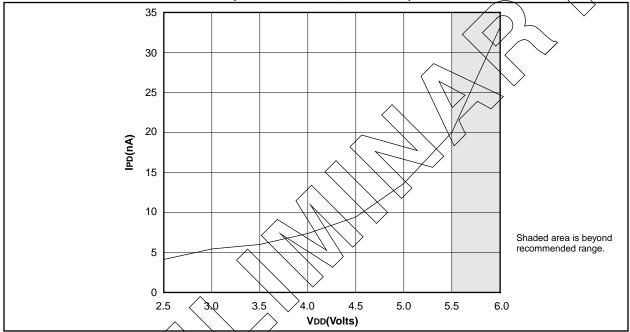
DC CHAI	RACTERISTICS	Operati Operati	ng tempe	ratur e VDI	e 0°C -40° -40°	⊆ C ≤ C ≤	nless otherwise stated) TA ≤ +70°C (commercial) TA ≤ +85°C (industrial) TA ≤ +125°C (extended) cribed in DC spec Section 13.1
Param No.	Characteristic	Sym	Min	Тур	Max	Units	Conditions
NO.	Output High Voltage			1			
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	ІОН = -3.0 mA, VDp =\4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40% to +85%
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	₽₹	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	<	50	PF	\bigvee

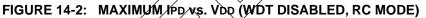
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

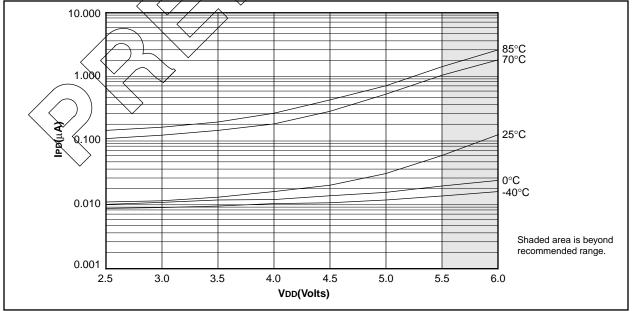
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

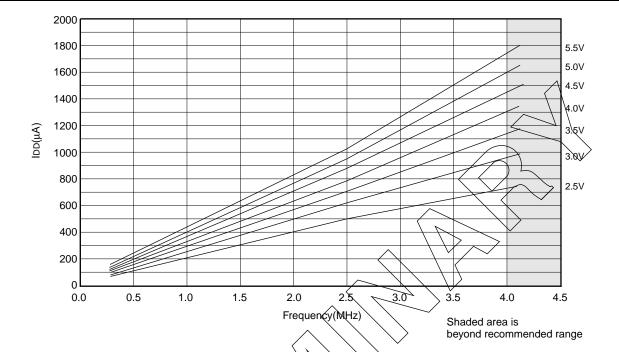

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

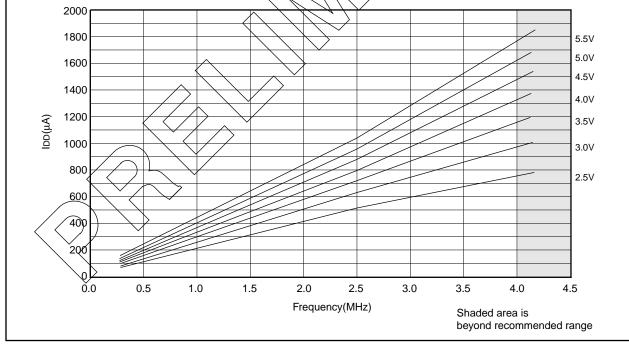
3: Negative current is defined as coming out of the pin:


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.





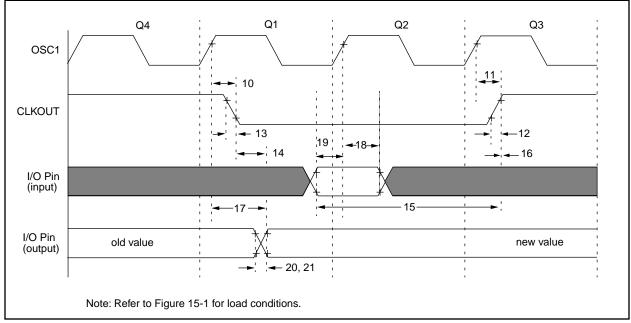
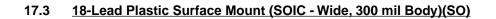

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---


Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	CLKOUT rise time			15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	—	—	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOU	0.25Tcy + 25	—		ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—		ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid			_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 71	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	-	ns	
20*	TioR	Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	20	—	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

	Package Group: Plastic SOIC (SO)					
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Мах	Notes
α	0°	8°		0°	8 °	
А	2.362	2.642		0.093	0.104	
A1	0.101	0.300		0.004	0.012	
В	0.355	0.483		0.014	0.019	
С	0.241	0.318		0.009	0.013	
D	11.353	11.735		0.447	0.462	
E	7.416	7.595		0.292	0.299	
е	1.270	1.270	Reference	0.050	0.050	Reference
Н	10.007	10.643		0.394	0.419	
h	0.381	0.762		0.015	0.030	
L	0.406	1.143		0.016	0.045	
Ν	18	18		18	18	
CP	_	0.102		_	0.004	

Figure 7-3:	ADCON1 Register, PIC16C710/71/711
0	(Address 88h),
	PIC16C715 (Address 9Fh)
Figure 7 4	
Figure 7-4:	A/D Block Diagram
Figure 7-5:	Analog Input Model 40
Figure 7-6:	A/D Transfer Function 45
Figure 7-7:	Flowchart of A/D Operation 45
Figure 8-1:	Configuration Word for PIC16C71 47
Figure 8-2:	Configuration Word, PIC16C710/711 48
Figure 8-3:	Configuration Word, PIC16C71548
Figure 8-4:	Crystal/Ceramic Resonator Operation
Figure 0-4.	
	(HS, XT or LP OSC Configuration)
Figure 8-5:	External Clock Input Operation
	(HS, XT or LP OSC Configuration)
Figure 8-6:	External Parallel Resonant Crystal
-	Oscillator Circuit
Figure 8-7:	External Series Resonant Crystal
rigaro o r.	Oscillator Circuit
Figure 8-8:	RC Oscillator Mode
Figure 8-9:	Simplified Block Diagram of On-chip
	Reset Circuit52
Figure 8-10:	Brown-out Situations53
Figure 8-11:	Time-out Sequence on Power-up
0	(MCLR not Tied to VDD): Case 1
Figure 8-12:	Time-out Sequence on Power-up
rigule 0-12.	
	(MCLR Not Tied To VDD): Case 259
Figure 8-13:	Time-out Sequence on Power-up
	(MCLR Tied to VDD) 59
Figure 8-14:	External Power-on Reset Circuit
-	(for Slow VDD Power-up)60
Figure 8-15:	External Brown-out Protection Circuit 1 60
Figure 8-16:	External Brown-out Protection Circuit 2 60
Figure 8-17:	Interrupt Logic, PIC16C710, 71, 711
Figure 8-18:	Interrupt Logic, PIC16C71562
Figure 8-19:	INT Pin Interrupt Timing63
Figure 8-20:	Watchdog Timer Block Diagram65
Figure 8-21:	Summary of Watchdog Timer Registers 65
Figure 8-22:	Wake-up from Sleep Through Interrupt 67
Figure 8-23:	Typical In-Circuit Serial Programming
r igure e 20.	Connection
Figure 9-1:	General Format for Instructions
Figure 11-1:	Load Conditions94
Figure 11-2:	External Clock Timing95
Figure 11-3:	CLKOUT and I/O Timing
Figure 11-4:	Reset, Watchdog Timer, Oscillator
0.	Start-up Timer and Power-up Timer
	Timing
Figure 11 Fr	
Figure 11-5:	Brown-out Reset Timing
Figure 11-6:	Timer0 External Clock Timings
Figure 11-7:	A/D Conversion Timing 100
Figure 12-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode) 101
Figure 12-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode) 101
Figure 12-3:	
Figure 12-5.	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 102
Figure 12-4:	Maximum IPD vs. VDD
	(WDT Enabled, RC Mode) 102
Figure 12-5:	Typical RC Oscillator Frequency
-	vs. VDD
Figure 12-6:	Typical RC Oscillator Frequency
	vs. VDD
Figure 12-7:	Typical RC Oscillator Frequency
	vs. VDD
Figure 12-8:	Typical IPD vs. VDD Brown-out Detect
	Enabled (RC Mode) 103

Figure 12-9:	Maximum IPD vs. VDD Brown-out Detect
Figure 10 10	Enabled (85°C to -40°C, RC Mode) 103
Figure 12-10:	Typical IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
	(32 kHz, KC0/RC1 = 33 pr/33 pr, RC Mode)
Figure 12-11:	Maximum IPD vs. Timer1 Enabled
ga.o	(32 kHz, RC0/RC1 = 33 pF/33 pF,)
	85°C to -40°C, RC Mode) 103
Figure 12-12:	Typical IDD vs. Frequency
	(RC Mode @ 22 pF, 25°C) 104
Figure 12-13:	Maximum IDD vs. Frequency
	(RC Mode @ 22 pF, -40°C to 85°C) 104
Figure 12-14:	Typical IDD vs. Frequency
Figure 12 15	(RC Mode @ 100 pF, 25°C) 105 Maximum IDD vs. Frequency
Figure 12-15:	(RC Mode @ 100 pF, -40°C to 85°C) 105
Figure 12-16:	Typical IDD vs. Frequency
· · g · · · · · · · · ·	(RC Mode @ 300 pF, 25°C) 106
Figure 12-17:	Maximum IDD vs. Frequency
-	(RC Mode @ 300 pF, -40°C to 85°C) 106
Figure 12-18:	Typical IDD vs. Capacitance
	@ 500 kHz (RC Mode) 107
Figure 12-19:	Transconductance(gm) of
Figure 40.00	HS Oscillator vs. VDD 107
Figure 12-20:	Transconductance(gm) of LP Oscillator vs. VDD
Figure 12-21:	Transconductance(gm) of
	XT Oscillator vs. VDD 107
Figure 12-22:	Typical XTAL Startup Time vs.
0	VDD (LP Mode, 25°C) 108
Figure 12-23:	Typical XTAL Startup Time vs.
	VDD (HS Mode, 25°C) 108
Figure 12-24:	Typical XTAL Startup Time vs.
E	VDD (XT Mode, 25°C) 108
Figure 12-25:	Typical IDD vs. Frequency (LP Mode, 25°C)
Figure 12-26:	Maximum IDD vs. Frequency
1 iguro 12 20.	(LP Mode, 85°C to -40°C) 109
Figure 12-27:	Typical IDD vs. Frequency
0	(XT Mode, 25°C) 109
Figure 12-28:	Maximum IDD vs. Frequency
	(XT Mode, -40°C to 85°C) 109
Figure 12-29:	Typical IDD vs. Frequency
F ilment 10 ,000	(HS Mode, 25°C) 110
Figure 12-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C) 110
Figure 13-1:	Load Conditions
Figure 13-2:	External Clock Timing
Figure 13-3:	CLKOUT and I/O Timing 119
Figure 13-4:	Reset, Watchdog Timer, Oscillator
	Start-Up Timer, and Power-Up Timer
F : 10 F	Timing
Figure 13-5:	Brown-out Reset Timing
Figure 13-6: Figure 13-7:	Timer0 Clock Timings
Figure 14-1:	Typical IPD vs. VDD
. iguic 14-1.	(WDT Disabled, RC Mode)
Figure 14-2:	Maximum IPD vs. VDD
č	(WDT Disabled, RC Mode) 125
Figure 14-3:	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 126
Figure 14-4:	Maximum IPD vs. VDD
Figure 14 5	(WDT Enabled, RC Mode) 126
Figure 14-5:	Typical RC Oscillator Frequency vs. VDD
	v 00 120

Figure 14-6:	Typical RC Oscillator Frequency vs.
riguio i i o.	VDD126
Figure 14-7:	Typical RC Oscillator Frequency vs. VDD126
Figure 14-8:	Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode)127
Figure 14-9:	Maximum IPD vs. VDD Brown-out Detect Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 14-12:	85°C to -40°C, RC Mode)
Figure 14-13:	(RC Mode @ 22 pF, 25 C) 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) 128
Figure 14-14:	(RC Mode @ 22 pF, -40 C to 85 C) 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C)
Figure 14-15:	Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 14-17:	Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) 130
Figure 14-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of XT Oscillator vs. VDD131
Figure 14-22:	Typical XTAL Startup Time vs. VDD (LP Mode, 25°C)132
Figure 14-23:	Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)132
Figure 14-24:	Typical XTAL Startup Time vs. VDD (XT Mode, 25°C)132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)
Figure 14-27:	Typical IDD vs. Frequency (XT Mode, 25°C)133
Figure 14-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)134
Figure 15-1:	Load Conditions140
Figure 15-2:	External Clock Timing141
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Figure 45 5	Timing
Figure 15-5:	Timer0 External Clock Timings
Figure 15-6:	A/D Conversion Timing146
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature
Figure 10.0	VDD147
Figure 16-3:	Typical RC Oscillator Frequency vs. VDD147

Figure 16-4:	Typical RC Oscillator Frequency vs. VDD
Figure 16-5:	Typical lpd vs. VDD Watchdog Timer Disabled 25°C148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C 148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog Disabled149
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled149
Figure 16-9:	Vth (Input Threshold Voltage) of I/O Pins vs. VDD149
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage) of OSC1 Input (in XT, HS, and
	LP Modes) vs. VDD 150
Figure 16-12:	Typical IDD vs. Freq (Ext Clock, 25°C) 151
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C)151
Figure 16-14:	Maximum IDD vs. Freq with A/D Off
	(Ext Clock, -55° to +125°C) 152
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
E: 10.17	HS Oscillator vs. VDD 152
Figure 16-17:	Transconductance (gm) of LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
. igure te tet	XT Oscillator vs. VDD 153
Figure 16-19:	IOH vs. VOH, VDD = 3V 153
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent					
RE:	: Reader Response						
Fror	m: Name						
	Company						
A	Telephone: () - FAX: () - A i -						
	Application (optional):						
Wou	uld you like a reply?YN						
Dev	Device: PIC16C71X Literature Number: DS30272A						
Que	estions:						
1	What are the best features of this docum	ent?					
1.		GIU:					
2.	. How does this document meet your hardware and software development needs?						
3.	Do you find the organization of this data	sheet easy to follow? If not, why?					
4.	. What additions to the data sheet do you think would enhance the structure and subject?						
5.	What deletions from the data sheet could	be made without affecting the overall usefulness?					
-							
6.	Is there any incorrect or misleading inform	mation (what and where)?					
7	How would you improve this document?						
7.	now would you improve this document:						
8.	How would you improve our software, sys	stems, and silicon products?					

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.