

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

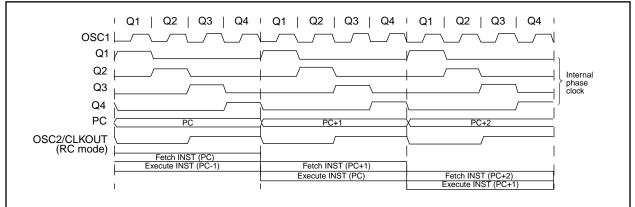
Details

Betano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-20e-so

Email: info@E-XFL.COM

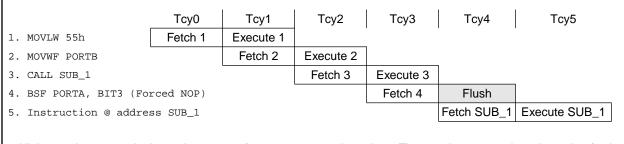
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

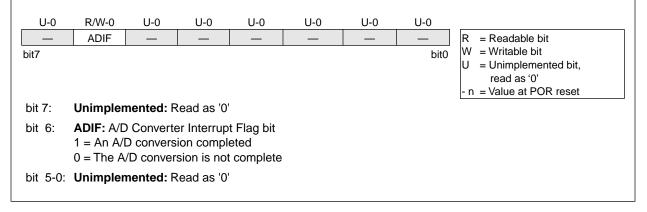
Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

	1117 \				
File Addres	s	,	File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h		PCON ⁽²⁾	87h		
08h	ADCON0	ADCON1	88h		
09h	ADRES	ADRES	89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽³⁾	8Ch		
2Fh			AFh		
30h			B0h		
3011					
l	<				
Ν					
)		
7Fh			FFh		
L	Bank 0	Bank 1	1		
 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: The PCON register is not implemented on the PIC16C71. 3: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. 					


4.2.2.5 PIR1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

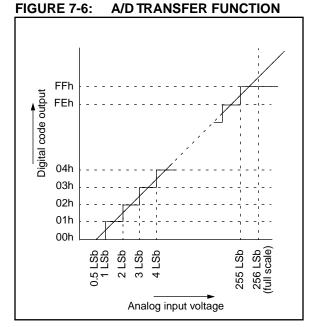
The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0 ADCS1	R/W-0 ADCS0	U-0	R/W-0 CHS1	R/W-0 CHS0	R/W-0 GO/DONE	R/W-0 ADIF	R/W-0 ADON	R = Readable bit
bit7	ADCSU		CHST	CHSU	GO/DONE	ADIF	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7-6:	00 = Fos 01 = Fos 10 = Fos	c/8						
bit 5:	Unimple	nented: Re	ad as '0'.					
bit 4-3:	CHS1:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3)							
bit 2:	GO/DON	E: A/D Con	version Sta	atus bit				
		onversion ir onversion r			is bit starts th bit is automat			are when the A/D conver-
	ADIF: A/D Conversion Complete Interrupt Flag bit 1 = conversion is complete (must be cleared in software) 0 = conversion is not complete							
		onverter mo	•	•	consumes no	operating o	current	
Note 1:		DCON0 is a nented, read		Purpose R	/W bit for the	PIC16C71	0/711 only. I	For the PIC16C71, this bit is


FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

PIC16C71X

CLRF	Clear f						
Syntax:	[<i>label</i>] C	LRF f					
Operands:	$0 \le f \le 12$	7					
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	I					
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	G_REG				
	Before Instruction FLAG_REG = 0x5A After Instruction						
	$FLAG_REG = 0x00$ $Z = 1$						

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleare	d. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	Process data	Write to W
Example	CLRW			
	Before In	struction	1	
		W =	0x5A	
	After Inst			
		W = Z =	0x00 1	
		-	•	
CLRWDT	Clear Wa	tchdog	Timer	
Syntax:	[label]	CLRWD	Т	
Operands:	None			
Operation:	$00h \rightarrow W$			
	$0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}$	r presca	ler,	
	$1 \rightarrow \overline{PD}$			
Status Affected:	TO, PD			
Status Affected: Encoding:	TO , PD	0000	0110	0100
Encoding:	00 CLRWDT in	struction	resets the	Watch-
	00	struction It also re	resets the sets the pi	Watch- rescaler
Encoding:	00 CLRWDT in dog Timer of the WD	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description:	00 CLRWDT in dog Timer of the WD are set.	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description: Words:	00 CLRWDT in dog Timer of the WD are set. 1	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer of the WD are set. 1 1	Instruction It also re T. Status I	resets the set <u>s</u> the pr bits TO and	Watch- re <u>sca</u> ler d PD
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1	Istruction It also re T. Status I	resets the sets the pl pits TO and Q3 Process	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 Q1 Decode	Q2	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 4 2 1 2 2 2 2 CLRWDT Before In	Q2 NOP Struction WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2	Q2 NOP Struction WDT cou	Q3 Process data	Watch- re <u>sc</u> aler d PD Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	Q2 NOP Struction WDT cou WDT cou WDT pres	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00 0
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00

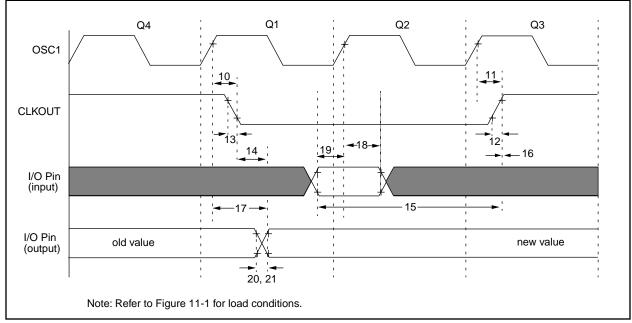
RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	See description below	Operation:	See description below
Status Affected:	С	Status Affected:	С
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read Process Write to data dest		Decode Read register data Virite to dest
Example	RLF REG1,0	Example	RRF REG1,0
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

11.2 PIC16LC710-04 (Commercial, Industrial, Extended) DC Characteristics: PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - -	7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$		
D023	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.


Note 1: This is the limit to which VDD can be lowered without losing RAM data.

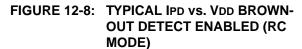
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

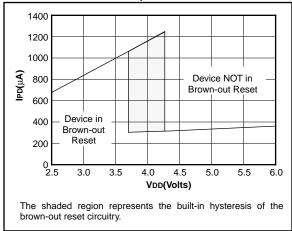
The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

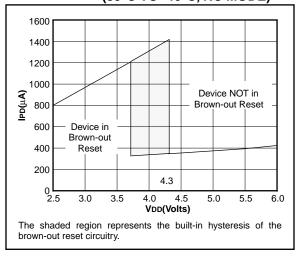
FIGURE 11-3: CLKOUT AND I/O TIMING

TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS

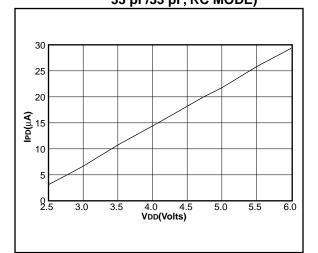

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑			15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	d	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	T ↑	0.25Tcy + 25	—	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in ho	ld time)	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	TBD	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 710/711	_	10	25	ns	
			PIC16LC710/711	_	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 710/711	_	10	25	ns	
			PIC16LC710/711	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	—	_	ns	

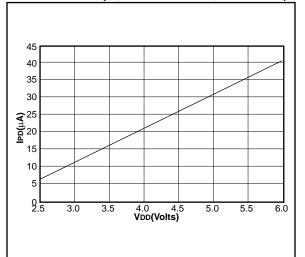

* These parameters are characterized but not tested.

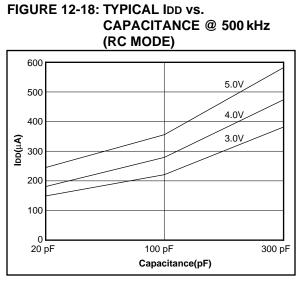

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


tt These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.






FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715

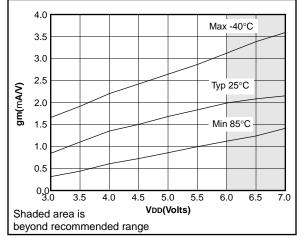
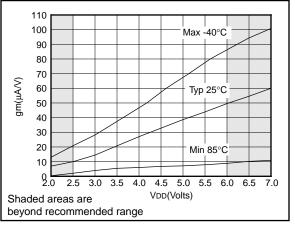
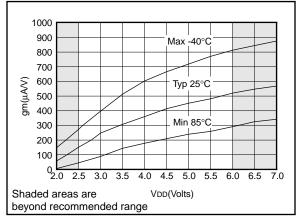
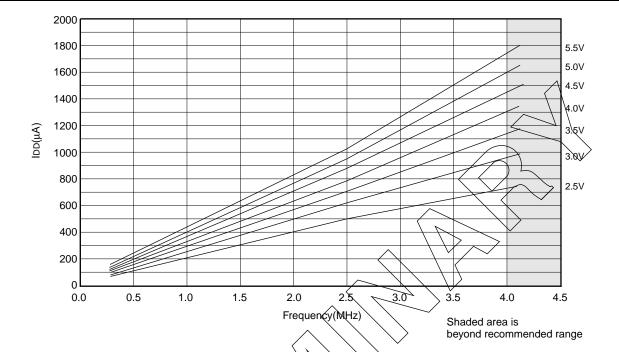


TABLE 12-1: RC OSCILLATOR FREQUENCIES


Cext	Rext	Average		
Cext	Rext	Fosc @ 5V, 2	25°C	
22 pF	5k	4.12 MHz	± 1.4%	
	10k	2.35 MHz	± 1.4%	
	100k	268 kHz	± 1.1%	
100 pF	3.3k	1.80 MHz	± 1.0%	
	5k	1.27 MHz	± 1.0%	
	10k	688 kHz	± 1.2%	
	100k	77.2 kHz	± 1.0%	
300 pF	3.3k	707 kHz	± 1.4%	
	5k	501 kHz	± 1.2%	
	10k	269 kHz	± 1.6%	
	100k	28.3 kHz	± 1.1%	

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.


FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD


FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

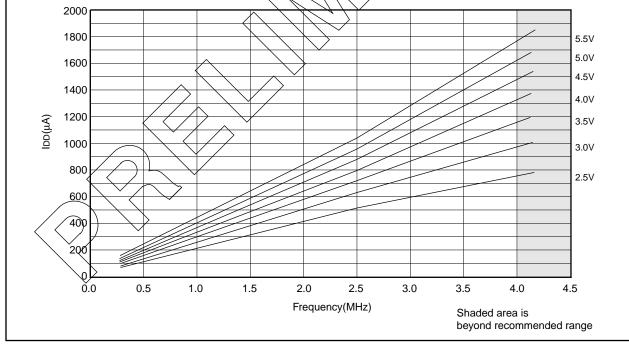

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

PIC16C71X

Applicable Devices 710 71 711 715

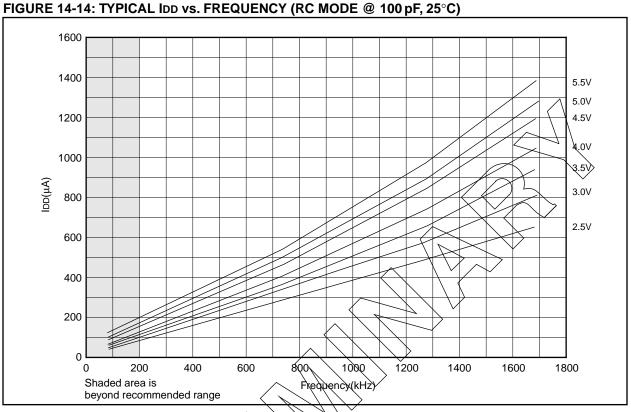
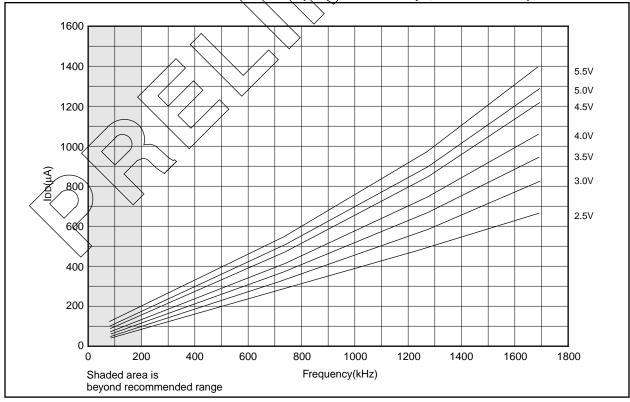
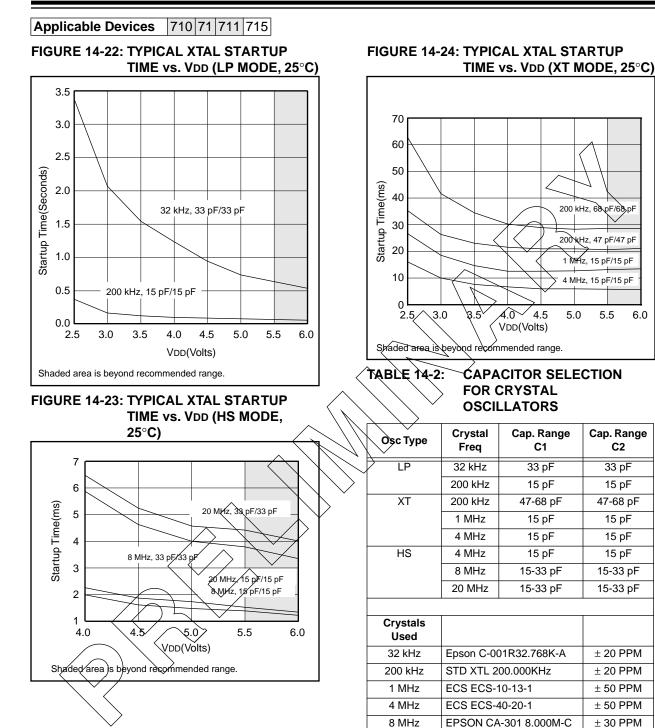




FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

20 MHz

DS30272A-page 132

± 30 PPM

EPSON CA-301 20.000M-C

6.0

15.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial)

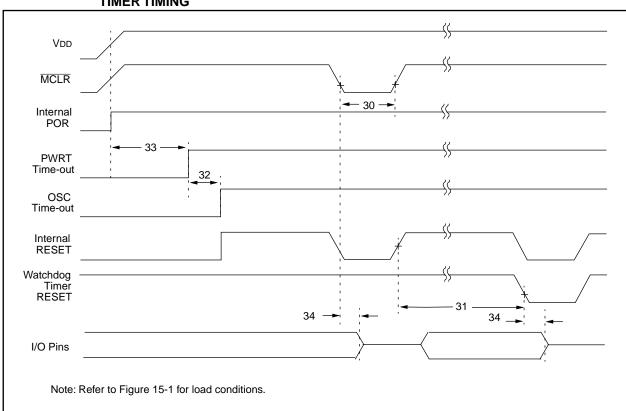
							$C \leq TA \leq +70^{\circ}C$ (commercial)
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	15	32	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020 D021 D021A	Power-down Current (Note 3)	IPD	-	5 0.6 0.6	20 9 12	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 3.0V, WDT \text{ disabled, } 0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 3.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	—	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	-	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

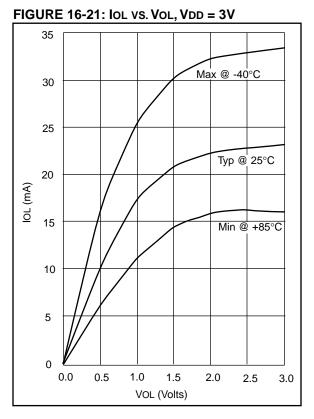
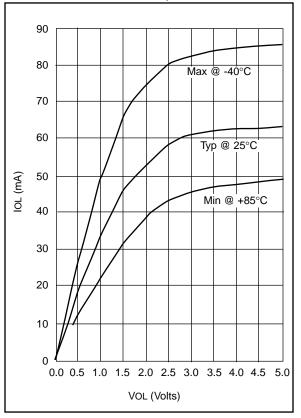



FIGURE 16-22: IOL VS. VOL, VDD = 5V

PIC16C71X

RA2/AN2		a
RA3/AN3/VREF		-
RA4/T0CKI		9
RB0/INT		9
RB1		-
		-
RB2		9
RB3		. 9
RB4		
		-
RB5		9
RB6		9
RB7		a
		-
VDD		
Vss		9
Pinout Descriptions		
PIC16C71		~
PIC16C710		9
PIC16C711		9
PIC16C715		-
PIR1 Register		21
POP		23
POR	53	51
Oscillator Start-up Timer (OST)	47,	53
Power Control Register (PCON)		54
Power-on Reset (POR)	3 57	58
	, 07, 47	50
Power-up Timer (PWRT)		
Time-out Sequence		54
Time-out Sequence on Power-up		59
TO		
POR bit	22,	54
Port RB Interrupt		63
PORTA		
PORTA Register		
DODIA Degister 1/		
	ł, 15,	25
PORTB	57,	58
PORTB	57, 1, 15,	58 27
PORTB	57, 1, 15,	58 27 66
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11 67
PORTB	57, I, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 .7 23 11 11 11 11 11 11 67 18 18 18 23 53 48 19
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53 48 19 63
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 23 53 48 19 63 18
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 15, 4, 15, 47, 47, 51,	58 27 66 35 87 2 11 11 11 11 11 11 11 11 11 11 11 11 1
PORTB	57, 1, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30
PORTB	57, 1, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30

DIO100711	10
PIC16C711	
PIC16C715	13
Reset Conditions	56
Summary	
Reset	47, 52
Reset Conditions for Special Registers .	
RP0 bit	12, 17
RP1 bit	17

S

SEEVAL [®] Evaluation and Programming System	87					
Services						
One-Time-Programmable (OTP) Devices						
Quick-Turnaround-Production (QTP) Devices						
Serialized Quick-Turnaround Production (SQTF						
Devices						
SLEEP						
Software Simulator (MPLAB™ SIM)						
Special Features of the CPU	47					
Special Function Registers						
PIC16C71	14					
PIC16C710	14					
PIC16C711	14					
Special Function Registers, Section	14					
Stack						
Overflows						
Underflow						
STATUS Register						
Т						
T0CS bit	18					
TOLE bit						
TOIF bit						
TAD	41					
Timer0						
RTCC	57, 58					
Timers						
Timer0						
Block Diagram	31					
External Clock	33					
External Clock Timing	33					
Increment Delay						
Interrupt						
Interrupt Timing						
Prescaler						
Prescaler Block Diagram						
Section						
Switching Prescaler Assignment						
Synchronization						
T0IF						
Timing						
TMR0 Interrupt	63					
Timing Diagrams						
A/D Conversion 100,	124, 146					
Brown-out Reset	53, 97					
CLKOUT and I/O	119, 142					
External Clock Timing	118, 141					
Power-up Timer						
Reset						
Start-up Timer	,					
Time-out Sequence						
Timer0	121, 144					
Timer0 Interrupt Timing						
Timer0 with External Clock						
Wake-up from SLEEP through Interrupt						
Watchdog Timer	. 97, 143					

Maps

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.