

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function	
RA0/AN0	bit0	TTL	Input/output or analog input	
RA1/AN1	bit1	TTL	Input/output or analog input	
RA2/AN2	bit2	TTL	Input/output or analog input	
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF	
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0	
			Output is open drain type	

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	—	—	_	PORTA D	Data Direct	ion Registe	r		1 1111	1 1111
9Fh	ADCON1	_	_	_	_	_		PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

7.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 µs for all other PIC16C71X devices

Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD VS. DEVICE OPERATING FREQUENCIES, PIC16C71

AD Clock Source (TAD)		Device Frequency				
Operation	ADCS1:ADCS0	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 µs
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs (3)
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 µs	32.0 μs ⁽³⁾	96 μs ⁽³⁾
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715

AD Clock	Source (TAD)	Device Frequency				
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz	
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs	
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾	
32Tosc	10	1.6 μs	6.4 μs	25.6 μs (3)	96 μs (3)	
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

2: These values violate the minimum required TAD time.

- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

BSF	STATUS,	RP0	; Select Bank 1
CLRF	ADCON1		; Configure A/D inputs
BCF	STATUS,	RP0	; Select Bank 0
MOVL	W 0xCl		; RC Clock, A/D is on, Channel 0 is selected
MOVW	F ADCON0		;
BSF	INTCON,	ADIE	; Enable A/D Interrupt
BSF	INTCON,	GIE	; Enable all interrupts
Ensure	that the re	equired sa	ampling time for the selected input channel has elapsed.

Then the conversion may be started.

;

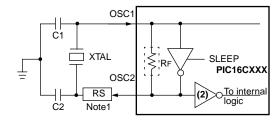
;;

;

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion.

8.2 <u>Oscillator Configurations</u>

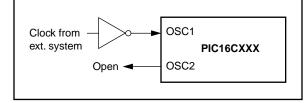
8.2.1 OSCILLATOR TYPES


The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).


FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:						
Mode	Freq	Freq OSC1 OSC2				
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF	47 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF				
	These values are for design guidance only. See notes at bottom of page.					
Resonators Used:						
455 kHz	Panasonic EFO-A455K04B ± 0.3%					
2.0 MHz	Murata Erie CS	SA2.00MG	± 0.5%			
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%					
All resonators used did not have built-in capacitors.						

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2		
LP	32 kHz	33 - 68 pF	33 - 68 pF		
	200 kHz	15 - 47 pF	15 - 47 pF		
XT	100 kHz	47 - 100 pF	47 - 100 pF		
	500 kHz	20 - 68 pF	20 - 68 pF		
	1 MHz	15 - 68 pF	15 - 68 pF		
	2 MHz	15 - 47 pF	15 - 47 pF		
	4 MHz	15 - 33 pF	15 - 33 pF		
HS	8 MHz	15 - 47 pF	15 - 47 pF		
	20 MHz	15 - 47 pF	15 - 47 pF		
	These values are for design guidance only. See notes at bottom of page.				

TABLE 8-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C7
--

TO	PD		
1	1	Power-on Reset	
0	x	egal, TO is set on POR	
x	0	Illegal, PD is set on POR	
0	1	WDT Reset	
0	0	WDT Wake-up	
u	u	MCLR Reset during normal operation	
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP	

TABLE 8-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C710/711

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	х	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 8-9: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C715

PER	POR	BOR	TO	PD	
1	0	х	1	1	Power-on Reset
x	0	х	0	x	Illegal, TO is set on POR
x	0	x	x	0	Illegal, PD is set on POR
1	1	0	x	x	Brown-out Reset
1	1	1	0	1	WDT Reset
1	1	1	0	0	WDT Wake-up
1	1	1	u	u	MCLR Reset during normal operation
1	1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	1	1	1	Parity Error Reset
0	0	x	x	x	Illegal, PER is set on POR
0	x	0	x	x	Illegal, PER is set on BOR

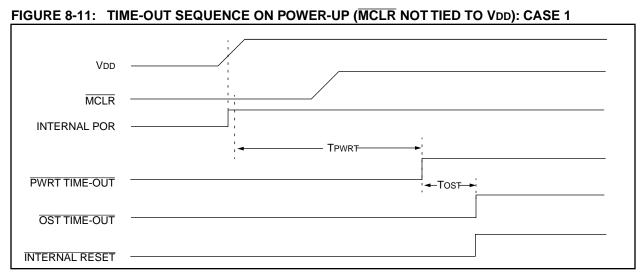
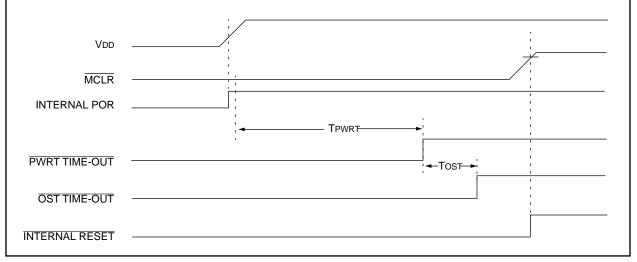
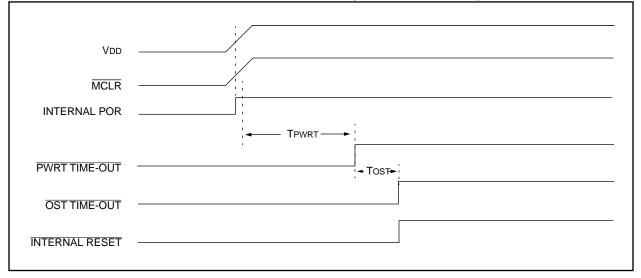




FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

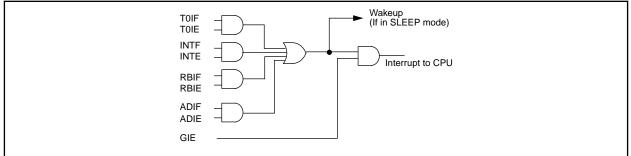
The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

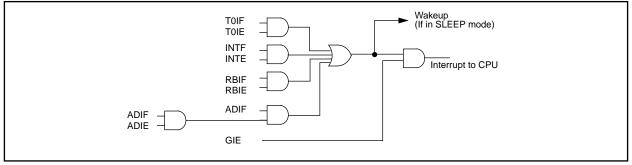
The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

~							
No	l r C F	For the PIC16C71 If an interrupt occurs while the Global Inter- rupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:					
	1	1. An instruction clears the GIE bit while an interrupt is acknowledged.					
	2	2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.					
	3	 The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts. 					
		Perform the following to ensure that inter- upts are globally disabled:					
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit					
		INTCON, GIE ; Global interrupt ; disabled?					
	GOTO	LOOP ; NO, try again					


:

Yes, continue


with program

flow

FIGURE 8-17: INTERRUPT LOGIC, PIC16C710, 71, 711

FIGURE 8-18: INTERRUPT LOGIC, PIC16C715

TABLE 9-2: PIC16CXX INSTRUCTION SET

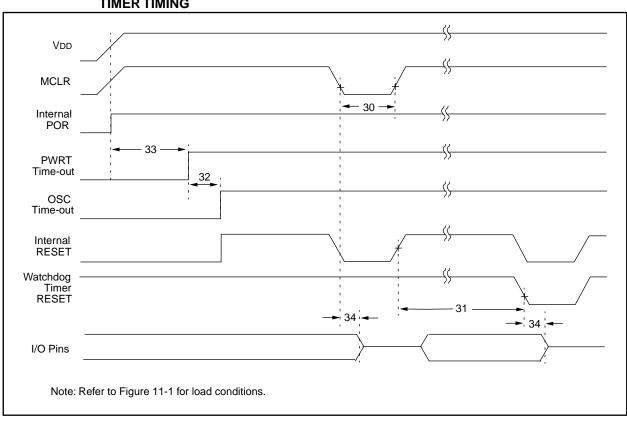
Mnemonic,		Description		14-Bit Opcode				Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIEI		FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AN		NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
OUDLIN									

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

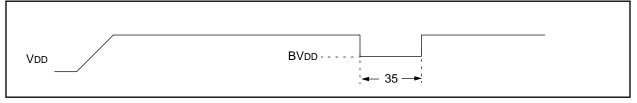
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No opera	ition					
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No operation.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	NOP	NOP	NOP			
Example	NOP						


RETFIE	Return from Interrupt						
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,					
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Monda	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

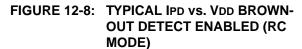
After Interrupt PC = TOS GIE = 1

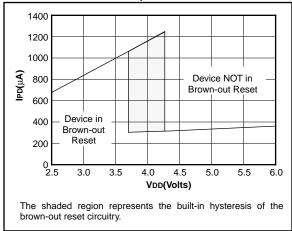

OPTION	Load Opt	tion Reg	gister		
Syntax:	[label]	OPTION	٧		
Operands:	None				
Operation:	$(W)\toOF$	PTION			
Status Affected:	I: None				
Encoding:	00	0000	0110	0010	
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

Applicable Devices 710 71 711 715

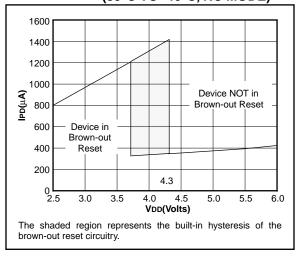
FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 11-5: BROWN-OUT RESET TIMING

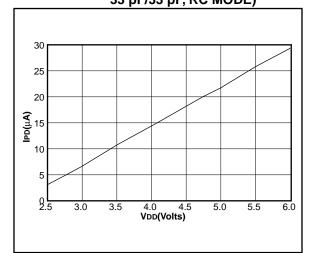



TABLE 11-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1	_	_	μs	VDD = 5V, -40°C to +125°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$3.8V \leq V\text{DD} \leq 4.2V$


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



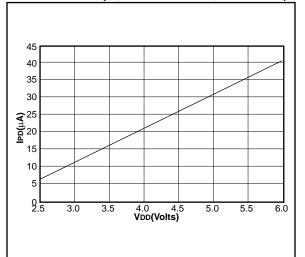


FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715

PIC16C71X

Applicable Devices 710 71 711 715

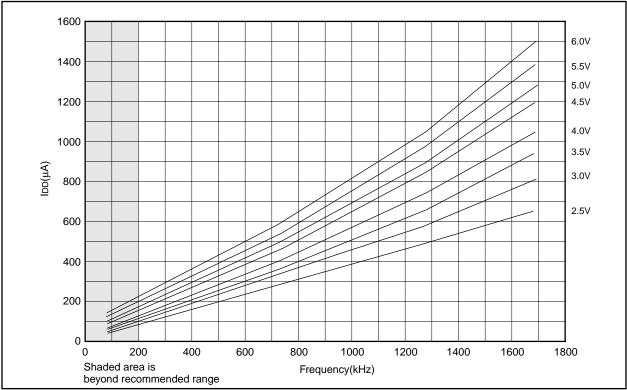


FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

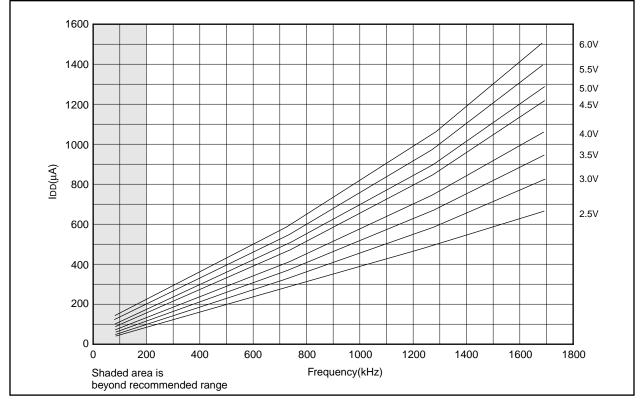
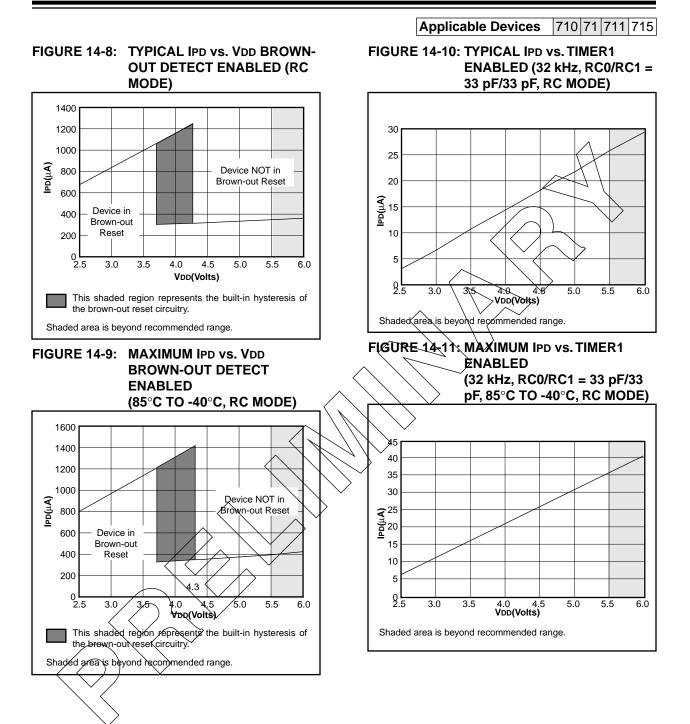



FIGURE 12-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

PIC16C71X

Applicable Devices 710 71 711 715

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †

•	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioκ (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum	O-VOH) x IOH} + Σ (VOI x IOL)
Note 2: Voltage spikes below Vss at the \overline{MCLP} pip, inducing currents greater than 80 m	A may cause latch-up. Thus

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.	D: 3.3 mA max. at 5.5V IDD: 1.8 mA typ. at 5.5V IDD: 14 μA max. at 4V IPD: 1.0 μA typ. at 4V I		VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
нѕ	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	4.5V to 5.5V VDD: 4.5V to 5.5V 13.5 mA typ. at 5.5V IDD: 30 mA max. at 5.5V 1.0 μA typ. at 4.5V IPD: 1.0 μA typ. at 4.5V		VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CH		Standa Operat	-		ure 0°	litions (unless otherwise stated) $^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)	
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3)	IPD	- -	7 1.0 1.0	28 14 16	μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C VDD = 4.0V, WDT disabled, -40° C to $+85^{\circ}$ C

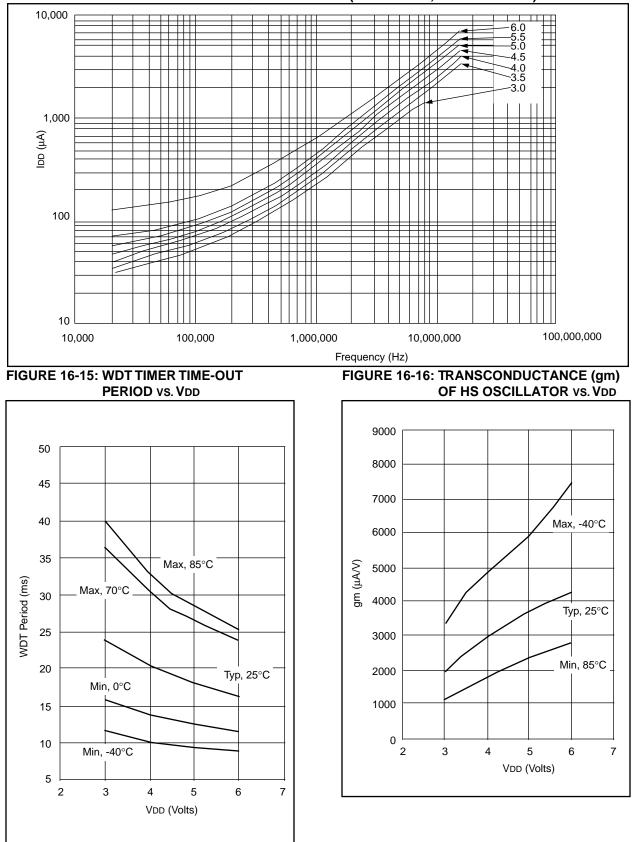
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 710 71 711 715

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	5

W

W Register	
ĂLU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	65
Programming Considerations	65
Timeout	
WDT Period	65
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA25
Example 5-2:	Initializing PORTB27
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion 42
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	
Figure 5-6:	Successive I/O Operation	
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	
Figure 6-4:	Timer0 Interrupt Timing	
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent				
RE:	: Reader Response					
Fror	m: Name					
	Company					
A	Telephone: () -					
	olication (optional):					
Wou	uld you like a reply?YN					
Dev	vice: PIC16C71X Literatu	ire Number: DS30272A				
Que	estions:					
1	What are the best features of this docum	ent?				
1.		GIU:				
2.	How does this document meet your hard	ware and software development needs?				
	,	·				
3.	Do you find the organization of this data	sheet easy to follow? If not, why?				
4.	What additions to the data sheet do you	think would enhance the structure and subject?				
5.	5. What deletions from the data sheet could be made without affecting the overall usefulness?					
-						
6.	6. Is there any incorrect or misleading information (what and where)?					
7	How would you improve this document?					
7.	now would you improve this document:					
8.	How would you improve our software, sys	stems, and silicon products?				

NOTES: