

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C710	512 x 14	0000h-01FFh
PIC16C71	1K x 14	0000h-03FFh
PIC16C711	1K x 14	0000h-03FFh
PIC16C715	2K x 14	0000h-07FFh

For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C710 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C71/711 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK

IADLL	· +-2.	FICTOCI	13 SFLC			KL0131					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0				•	<u>.</u>	•	•				
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er					XXXX XXXX	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	ta Latch whe	n written: PC	RTA pins wh	nen read	x 0000	u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PO	ORTB pins w	hen read				XXXX XXXX	uuuu uuuu
07h	-	Unimpleme	nted							-	—
08h	-	Unimpleme	nted							-	—
09h	_	Unimpleme	nted		_					_	_
0Ah (1,2)	PCLATH	_	—	_	Write Buffe	r for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_					-0	-0
0Dh		Unimpleme	nted								_
0Eh		Unimpleme	nted							_	_
0Fh	-	Unimpleme	nted							_	_
10h		Unimpleme	nted								_
11h		Unimpleme	nted							_	_
12h	-	Unimpleme	nted							_	_
13h	-	Unimpleme	nted							-	—
14h		Unimpleme	nted							_	_
15h	-	Unimpleme	nted							_	_
16h	-	Unimpleme	nted							-	—
17h		Unimpleme	nted							_	_
18h	-	Unimpleme	nted							_	_
19h	-	Unimpleme	Unimplemented —						—		
1Ah	-	Unimpleme	nted							-	—
1Bh	_	Unimpleme	nted							-	_
1Ch	—	Unimpleme	Inimplemented — —						—		
1Dh	—	Unimpleme	Inimplemented — —								
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	—	PORTA D	Data Direct	tion Registe	r		1 1111	1 1111
9Fh	ADCON1		—	—	—	_	—	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

PIC16C71X

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

TABLE 7-3: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	ADIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	sult Regist	ter						xxxx xxxx	uuuu uuuu
08h	ADCON0	ADCS1	ADCS0	_	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	_	_			_	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	PORTA	Data Dire	ction Registe	er		1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	-	—	—	—	-0	-0
8Ch	PIE1		ADIE	_	—	-	—	—	—	-0	-0
1Eh	ADRES	A/D Re	sult Regis	ster	-					XXXX XXXX	uuuu uuuu
1Fh	ADCON 0	ADCS 1	ADCS 0	CHS2	CHS1	CHS0	GO/ DONE	-	ADON	0000 00-0	0000 00-0
9Fh	ADCON 1	—	—	—	—	-	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA 3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

8.2 <u>Oscillator Configurations</u>

8.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).

FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:						
Mode	Freq	Freq OSC1 0				
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF	47 - 100 pF 15 - 68 pF 15 - 68 pF			
HS 8.0 MHz 15 - 68 pF 15 - 68 pF 16.0 MHz 10 - 47 pF 10 - 47 pF						
The note	se values are for as at bottom of page	r design guida ge.	nce only. See			
Resonator	s Used:					
455 kHz	Panasonic EF	D-A455K04B	± 0.3%			
2.0 MHz	Murata Erie CS	SA2.00MG	± 0.5%			
4.0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie CS	Murata Erie CSA16.00MX ± 0.5%				
All reso	nators used did r	ot have built-in	capacitors.			

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2			
LP	32 kHz	33 - 68 pF	33 - 68 pF			
	200 kHz	15 - 47 pF	15 - 47 pF			
XT	100 kHz	47 - 100 pF	47 - 100 pF			
	500 kHz	20 - 68 pF	20 - 68 pF			
	1 MHz	15 - 68 pF	15 - 68 pF			
	2 MHz	15 - 47 pF	15 - 47 pF			
	4 MHz	15 - 33 pF	15 - 33 pF			
HS	8 MHz	15 - 47 pF	15 - 47 pF			
	20 MHz	15 - 47 pF	15 - 47 pF			
Th	These values are for design guidance only. See notes at bottom of page.					

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

For the PIC16C71 Note: if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ③	(4)			/	
INT pin		1	1 1 1 1		1 1 1 1 1 1 1 1
INTF flag (INTCON<1>)			Interrupt Latency (2)		
GIE bit (INTCON<7>)					
INSTRUCTION	FLOW		, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
PC	PC	PC+1	PC+1	X 0004h	X 0005h
Instruction (fetched	Inst (PC)	Inst (PC+1)	_	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

FIGURE 8-19: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode. 4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

Instruction Descriptions 9.1

ADDLW	Add Literal and W							
Syntax:	[<i>label</i>] Al	[<i>label</i>] ADDLW k						
Operands:	$0 \le k \le 25$	55						
Operation:	(W) + k –	→ (W)						
Status Affected:	C, DC, Z							
Encoding:	11	111x	kkkk	kkkk				
Description:	The conten added to the result is pla	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example:	ADDLW	0x15						
	Before Instruction W = 0x10 After Instruction W = 0x25							
ADDWF	Add W a	nd f						
Syntax:	[<i>label</i>] Al	DDWF	f,d					
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7						
Operation:	(W) + (f)	\rightarrow (dest)						
Status Affected:	C, DC, Z							
Encoding:	00	0111	dfff	ffff				
Description:	Add the co	Add the contents of the W register						

ANDLW	AND Lite	eral with	W					
Syntax:	[<i>label</i>] A	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 2$	55						
Operation:	(W) .ANE	D. (k) \rightarrow (W)					
Status Affected:	Z							
Encoding:	11	1001	kkkk	kkkk				
Description:	The conte AND'ed wi result is pl	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal "k"	Process data	Write to W				
Example	ANDLW	0x5F						
	Before In	struction	I					
		- W	0xA3					
	After Inst	ruction						
		vv =	0x03					
	AND W v	vith f						
Syntax:	[<i>label</i>] A	NDWF	f,d					
Operands:	$0 \le f \le 12$	27						

Syntax:	[<i>label</i>] A	DDWF	f,d		Syntax		
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27			Operan		
Operation:	(W) + (f)	\rightarrow (dest)	1		Operati		
Status Affected:	C, DC, Z				Status		
Encoding:	00	0111	dfff	ffff	Encodi		
Description:	Add the contents of the W register Descrip with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1				Words:		
Cycles:	1				Cycles:		
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle		
	Decode	Read register 'f'	Process data	Write to Dest			
Example	ADDWF	FSR,	0		Examp		
	Before In	structior	1				
		W =	0x17 0xC2				
	After Inst	ruction	0.02				
		= W	0xD9				
		FSR =	0xC2				

ax:	[<i>label</i>] Al	NDWF	f,d					
ands:	$0 \le f \le 127$ $d \in [0,1]$							
ation:	(W) .AND	D. (f) \rightarrow (c	dest)					
s Affected:	Z							
ding:	00	0101	dfff	ffff				
ription:	AND the V 'd' is 0 the register. If back in reg	V register result is s 'd' is 1 the gister 'f'.	with regist stored in th e result is s	er 'f'. If e W stored				
s:	1							
es:	1							
cle Activity:	Q1	Q2	Q3	Q4				
olo / totivity.								
olo / tolivity.	Decode	Read register 'f'	Process data	Write to Dest				
nple	Decode	Read register 'f'	Process data	Write to Dest				
nple	Decode ANDWF Before In	Read register 'f' FSR , struction	Process data	Write to Dest				
nple	ANDWF Before In	Read register 'f' FSR, struction W = FSR =	Process data 1 0x17 0xC2	Write to Dest				
nple	Decode ANDWF Before In After Inst	Read register 'f' struction W = FSR = ruction	Process data 1 0x17 0xC2	Write to Dest				
nple	Decode ANDWF Before In After Inst	Read register 'f' Struction W = FSR = ruction W =	Process data 1 0x17 0xC2 0x17 0xC2	Write to Dest				

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No opera	ition					
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No operati	ion.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	NOP	NOP	NOP			
Example	NOP						

RETFIE	Return from Interrupt						
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,					
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description: Words: Cycles: Example	The conter loaded in t instruction patibility w Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TION is a le user ca	W register DN registe rted for coo C5X produ readable/v n directly a	r are r. This de com- ucts. vritable address
	To mainta with futu not use t	ain upwa re PIC16 his instru	rd compa CXX production.	tibility ucts, do

RETLW	Return with Literal in W						
Syntax:	[label]	RETLW	k				
Operands:	$0 \le k \le 255$						
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow P \end{array}$	9C					
Status Affected:	None						
Encoding:	11	01xx	kkkk	kkkk			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	Read literal 'k'	NOP	Write to W, Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	CALL TABLE ;W contains table ;offset value ;W now has table value						
TABLE	ADDWF PC RETLW k1 RETLW k2	;W = of ;Begin ;	fset table				
	RETLW kn	; End o	f table				
		Siluciion W =	0x07				
	After Inst	ruction		-			
		VV =	value of k	8			

RETURN	Return from Subroutine					
Syntax:	[label]	RETUR	N			
Operands:	None					
Operation:	$\text{TOS} \to \text{F}$	C				
Status Affected:	None					
Encoding:	00	0000	0000	1000		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	NOP	NOP	Pop from the Stack		
2nd Cycle	NOP	NOP	NOP	NOP		
Example	RETURN After Inte	rrupt PC =	TOS			

PIC16C71X

Applica	ble Devices 710 71 711 715						
11.3	DC Characteristics: PIC16C71 PIC16C71 PIC16C71 PIC16C71 PIC16C71 PIC16C71 PIC16C71 PIC16LC7 PIC16LC7	0-04 1-04 0-10 1-10 0-20 1-20 1-20 10-04 210-04	(Comme (Comme (Comme (Comme (Comme (Comme (Comme	ercia ercia ercia ercia ercia ercia ercia	al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus al, Indus	trial, E trial, E trial, E trial, E trial, E trial, E trial, E	Extended) Extended) Extended) Extended) Extended) Extended) Extended) Extended) Extended)
		Standa Operati	rd Opera	ting		ns (un	lless otherwise stated) $1 < \pm 70^{\circ}$ C (commercial)
DC CHAI	RACTERISTICS	Operati Section	ng voltage 11.2.	e VD	-40°C -40°C D range as	: ≤ T : ≤ T : ≤ T s desci	$A \le +70$ C (commercial) $A \le +85^{\circ}$ C (industrial) $TA \le +125^{\circ}$ C (extended) ribed in DC spec Section 11.1 and
Param No	Characteristic	Sym	Min	Typ	Max	Units	Conditions
	Input Low Voltage I/O ports	VIL					
D030 D030A	with TTL buffer		Vss Vss	-	0.15Vdd 0.8V	V V	For entire VDD range $4.5 \le VDD \le 5.5V$
D031 D032	with Schmitt Trigger buffer MCLR, OSC1 (in RC mode)		Vss Vss	-	0.2Vdd 0.2Vdd	V V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage	Vін		-			
D040 D040A	with TTL buffer		2.0 0.25Vdd + 0.8V	-	Vdd Vdd	V V	$4.5 \le VDD \le 5.5V$ For entire VDD range
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range
D042	MCLR, RB0/INT		0.8VDD	-	VDD	V	
D042A	OSC1 (XT, HS and LP)			-	VDD		Note1
D043	PORTR weak pull-up current	ססווס	0.9VDD	-	400	V IIA	
0070	Input Leakage Current (Notes 2, 3)	IPURD	50	250	400	μΑ	VDD = 3V, VPIN = V33
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 710 71 711 715

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.							
	Nr	Resolution	_	_	8-bits	_	$VREF = VDD, VSS \leq Ain \leq VREF$
	Nint	Integral error	_	_	less than ±1 LSb		$VREF = VDD, VSS \le Ain \le VREF$
	Ndif	Differential error	—	—	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDD, VS S ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	—	_	VSS & ANT & VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	$\langle \langle \rangle \rangle$
	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	_		10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when AVD is on. (Note 1)
	IREF	VREF input current (Note 2)			The second secon	mA μA	During sampling All other times

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

15.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) OOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)									
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	15	32	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D020	Power-down Current	IPD	-	5	20	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3)		-	0.6	9	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$		
D021A			-	0.6	12	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 710 71 711 715

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)OOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC spec Section 15.1and Section 15.2.					
Param	Characteristic	Sym	Min	Typ +	Мах	Units	Conditions
NO.	Conscitive Londing Space on						
	Output Pins						
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю			50	pF	
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only							

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.