

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715t-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

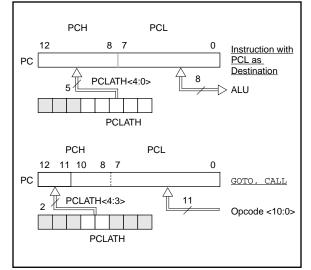
RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).


FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

	1117 \					
File Addres	s	,	File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h		PCON ⁽²⁾	87h			
08h	ADCON0	ADCON1	88h			
09h	ADRES	ADRES	89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	General Purpose Register	General Purpose Register Mapped in Bank 0 ⁽³⁾	8Ch			
2Fh			AFh			
30h			B0h			
3011						
l	<					
Ν						
)			
7Fh			FFh			
L	Bank 0	Bank 1	1			
 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: The PCON register is not implemented on the PIC16C71. 3: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. 						

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-14 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

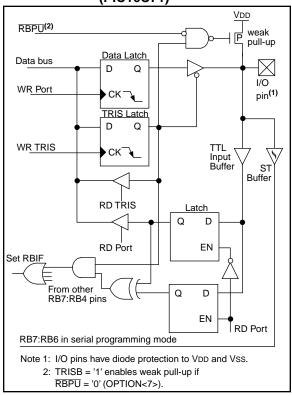
FIGURE 4-14: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

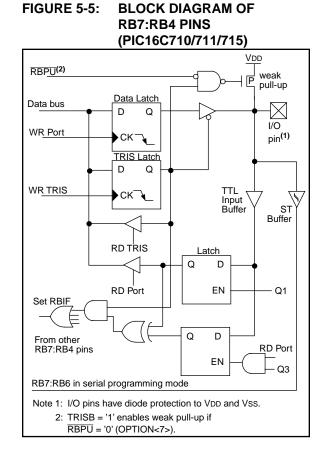
A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.


The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instruc-	Note 1:	There are no status bits to indicate stack overflow or stack underflow conditions.
	Note 2:	called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instruc- tions, or the vectoring to an interrupt


4.4 <u>Program Memory Paging</u>

The PIC16C71X devices ignore both paging bits (PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C71X is not recommended since this may affect upward compatibility with future products.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

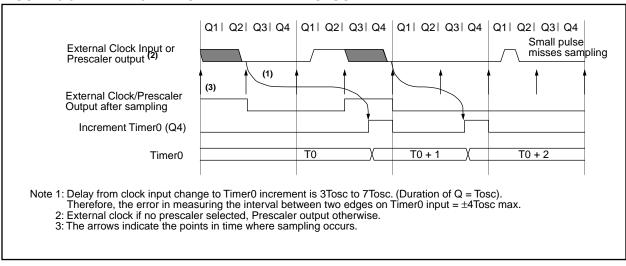
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	86h, 186h TRISB PORTB Data Direction Register									1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

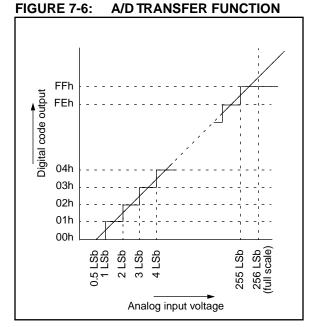

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.


FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

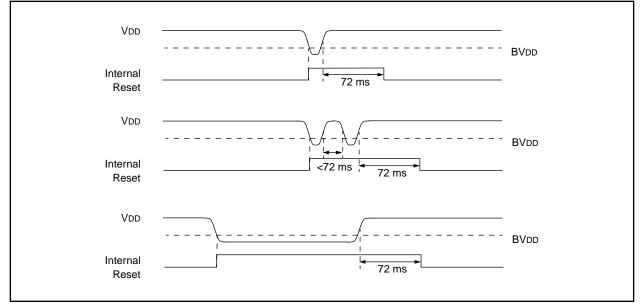
8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

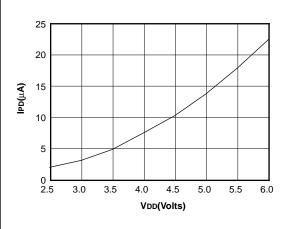
A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

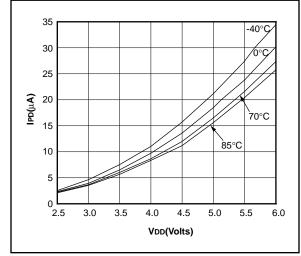
Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

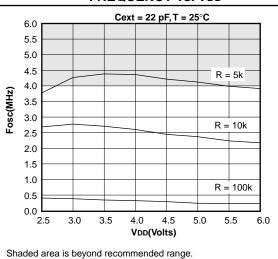
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

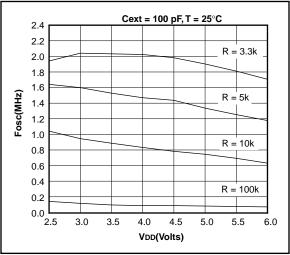

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.


4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.





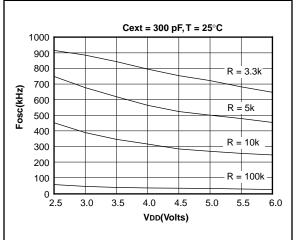

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

OSC		PIC16C715-04	, ,	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	/.	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	ot use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do not use in LP mode		// /	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

Applicable Devices 710 71 711 715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled	
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz , VDD = 3.0V , WDT disabled	
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μΑ	BOR enabled VDD = 5.0V	
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	30 5	μ Α μΑ μΑ	$VDD = 3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ $VDD = 3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D023	Brown-out Reset Current (Note 5)		-	300*	500	μA	BOR enabled VDD = 5.0V	

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

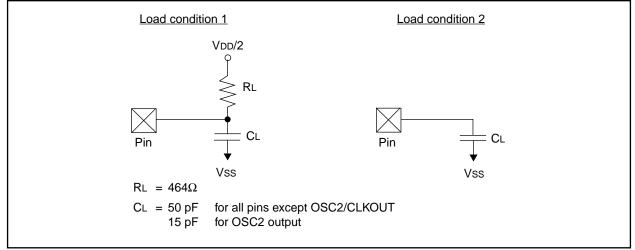
The test conditions for all IDD measurements in active operation mode are:

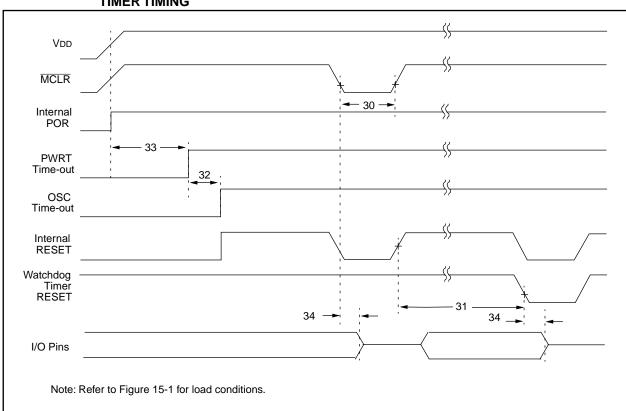
ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


15.4 <u>Timing Parameter Symbology</u>

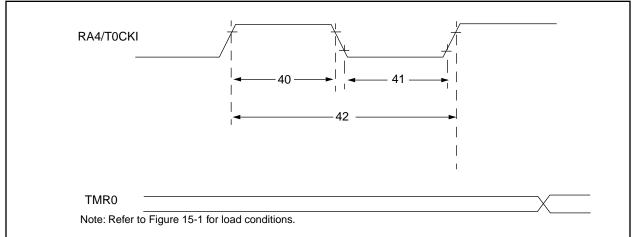

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

T				
F	Frequency	Т	Time	
Lowerc	ase letters (pp) and their meanings:			
рр				
СС	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	\overline{RD} or \overline{WR}	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	ase letters and their meanings:			
S				
F	Fall	P	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
1	Low	Z	Hi-impedance	

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

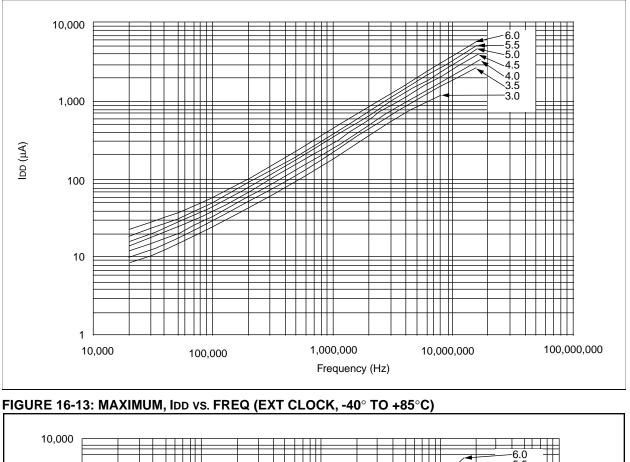
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	—	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	-	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

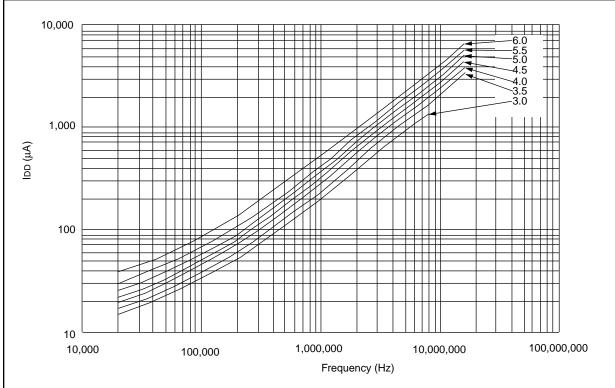
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS


Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet parameter 42
			With Prescaler	10	-	_	ns	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet parameter 42
			With Prescaler	10	-	_	ns	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-		ns	N = prescale value (2, 4,, 256)
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 16-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

Data based on matrix samples. See first page of this section for details.

NOTES:

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent							
RE:	: Reader Response								
Fror	Name								
	Company								
Telephone:									
Application (optional):									
Would you like a reply?YN									
Device: PIC16C71X Literature Number: DS30272A									
Que	estions:								
1. What are the best features of this document?									
1.	what are the best features of this document?								
2.	How does this document meet your hardware and software development needs?								
	,	·							
3.	Do you find the organization of this data sheet easy to follow? If not, why?								
4.	What additions to the data sheet do you think would enhance the structure and subject?								
5.	What deletions from the data sheet could be made without affecting the overall usefulness?								
-									
6.	Is there any incorrect or misleading information (what and where)?								
7	How would you improve this decument?								
7.	How would you improve this document?								
8.	How would you improve our software, sys	stems, and silicon products?							

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02