

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

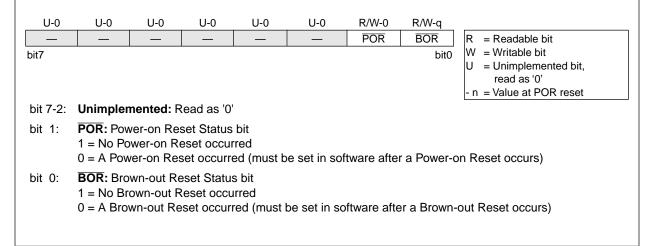
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c715t-20e-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U MPEEN	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q BOR ⁽¹⁾	R = Readable bit			
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:	bit 7: MPEEN: Memory Parity Error Circuitry Status bit Reflects the value of configuration word bit, MPEEN										
bit 6-3:	Unimplen	nented: R	ead as '0'								
bit 2:	·										
bit 1:											
bit 0:	BOR: Bro 1 = No Bro 0 = A Bro	own-out R	eset occu	rred	be set in sc	oftware aft	er a Brown-	out Reset occurs)			

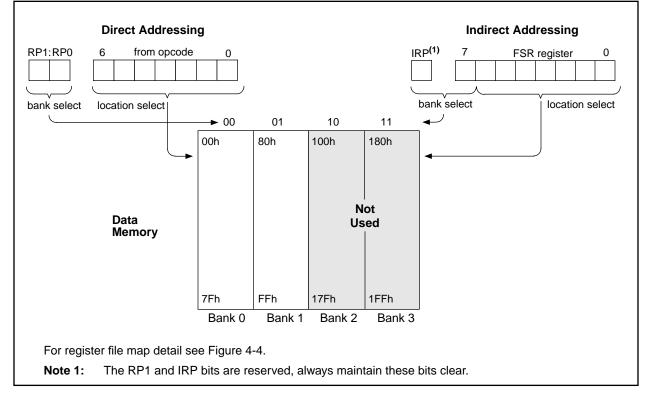
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

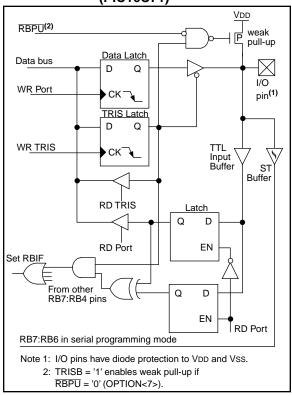
ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)

4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.


EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	0x20 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

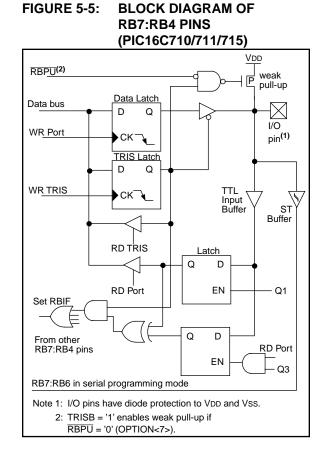

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

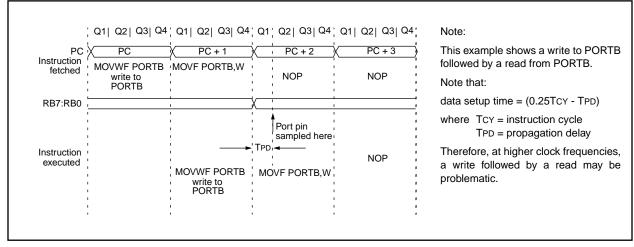
Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;					PORT	latch	PORT p	ins
;								
	BCF	PORTB,	7	;	01pp	pppp	llpp j	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS	, RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp g	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp j	pppp


;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13	- -	—	—	_	_	—	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpler	nented	: Read	as '1'										
bit 4:	CP0: Cod 1 = Code 0 = All me	protect	ion off		ed, but	00h - 3	Fh is w	/ritable						
bit 3:	1 = Power	PWRTE: Power-up Timer Enable bit 1 = Power-up Timer enabled 0 = Power-up Timer disabled												
bit 2:	WDTE: W 1 = WDT 0 = WDT	enabled	ł	Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC c 10 = HS c 01 = XT c 00 = LP o	oscillato oscillato oscillato	or r	tor Sele	ection b	vits								

9.1 Instruction Descriptions

		•	_				
ADDLW	Add Lite	ral and \	N				
Syntax:	[<i>label</i>] Al	DDLW	k				
Operands:	$0 \le k \le 25$	55					
Operation:	(W) + k –	→ (W)					
Status Affected:	C, DC, Z						
Encoding:	11	111x	kkkk	kkkk			
Description:	The conter added to the result is pla	ne eight b	it literal 'k'	and the			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read literal 'k'	Process data	Write to W			
Example:	ADDLW $0x15$ Before Instruction W = 0x10 After Instruction W = 0x25						
ADDWF	Add W a	nd f					
Syntax:	[<i>label</i>] Al	DDWF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7					
Operation:	(W) + (f) -	ightarrow (dest)					
Status Affected:	C, DC, Z						
Encoding:	00	0111	dfff	ffff			
Description:	Add the co with regist stored in th	er 'f'. If 'd'	is 0 the re	sult is			

Encoding:	00	0111	dfff	ffff			
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to Dest			
Example	ADDWF	FSR,	0				
	Before In						
		W = FSR =	0x17 0xC2				
	After Inst		0				
		W = FSR =	0xD9 0xC2				

ANDLW	AND Lite	eral with	w			
Syntax:	[<i>label</i>] A	NDLW	k			
Operands:	$0 \le k \le 2$	55				
Operation:	(W) .ANE	D. (k) \rightarrow (W)			
Status Affected:	Z					
Encoding:	11	1001	kkkk	kkkk		
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal "k"	Process data	Write to W		
Example	ANDLW	0x5F				
	Before In	struction	0xA3			
	After Inst	•• –	UXAU			
		= W	0x03			

ANDWF	AND W v	vith f					
Syntax:	[<i>label</i>] A	NDWF	f,d				
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7					
Operation:	(W) .ANE	D. (f) \rightarrow (c	dest)				
Status Affected:	Z						
Encoding:	00	0101	dfff	ffff			
Description:	'd' is 0 the register. If	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to Dest			
Example	ANDWF	FSR,	1				
	Before In						
	After Inst	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02					

SLEEP

[label]	SLEEF)				
None						
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
TO, PD						
00	0000	0110	0011			
The power-down status bit, PD is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped.						
1						
1						
Q1	Q2	Q3	Q4			
Decode	NOP	NOP	Go to Sleep			
SLEEP						
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP			

SUBLW	Subtract	W from	Literal		
Syntax:	[label]	SUBL	N k		
Operands:	$0 \le k \le 255$				
Operation:	k - (W) \rightarrow	• (W)			
Status Affected:	C, DC, Z				
Encoding:	11	110x	kkkk kkk		
Description:	ment meth	od) from	ubtracted (2's complet the eight bit literal 'k I in the W register.		
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3 Q4		
	Decode	Read literal 'k	Process Write to data		
Example 1:	SUBLW	0x02			
	Before In:	structior	ı		
		W = C = Z =	1 ? ?		
	After Inst	ruction			
		W = C = Z =	1 1; result is positive 0		
Example 2:	Before In:	structior	n		
		W = C = Z =	2 ? ?		
	After Inst	ruction			
		W = C = Z =	0 1; result is zero 1		
Example 3:	Before In	structior	ı		
Example 0.		W =	3		
Example 0.					
Example 0.		C = Z =	? ?		
	After Inst	Z =			
	After Inst	Z =			
	After Inst	Z = ruction	?		

Appli	cable Devices	710 71	711 715	
11.1	DC Character	istics:	PIC16C710-04 (Commercial, Industrial, Extended PIC16C711-04 (Commercial, Industrial, Extended PIC16C710-10 (Commercial, Industrial, Extended PIC16C711-10 (Commercial, Industrial, Extended PIC16C710-20 (Commercial, Industrial, Extended PIC16C711-20 (Commercial, Industrial, Extended)))

DC CHARACTERISTICS			Operating temperature 0°C -40°C				ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - - -	10.5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

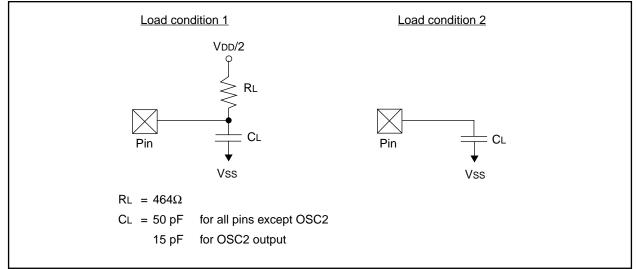
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

11.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

2. 1990				
Т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
cs	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	P	Period	
н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	

FIGURE 11-1: LOAD CONDITIONS

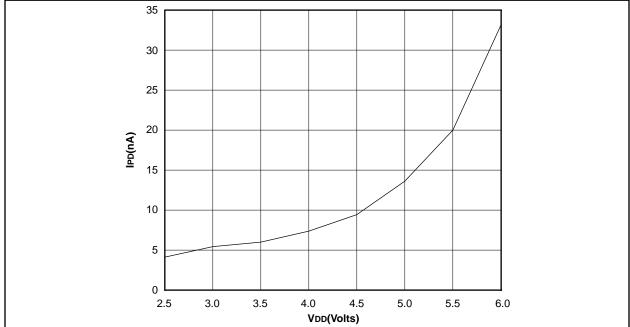
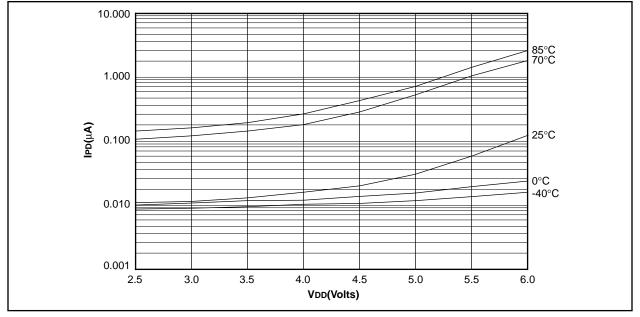
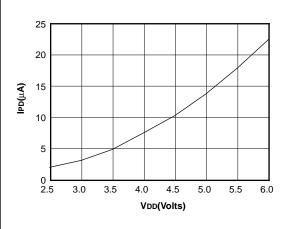
12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

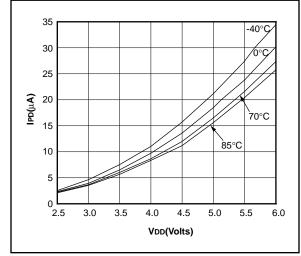
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

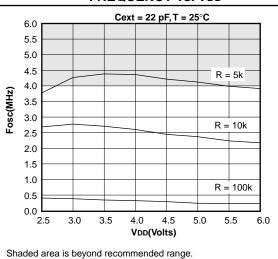
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

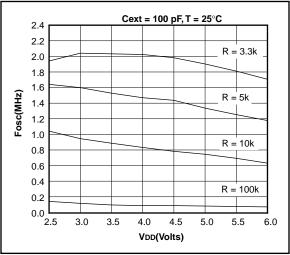
Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)


FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)





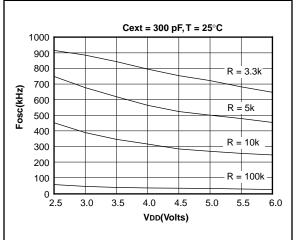

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

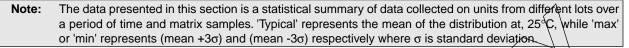
FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

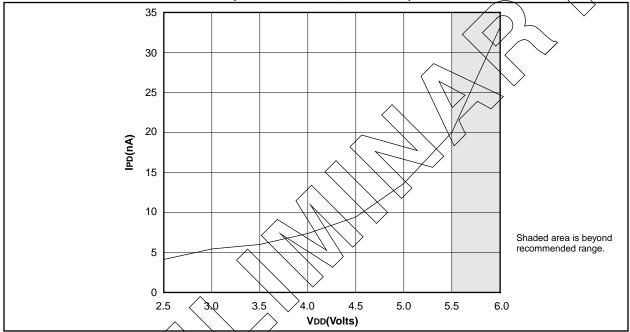
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution	_	_	8-bits	_	$VREF=VDD,VSS\leqAin\leqVREF$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_	_	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	_	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle }$	<u></u> → A → A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	μA μA	During sampling All other times

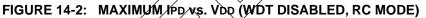
* These parameters are characterized but not tested.

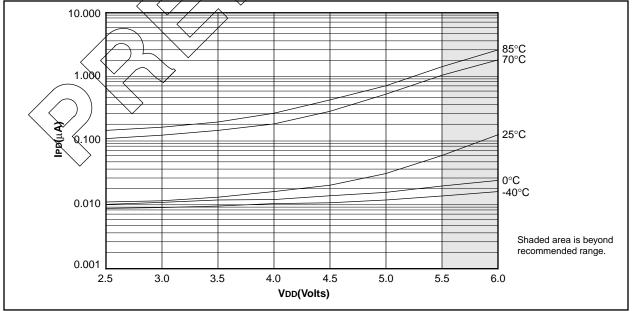
+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

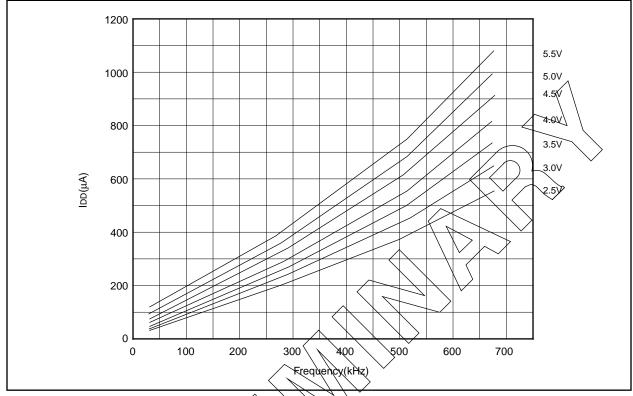
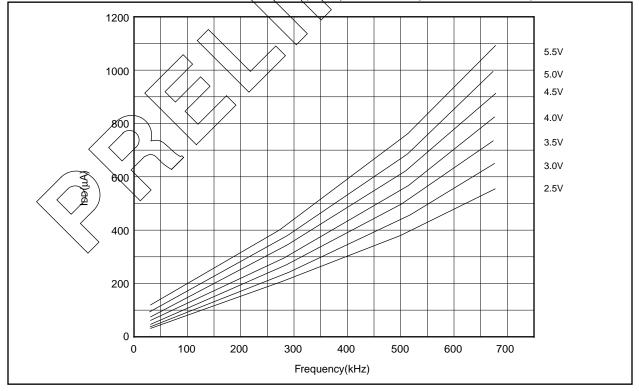
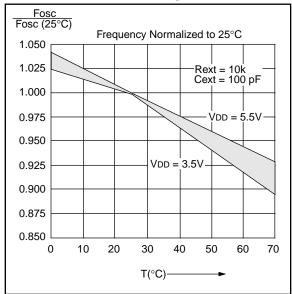



FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)



16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C71

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

Applicable Devices71071711715

FIGURE 16-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

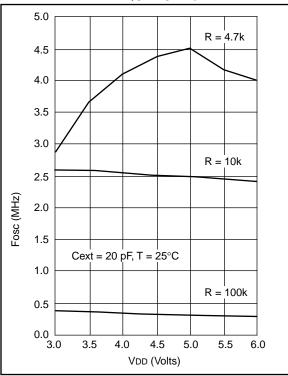
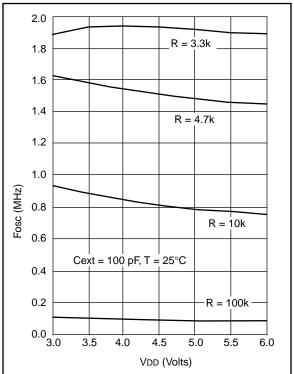



FIGURE 16-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

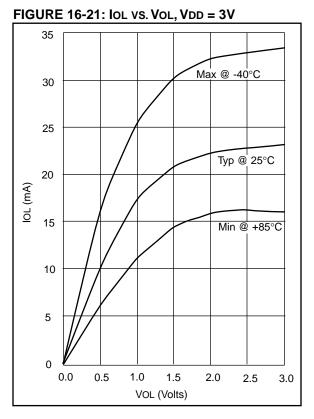
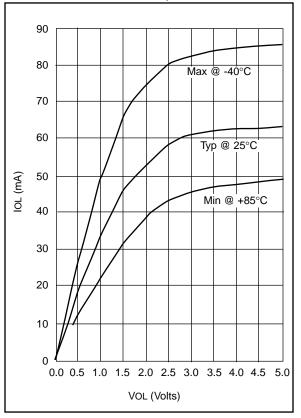
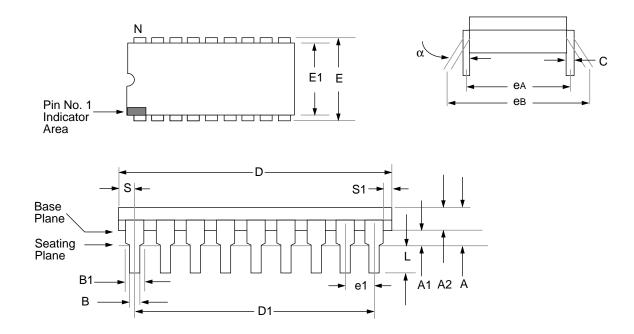
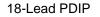
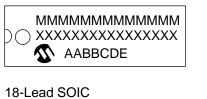




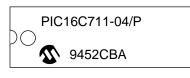
FIGURE 16-22: IOL VS. VOL, VDD = 5V



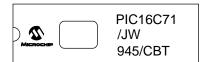

17.2 <u>18-Lead Plastic Dual In-line (300 mil) (P)</u>

	Package Group: Plastic Dual In-Line (PLA)						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0 °	10°		
А	_	4.064		_	0.160		
A1	0.381	_		0.015	-		
A2	3.048	3.810		0.120	0.150		
В	0.355	0.559		0.014	0.022		
B1	1.524	1.524	Reference	0.060	0.060	Reference	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.479	23.495		0.885	0.925		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.255		0.300	0.325		
E1	6.096	7.112		0.240	0.280		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	7.620	7.620	Reference	0.300	0.300	Reference	
eB	7.874	9.906		0.310	0.390		
L	3.048	3.556		0.120	0.140		
N	18	18		18	18		
S	0.889	_		0.035	-		
S1	0.127	_		0.005	-		

17.5 Package Marking Information


18-Lead CERDIP Windowed

20-Lead SSOP


Example

Example

Example

Example

Legend:	MMM XXX AA BB C D1 E	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will	ent the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	5

W

W Register	
ĂLU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	
Programming Considerations .	65
Timeout	
WDT Period	
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA25
Example 5-2:	Initializing PORTB27
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion 42
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	
Figure 5-6:	Successive I/O Operation	
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	
Figure 6-4:	Timer0 Interrupt Timing	
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

Figure 14-6:	Typical RC Oscillator Frequency vs.
riguio i i o.	VDD126
Figure 14-7:	Typical RC Oscillator Frequency vs. VDD126
Figure 14-8:	Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode)127
Figure 14-9:	Maximum IPD vs. VDD Brown-out Detect Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 14-12:	85°C to -40°C, RC Mode)
Figure 14-13:	(RC Mode @ 22 pF, 25 C) 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) 128
Figure 14-14:	(RC Mode @ 22 pF, -40 C to 85 C) 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C)
Figure 14-15:	Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 14-17:	Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) 130
Figure 14-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of XT Oscillator vs. VDD131
Figure 14-22:	Typical XTAL Startup Time vs. VDD (LP Mode, 25°C)132
Figure 14-23:	Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)132
Figure 14-24:	Typical XTAL Startup Time vs. VDD (XT Mode, 25°C)132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)
Figure 14-27:	Typical IDD vs. Frequency (XT Mode, 25°C)133
Figure 14-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)134
Figure 15-1:	Load Conditions140
Figure 15-2:	External Clock Timing141
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Figure 45 5	Timing
Figure 15-5:	Timer0 External Clock Timings
Figure 15-6:	A/D Conversion Timing
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature
Figure 16-3:	VDD147 Typical RC Oscillator Frequency vs.
	VDD147

Figure 16-4:	Typical RC Oscillator Frequency vs. VDD
Figure 16-5:	Typical lpd vs. VDD Watchdog Timer Disabled 25°C148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C 148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog Disabled149
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled149
Figure 16-9:	Vth (Input Threshold Voltage) of I/O Pins vs. VDD149
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage) of OSC1 Input (in XT, HS, and
	LP Modes) vs. VDD 150
Figure 16-12:	Typical IDD vs. Freq (Ext Clock, 25°C) 151
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C)151
Figure 16-14:	Maximum IDD vs. Freq with A/D Off
	(Ext Clock, -55° to +125°C) 152
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
E: 10.17	HS Oscillator vs. VDD 152
Figure 16-17:	Transconductance (gm) of LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
. igure te tet	XT Oscillator vs. VDD 153
Figure 16-19:	IOH vs. VOH, VDD = 3V 153
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154