

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c71t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0					•	•					
00h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod		xxxx xxxx	uuuu uuuu						
02h ⁽³⁾	PCL	Program Co		0000 0000	0000 0000						
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	DRTB pins wł	nen read				xxxx xxxx	uuuu uuuu
07h	—	Unimpleme	nted							—	—
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
0Ah ^(2,3)	PCLATH	_	—	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh (3)	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	a Direction C	Control Regis	ster					1111 1111	1111 1111
87h ⁽⁴⁾	PCON	—	—	—	_	—	_	POR	BOR	dd	uu
88h	ADCON1	—	—	_	_	_	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
8Ah ^(2,3)	PCLATH	_	—	ounter	0 0000	0 0000					
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

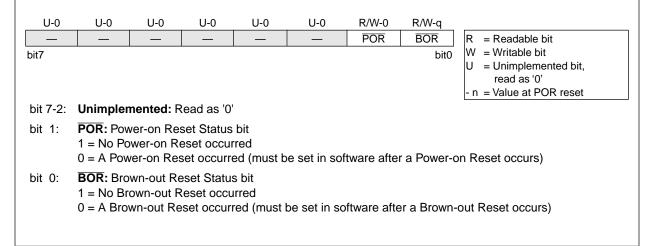
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.


6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U MPEEN	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q BOR ⁽¹⁾	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	MPEEN: I Reflects th				Status bit bit, MPEE	N		
bit 6-3:	Unimplen	nented: R	ead as '0'					
bit 2:	PER : Mer 1 = No Er 0 = Progra	ror occurr	ed			must be s	et in softwa	re after a Parity Error Reset)
bit 1:	POR: Pow 1 = No Po 0 = A Pow	wer-on Re	eset occur	red	e set in sof	tware afte	er a Power-c	on Reset occurs)
bit 0:	BOR: Bro 1 = No Bro 0 = A Bro	own-out R	eset occu	rred	be set in sc	oftware aft	er a Brown-	out Reset occurs)

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

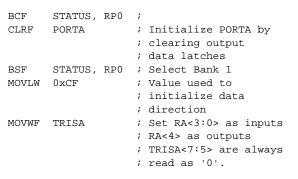
5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

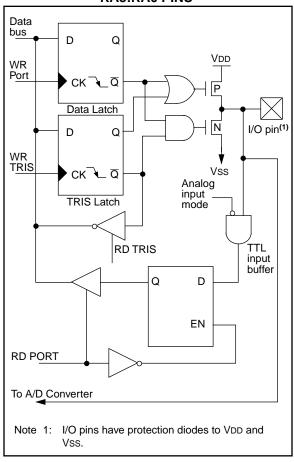
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.


Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

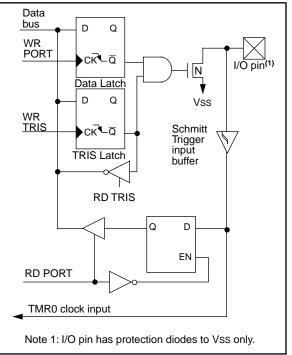
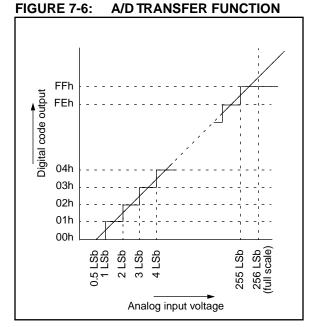

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	Data Directic	on Registe	ər					1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111


Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0 C	P0 CI	P0 CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		•										bit0	Address	2007h
bit 13-7 5-4: bit 6:	1 = Co 0 = All BODE 1 = BC	Code prote ode protec memory N: Brown OR enable OR disable	ction off is code -out Re ed	protec			Fh is w	vritable						
bit 3:	1 = PV	Ē: Power VRT disal VRT enat	bled	er Ena	ble bit	(1)								
bit 2:	1 = W	: Watchd DT enable DT disabl	ed	er Enab	le bit									
bit 1-0:	11 = F 10 = F 01 = X	1:FOSC0 RC oscilla IS oscillat (T oscillat P oscillat	tor tor tor	ator Se	lection	bits								
Note 1:	Ensur	e the Pow	er-up T	imer is	enable		ne Brov	vn-out l	Reset is	enable	d.		value of bit F	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

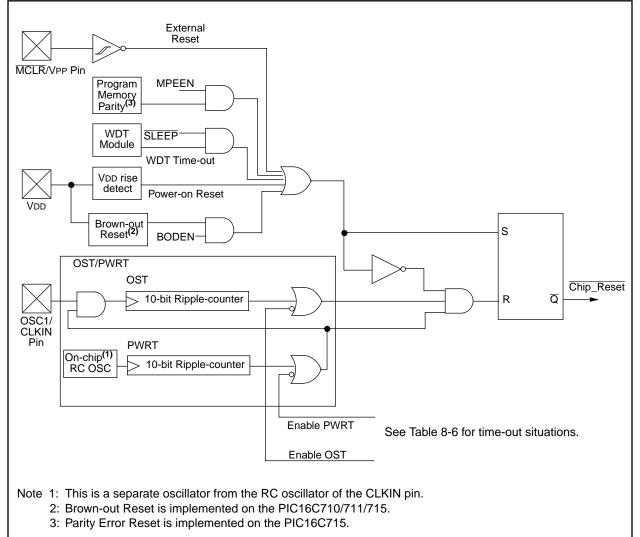
CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13-8 5-4	4: 11 10 01	L = Up	de prot per hal per 3/4	ection f of pro th of p	off ogram rogran	memory	r code pr ry code p								
bit 7:	1	= Mem	ory Pa	rity Ch	ecking	or Enabl g is enat g is disal	oled								
bit 6:	1	oden : = Bor = Bor	enable	ed	Reset E	Enable b	_{it} (1)								
bit 3:	1	WRTE : = PWF = PWF	RT disa	bled	mer Ei	nable bit	(1)								
bit 2:	1	DTE: \ = WDT = WDT	enabl	ed	ner En	able bit									
bit 1-0	11 10 01	DSC1: L = RC D = HS L = XT D = LP	oscilla oscilla oscilla	ator itor tor	llator \$	Selectior	n bits								
Note 7							cally ena ed anytir		•		,	0	ess of the	value of bit	PWRTE.
	2: Al	l of the	CP1:0	CP0 pa	airs ha	ve to be	given the	e same	value	to enable	e the co	de prote	ection sch	eme listed.	

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

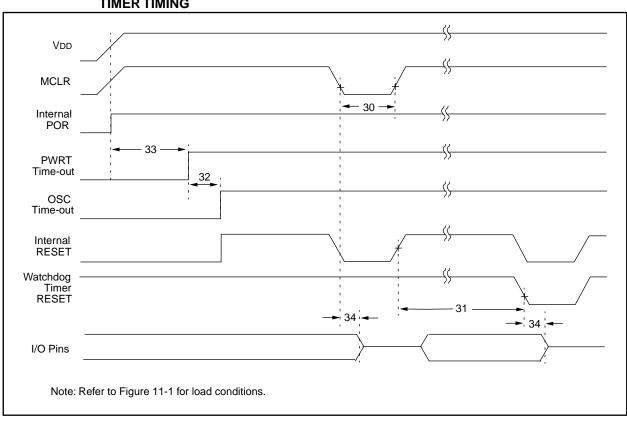
The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

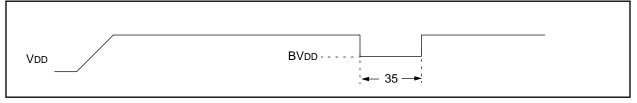
8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.


Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.


EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W
SWAPP	•	L
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 11-5: BROWN-OUT RESET TIMING

TABLE 11-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1	_	_	μs	VDD = 5V, -40°C to +125°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$3.8V \leq V\text{DD} \leq 4.2V$

These parameters are characterized but not tested.

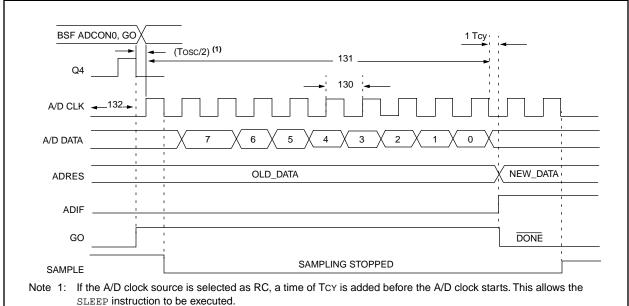
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	_	8-bits	bit	$VREF = VDD, VSS \le AIN \le VREF$
A02	EABS	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	_	_	<±1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	_	guaranteed	-	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			—		10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

*


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF $\geq 3.0V$
			PIC16 LC 710/711	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16LC710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H	time). (Note 1)	—	9.5	-	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock sta		Tosc/2§		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_		TAD	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

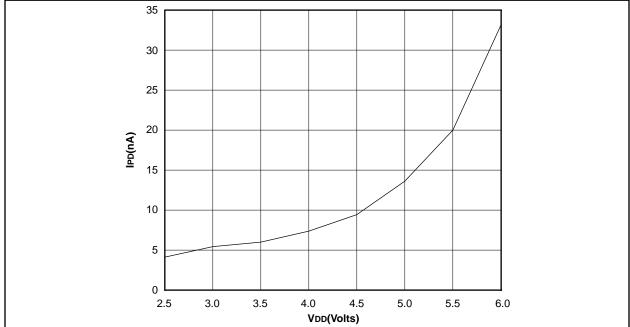
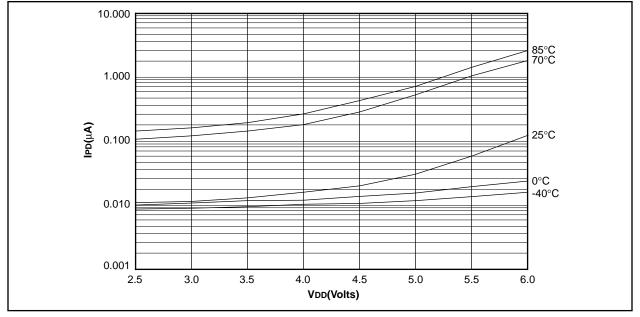
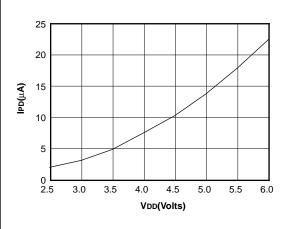
12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

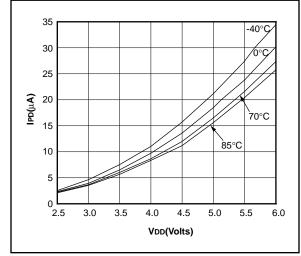
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

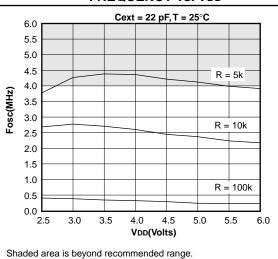
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

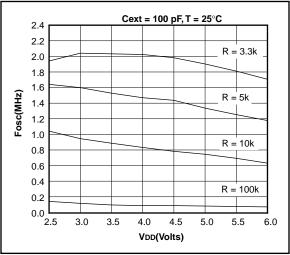
Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

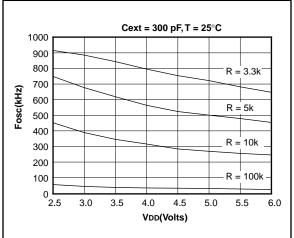
FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

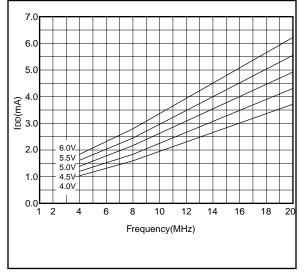





FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)






FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD


FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

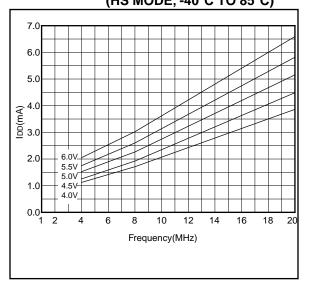


FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

Applicable Devices71071711715

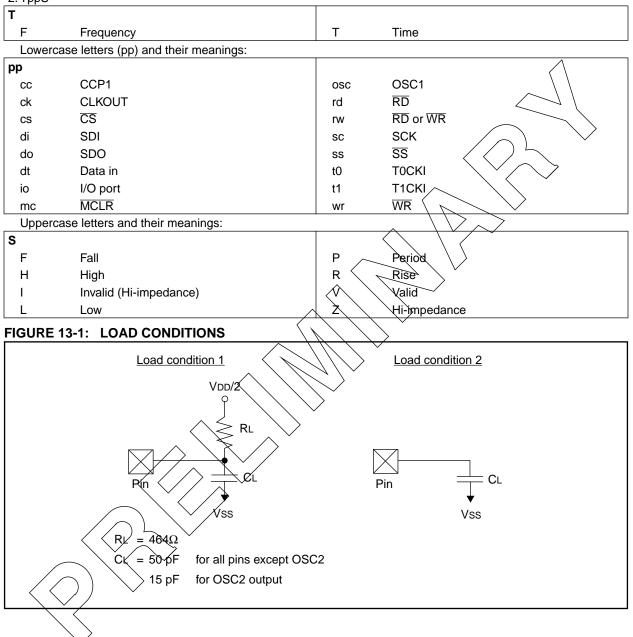
DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)Operating voltage VDD range as described in DC spec Section 13and Section 13.2.					
Param No.	Characteristic	Sym	Min	Typ +	Max	Units	Conditions	
NO.	Output High Voltage			1				
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	ІОН = -3.0 mA, VDp =\4.5V, -40°С to +85°С	
D090A			Vdd - 0.7	-	-	V	$IOH = -2.5 \text{ mA}, \text{VDD} = 4.5\text{V}, -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С tø +85°С	
D092A			Vdd - 0.7	-	-	V	ION = -1.0 mA, VDD = 4.5V, -40°C to +125°C	
	Capacitive Loading Specs on Output Pins							
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.	
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	\ -	50	PF	\bigvee	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin:


PIC16C71X

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

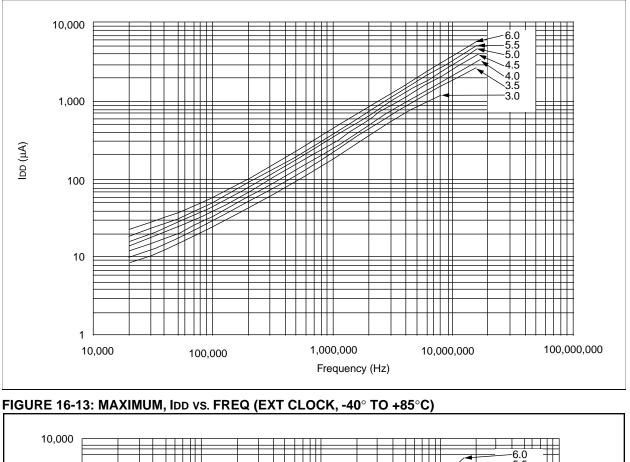
The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

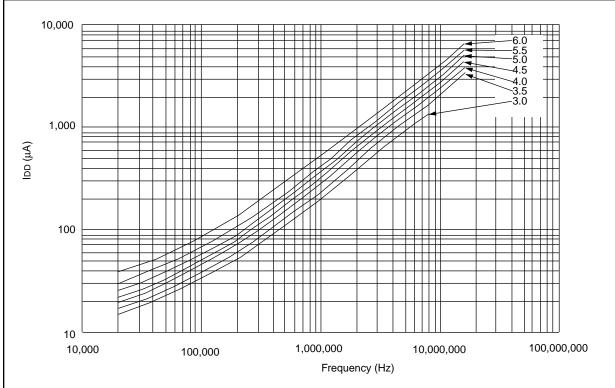
TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_	—	8-bits	—	$VREF = VDD, VSS \leq Ain \leq VREF$
	Nint	Integral error	_		less than ±1 LSb	—	$VREF = VDD, VSS \leq AIN \leq VREF$
	Ndif	Differential error	—	—	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	—	—	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NOFF	Offset error	—		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
		Monotonicity	_	guaranteed	_	—	VSS & AKT S VREF
	VREF	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	—	_	10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_	- ~	A A A A A A A A A A A A A A A A A A A	mA μA	During sampling All other times

These parameters are characterized but not tested.

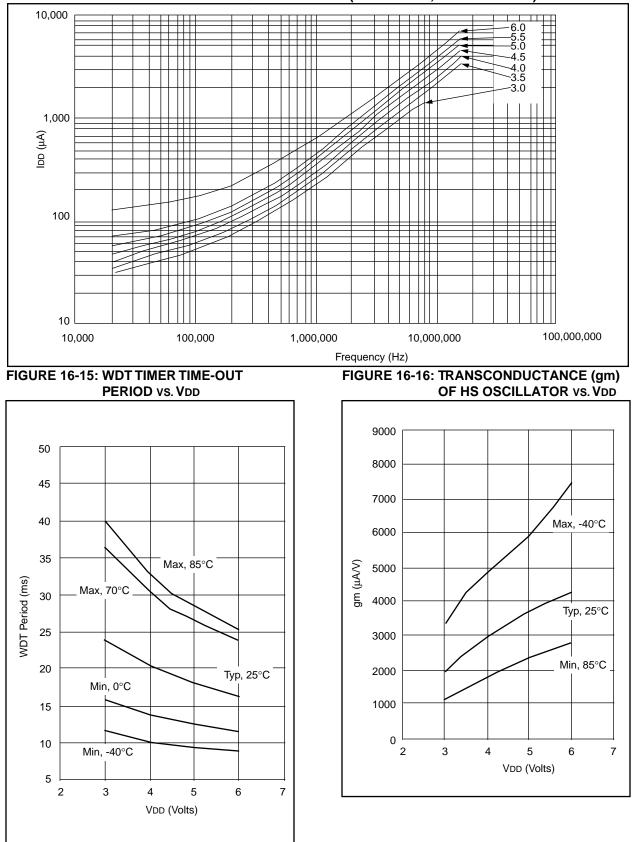

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

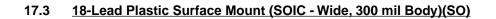
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.


2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C71X

Applicable Devices 710 71 711 715




FIGURE 16-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

Data based on matrix samples. See first page of this section for details.

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

	Package Group: Plastic SOIC (SO)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Мах	Notes				
α	0°	8°		0°	8 °					
А	2.362	2.642		0.093	0.104					
A1	0.101	0.300		0.004	0.012					
В	0.355	0.483		0.014	0.019					
С	0.241	0.318		0.009	0.013					
D	11.353	11.735		0.447	0.462					
E	7.416	7.595		0.292	0.299					
е	1.270	1.270	Reference	0.050	0.050	Reference				
Н	10.007	10.643		0.394	0.419					
h	0.381	0.762		0.015	0.030					
L	0.406	1.143		0.016	0.045					
Ν	18	18		18	18					
CP	_	0.102		_	0.004					