

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc71-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾	
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20	
	EPROM Program Memory (x14 words)	512	1K	1K	2К	2К	—	
Memory	ROM Program Memory (14K words)	_	_	_	_	_	2К	
	Data Memory (bytes)	36	36	68	128	128	128	
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	
Peripherals	Capture/Compare/PWM Module(s)	—	_	—	—	1	1	
	Serial Port(s) (SPI/I ² C, USART)	—	_	—	—	SPI/I ² C	SPI/I ² C	
	Parallel Slave Port	_	—	—	_	_	—	
	A/D Converter (8-bit) Channels	4	4	4	4	5	5	
	Interrupt Sources	4	4	4	4	8	8	
	I/O Pins	13	13	13	13	22	22	
	Voltage Range (Volts)	2.5-6.0	3.0-6.0	2.5-6.0	2.5-5.5	2.5-6.0	3.0-5.5	
eatures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes	
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes	
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	

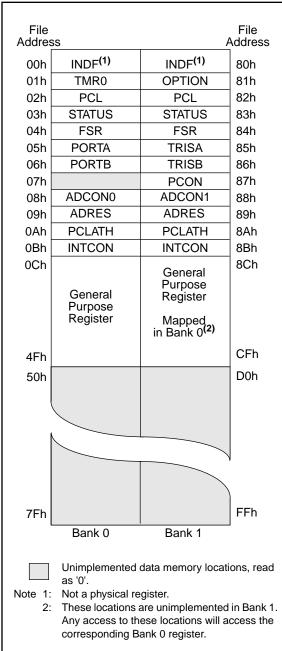
TABLE 1-1: PIC16C71X FAMILY OF DEVICES

		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	376	376
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
eripherals	Capture/Compare/PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
atures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

NOTES:


Pin Name	DIP Pin#	SSOP Pin# ⁽⁴⁾	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	4	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	RA0 can also be analog input0
RA1/AN1	18	20	18	I/O	TTL	RA1 can also be analog input1
RA2/AN2	1	1	1	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	3	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = inp		O = outp — = Not			/O = input/out TTL = TTL inp	I I

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
4: The PIC16C71 is not available in SSOP package.

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR							
05h	PORTA	TRISA							
06h	PORTB	TRISB							
07h			87h						
08h									
09h									
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh			8Dh						
0Eh		PCON	8Eh						
0Fh			8Fh						
10h			90h						
11h			91h						
12h									
13h			93h						
14h			94h						
15h			95h						
16h			96h						
17h			97h						
18h			98h						
19h			99h						
1Ah			9Ah						
1Bh			9Bh						
1Ch			9Ch						
1Dh			9Dh						
1Eh	ADRES		9Eh						
1Fh	ADCON0	ADCON1	9Fh						
20h	General Purpose Register	General Purpose Register	A0h						
	rtogiotor		BFh						
			C0h						
l									
7Fh	Bank 0	Bank 1	_ FFh						
e a	Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.								

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0					•	•					
00h ⁽³⁾	INDF	Addressing	ressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000								
01h	TMR0	Timer0 mod	er0 module's register xxxx xxxx								uuuu uuuu
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	DRTB pins wł	nen read				xxxx xxxx	uuuu uuuu
07h	—	Unimpleme	nted							—	—
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
0Ah ^(2,3)	PCLATH	_	—	_	Write Buffer	Vrite Buffer for the upper 5 bits of the Program Counter					0 0000
0Bh (3)	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	Data Direction Control Register 1111						1111 1111	1111 1111	
87h ⁽⁴⁾	PCON	—	—	—	_	—	_	POR	BOR	dd	uu
88h	ADCON1	—	—	_	_	_	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	A/D Result	Register	egister xxxx :							uuuu uuuu
8Ah (2,3)	PCLATH	_	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

PIC16C71X

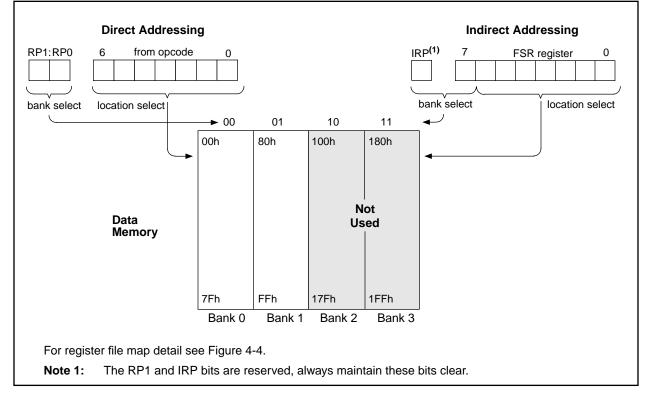
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	ORG 0x500								
BSF	pclath,3	;Select page 1 (800h-FFFh)							
BCF	pclath,4	;Only on >4K devices							
CALL	SUB1_P1	;Call subroutine in							
	:	;page 1 (800h-FFFh)							
	:								
	:								
ORG 0x	900								
SUB1_P	1:	;called subroutine							
	:	;page 1 (800h-FFFh)							
	:								
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)							

4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

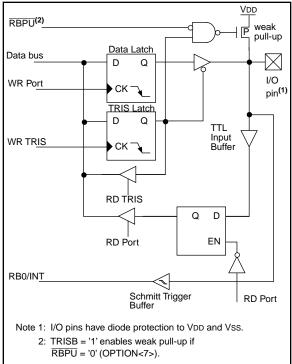
A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	0x20 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS, RPC	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPC	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

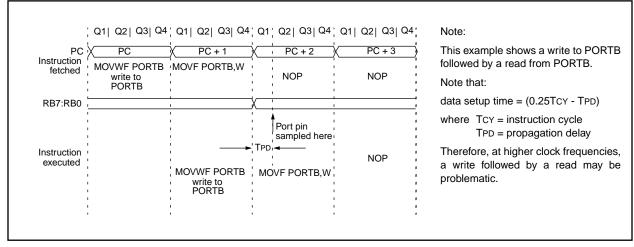
Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;					PORT	latch	PORT p	ins
;								
	BCF	PORTB,	7	;	01pp	pppp	llpp j	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS	, RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp g	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp j	pppp


;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

BSF	STATUS,	RP0	; Select Bank 1
CLRF	ADCON1		; Configure A/D inputs
BCF	STATUS,	RP0	; Select Bank 0
MOVL	W 0xCl		; RC Clock, A/D is on, Channel 0 is selected
MOVW	F ADCON0		;
BSF	INTCON,	ADIE	; Enable A/D Interrupt
BSF	INTCON,	GIE	; Enable all interrupts
Ensure	that the re	equired sa	ampling time for the selected input channel has elapsed.

Then the conversion may be started.

;

;;

;

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion.

TABLE 7-3: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	sult Regist	ter						xxxx xxxx	uuuu uuuu
08h	ADCON0	ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	—	_	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	PORTA	PORTA Data Direction Register					1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—		—		—	—	-0	-0
8Ch	PIE1	—	ADIE	—	_	—	—	—	—	-0	-0
1Eh	ADRES	A/D Re	sult Regis	ster				•	•	xxxx xxxx	uuuu uuuu
1Fh	ADCON 0	ADCS 1	ADCS 0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON 1	_		_	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA 3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

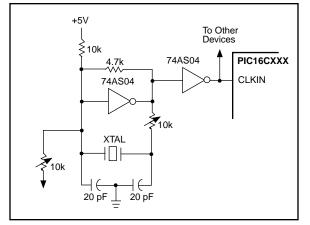
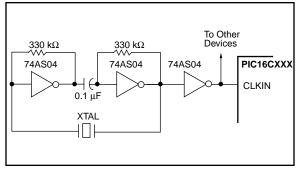
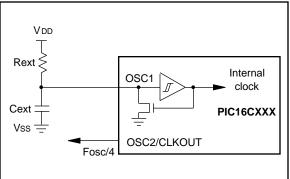



Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR


For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

8.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

8.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

8.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake up from sleep . The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the \overline{TO} bit will be set and the \overline{PD} bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

PIC16C71X

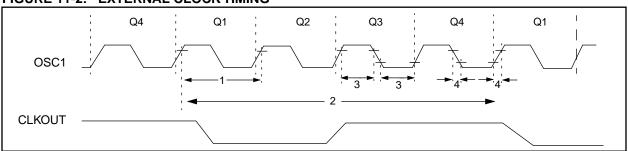
IORWF	Inclusive	e OR W v	with f			
Syntax:	[label]	IORWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27				
Operation:	(W) .OR.	$(f) \rightarrow (de)$	est)			
Status Affected:	Z					
Encoding:	00	0100	dfff	ffff		
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
Example	IORWF		RESULT,	0		
	Before Instruction RESULT = 0x13 W = 0x91					
	W = 0.091 After Instruction $RESULT = 0.000$ $W = 0.000$ $Z = 1$					

MOVLW	Move Lite	eral to V	v				
Syntax:	[label]	MOVLW	/ k				
Operands:	$0 \le k \le 25$	$0 \le k \le 255$					
Operation:	$k \to (W)$						
Status Affected:	None						
Encoding:	11	00xx	kkkk	kkkk			
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read literal 'k'	Process data	Write to W			
Example	MOVLW	0x5A					
	After Inst	ruction W =	0x5A				

MOVF	Move f							
Syntax:	[label] MOVF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(f) \rightarrow (dest)							
Status Affected:	Z							
Encoding:	00 1000 dfff ffff							
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1 Q2 Q3 Q4							
	Decode Read register data dest							
Example	After Instruction W = value in FSR register							
	Z = 1							

MOVWF	Move W	to f				
Syntax:	[label]	MOVW	= f			
Operands:	$0 \le f \le 12$	27				
Operation:	$(W) \rightarrow (f)$)				
Status Affected:	None					
Encoding:	00	0000	lfff	ffff		
Description:	Move data from W register to register					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	MOVWF	OPTIC	N_REG			
	Before In			_		
		OPTION W	= 0xFF = 0x4F			
	After Inst	ruction	-			
		OPTION W	0.45			
		vv	= 0x4F			

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No opera	ition						
Status Affected:	None							
Encoding:	00	0000	0xx0	0000				
Description:	No operat	ion.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	NOP	NOP	NOP				
Example	NOP	•						


RETFIE	Return from Interrupt						
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$						
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Monda	and Top of the PC. Int ting Globa (INTCON- instruction	errupts a I Interrupt 7>). This	re enabled Enable bi	l by set- t, GIE			
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister				
Syntax:	[label]	OPTION	٧				
Operands:	None						
Operation:	$(W) \to OPTION$						
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

11.5 <u>Timing Diagrams and Specifications</u>

FIGURE 11-2: EXTERNAL CLOCK TIMING

TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4 5	—	20 200	MHz kHz	HS osc mode LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT osc mode
		(Note 1)	250	—	_	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	_	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100 50	_	250 250	ns ns	HS osc mode (-10) HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	—	50	ns	LP oscillator
			_		15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

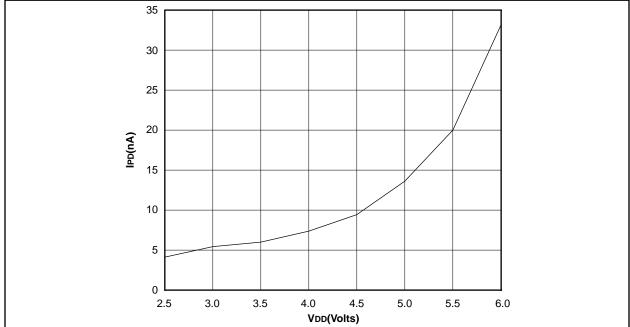
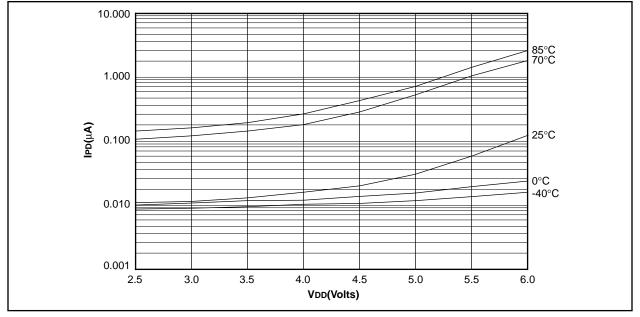
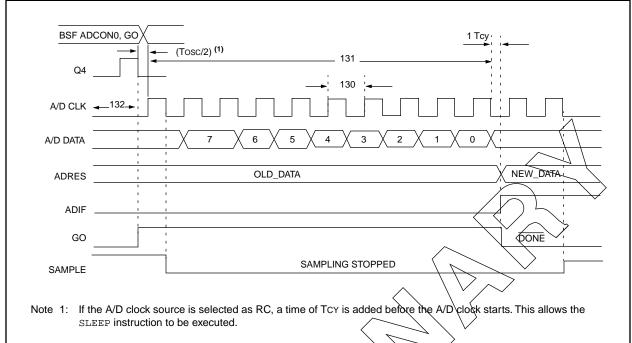



FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution	_	_	8-bits	_	$VREF=VDD,VSS\leqAin\leqVREF$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_	_	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	—	_	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle - \overline{\rangle}}$	A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	mA μA	During sampling All other times


* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Турт	Max	Units	Conditions
130	TAD	A/D clock period	1.6	1 1/4/	× –	μs	Vref ≥ 3.0V
			2.0		i —	μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source					(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time	ĬŇ-Ĭ	9.5Tad	—	_	
		(not including S/H	\sim				
		time). Note 1	$\langle \rangle$				
132	TACQ	Acquisition time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

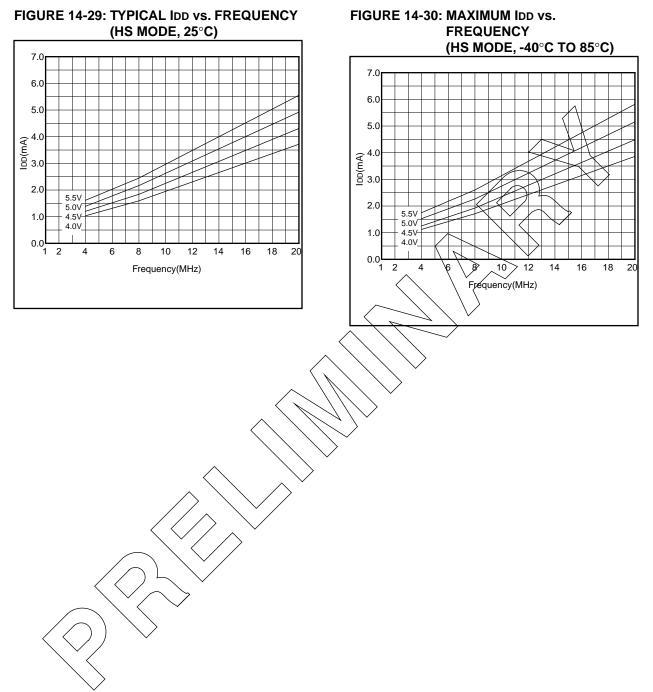
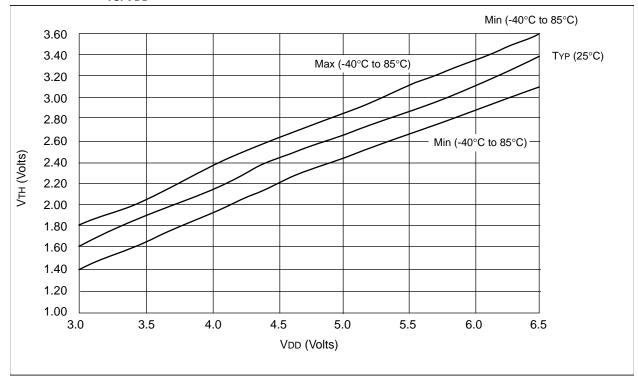



FIGURE 16-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

