

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C710	512 x 14	0000h-01FFh
PIC16C71	1K x 14	0000h-03FFh
PIC16C711	1K x 14	0000h-03FFh
PIC16C715	2K x 14	0000h-07FFh

For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C710 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C71/711 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q					
MPEEN		—	—	—	PER	POR	BOR ⁽¹⁾	R = Readable bit				
bit7				bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset								
bit 7: MPEEN: Memory Parity Error Circuitry Status bit Reflects the value of configuration word bit, MPEEN												
bit 6-3:	Unimplemented: Read as '0'											
bit 2:	 PER: Memory Parity Error Reset Status bit 1 = No Error occurred 0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset) 											
bit 1:	 bit 1: POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 											
bit 0:	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)											

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function		
RA0/AN0	bit0	TTL	Input/output or analog input		
RA1/AN1	bit1	TTL	Input/output or analog input		
RA2/AN2	bit2	TTL	Input/output or analog input		
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF		
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0		
			Output is open drain type		

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	—	PORTA D	Data Direct	tion Registe	1 1111	1 1111		
9Fh	ADCON1		—	—	—	_	—	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

6.0 TIMER0 MODULE

Applicable Devices71071711715

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit TOSE (OPTION<4>). Clearing

FIGURE 6-1: TIMER0 BLOCK DIAGRAM

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

For the PIC16C71 Note: if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ③	(4)			/	
INT pin		1	1 1 1 1		1 1 1 1 1 1 1 1
INTF flag (INTCON<1>)			Interrupt Latency (2)		
GIE bit (INTCON<7>)					
INSTRUCTION	FLOW		, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
PC	PC	PC+1	PC+1	X 0004h	X 0005h
Instruction (fetched	Inst (PC)	Inst (PC+1)	_	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

FIGURE 8-19: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode. 4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

8.7 <u>Watchdog Timer (WDT)</u>

Applicable Devices 710 71 711 715

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 8-21: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 8-1, Figure 8-2 and Figure 8-3 for operation of these bits.

© 1997 Microchip Technology Inc.

COMF	Complement f		DECFSZ	Decreme	ent f, Ski	p if 0	
Syntax:	[label] COMF f,d		Syntax:	[label]	DECFSZ	Z f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$		Operands:	$0 \le f \le 12$ $d \in [0,1]$.7		
Operation:	$(\bar{f}) \rightarrow (\text{dest})$		Operation:	(f) - 1 \rightarrow	(dest);	skip if re	sult = 0
Status Affected:	Z		Status Affected:	None			
Encoding:	00 1001 dfff	ffff	Encoding:	00	1011	dfff	ffff
Description:	The contents of register 'f' ar mented. If 'd' is 0 the result is W. If 'd' is 1 the result is store register 'f'.	re comple- s stored in ed back in	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			ecre- aced in It is
Words: Cycles:	1 1			executed. If executed in	If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy		
Q Cycle Activity:	Q1 Q2 Q3	Q4	Words:	1			
	Decode Read Process	s Write to	Cycles:	1(2)			
	register data 'f'	dest	O Cycle Activity:	01	02	03	04
Example	COMF REG1,0			Decode	Read register	Process data	Write to dest
	Before Instruction				Т		
	REG1 = 0x	13	If Skip:	(2nd Cyc	le)		.
	REG1 = 0x	13		Q1	Q2	Q3	Q4
	W = 0x	EC		NOP	NOP	NOP	NOP
DEOE							
DECF	Decrement f		Example	HERE	DECF	SZ CNI	r, 1
Syntax:	Decrement f [<i>label</i>] DECF f,d		Example	HERE	DECF: GOTO JE •	SZ CNI LOC	7, 1)P
Syntax: Operands:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$		Example	HERE	DECF GOTO JE • •	SZ CNI LOC	7, 1 DP
Syntax: Operands: Operation:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)		Example	HERE CONTINU Before In PC	DECF: GOTO JE • • • struction	SZ CNT LOC	7, 1 DP
Syntax: Operands: Operation: Status Affected:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z		Example	HERE CONTINU Before In PC After Inst	DECF; GOTO UE • • struction = ado ruction	SZ CNT LOC I dress here	7, 1)P
Syntax: Operands: Operation: Status Affected: Encoding:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011	ffff	Example	HERE CONTINU Before In PC After Inst CNT if CNT	DECF: GOTO UE struction = add ruction = CN	SZ CNI LOC I dress here T - 1	7, 1)P
Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z $\boxed{00}$ 0011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'f.	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = add ruction = CN = 0, = add \neq 0, = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z $\boxed{00}$ 0011dfffDecrement register 'f'. If 'd' is result is stored in the W regists 1 the result is stored back i'f'.1	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE Struction = ado ruction = CN = 0, = ado \neq 0, = ado \neq 0, = ado	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP FINUE E+1
DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back i'f'.111	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	C, 1 DP CINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z00011dfffDecrement register 'f'. If 'd' is result is stored in the W regists 1 the result is stored back if 'f'.11Q1Q2Q3	ffff s 0 the ster. If 'd' in register Q4	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO JE • • struction = add ruction = CN = $0,$ = add $\neq 0,$ = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regi is 1 the result is stored back if'r.11Q1Q2Q3DecodeRead register 'f'Process data	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO JE • • struction = add ruction = CN = $0,$ = add $\neq 0,$ = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP CINUE 5+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abel]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'.11Q1Q2Q3DecodeRead register 'f'DecodeRead register 'f'DECFCNT, 1	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP FINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'.11Q1Q2Q3DecodeRead register 'f'DECFCNT , 1Before Instruction	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abel]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored back if'.111Q1Q2Q3DecodeRead register r'f'DecodeRead register result isDECFCNT, 1Before Instruction CNT=CNT=0x	ffff s 0 the ster. If 'd' in register Q4 s Write to dest 01	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE = add ruction = CN = 0, = add \neq 0, = add	SZ CNI LOC dress Here T - 1 dress CONI dress Here	7, 1 DP FINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abe/] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) $-1 \rightarrow$ (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back is 'f'.11Q1Q2Q3DecodeRead register 'f'.DeccfCNT, 1Before Instruction CNT $= 0xi$ ZCNT $= 0xi$ ZAfter Instruction	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst if CNT PC if CNT PC	DECF: GOTO JE struction = adc ruction = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP CINUE 5+1

Appli	cable Devices	710 71	711 715
11.1	DC Character	ristics:	PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended)
			PIC16C711-20 (Commercial, Industrial, Extended)

DC CHA	RACTERISTICS		Stand Opera	lard O ating te	p erati mpera	n g Con ture (-	ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $\cdot40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $\cdot40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3)		-	1.5	21	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A D021B			-	1.5	30	μΑ μΑ	$VDD = 4.0V$, VDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 11-3: CLKOUT AND I/O TIMING

TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
	T 110 11							
10*	TosH2ckL	OSC1 ^T to CLKOUT↓			15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	0.25Tcy + 25	—	—	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—	—	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to	—	—	80 - 100	ns		
		Port out valid						
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to		TBD	—	—	ns	
		Port input invalid (I/O in ho	ld time)					
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	TBD	—	—	ns	
20*	TioR	Port output rise time	PIC16 C 710/711		10	25	ns	
			PIC16LC710/711	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 710/711	—	10	25	ns	
			PIC16LC710/711	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—	—	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution			8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	EABS	Absolute error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF = VDD, VSS \leq AIN \leq VREF$
A06	EOFF	Offset error	_	_	< ± 1	LSb	$VREF = VDD, VSS \leq AIN \leq VREF$
A10	—	Monotonicity	—	guaranteed	-	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	—	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 710 71 711 715

FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

FIGURE 12-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (

			Standard Operating Conditions (unless otherwise stated)							
				ating te	mpera	ture ($)^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)			
	RACIERISTICS		•			-	$40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)			
						-	40° C \leq TA \leq +125 $^{\circ}$ C (extended)			
Param.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions			
No.										
D001	Supply Voltage	Vdd	4.0	-	5.5	V	XT, RC and LP osc configuration			
D001A			4.5	-	5.5	V	HS osc configuration			
D002*	RAM Data Retention	Vdr	-	1.5	-	V	Device in SLEEP mode			
	Voltage (Note 1)									
D003	VDD start voltage to	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
	ensure internal Power-									
	on Reset signal									
D004*	VDD rise rate to ensure	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
	internal Power-on Reset									
	signal						$\langle \rangle \rangle \langle \rangle \sim$			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled			
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04)			
						\land	Fosc = 4 MHz, VDD = 5.5V (Note 4)			
DO40				40.5/						
D013			-	13.5	30	AM	$HS_0SC \text{ contiguration (PIC16C715-20)}$			
D 045						\land	rosc = 20 with 2, vDD = 5.5 v			
D015	Brown-out Reset Current	ΔIBOR	-<	300*	500	MA .	BOR enabled VDD = 5.0V			
			\wedge	\searrow						
D020	Power-down Current	IPD	\ -\	10.5	42/	μA	VDD = $4.0V$, WDT enabled, -40° C to $+85^{\circ}$ C			
D021	(Note 3)			1.5	21	μΑ	VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C			
D021A		\land	- \		24	μΑ	$VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
DUZID					30	μΑ	$100 = 4.0^{\circ}, 00^{\circ}$ usableu, -40 C l0 +125°C			
D023	Brown-out Reset Current	ABOR	/-/	300*	500	μΑ	BOR enabled VDD = 5.0V			
	(Note 5)									

* These parameters are characterized but not tested.

† Data in "Typ" column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Vod can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

(The)test conditions for all IDD measurements in active operation mode are:

OSCT = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20*		_	ns	
			With Prescaler	10*	[—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	-	_	ns	
			With Prescaler	10*	-	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	—	7Tosc	—	

- * These parameters are characterized but not tested. \checkmark
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	_	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
		(No Prescaler)					
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR	—	_	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet	
			With Prescaler	10	-	—	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	-	—	ns	Must also meet	
			With Prescaler	10	-	_	ns	parameter 42	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-	—	ns	N = prescale value	
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				(2, 4,, 256)	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-22: IOL VS. VOL, VDD = 5V

17.2 <u>18-Lead Plastic Dual In-line (300 mil) (P)</u>

Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
A	_	4.064		_	0.160				
A1	0.381	_		0.015	_				
A2	3.048	3.810		0.120	0.150				
В	0.355	0.559		0.014	0.022				
B1	1.524	1.524	Reference	0.060	0.060	Reference			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	22.479	23.495		0.885	0.925				
D1	20.320	20.320	Reference	0.800	0.800	Reference			
E	7.620	8.255		0.300	0.325				
E1	6.096	7.112		0.240	0.280				
e1	2.489	2.591	Typical	0.098	0.102	Typical			
eA	7.620	7.620	Reference	0.300	0.300	Reference			
eB	7.874	9.906		0.310	0.390				
L	3.048	3.556		0.120	0.140				
N	18	18		18	18				
S	0.889	_		0.035	_				
S1	0.127	_		0.005	_				

Package Group: Plastic SOIC (SO)									
		Millimeters		Inches					
Symbol	Min	Мах	Notes	Min	Мах	Notes			
α	0°	8°		0°	8°				
A	2.362	2.642		0.093	0.104				
A1	0.101	0.300		0.004	0.012				
В	0.355	0.483		0.014	0.019				
С	0.241	0.318		0.009	0.013				
D	11.353	11.735		0.447	0.462				
E	7.416	7.595		0.292	0.299				
е	1.270	1.270	Reference	0.050	0.050	Reference			
Н	10.007	10.643		0.394	0.419				
h	0.381	0.762		0.015	0.030				
L	0.406	1.143		0.016	0.045				
N	18	18		18	18				
CP	_	0.102		_	0.004				

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.