

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 × 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

File	.e		File
004	IND=(1)	илос(1)	
00n			- 80n
010		OPTION	- 0111 - 02h
020		PUL	- 0211 - 02h
031		STATUS ESD	- 0311 - 046
0411 05b			- 0411 - 056
051			
076	PURID		- 0011 - 976
0711			
001			001
0911			0911
	INTCON		
0Ch		General	
	General	Purpose	
	Purpose	Register	
	Register	Mapped	
		In Bank 0.00	
2Fh			AFh
30h			B0h
(\		
			\checkmark
7Fh			FFh
	Bank 0	Bank 1	_
	Banko	Bank	
	Unimplemented	data memory locat	tions read
	as '0'.		
Note 1:	Not a physical re	gister.	
2:	The PCON regist	ter is not implemer	nted on the
3:	These locations a	are unimplemented	d in Bank 1.
5.	Any access to the	ese locations will a	access the
	corresponding Ba	ank 0 register.	

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	—	PORTA D	PORTA Data Direction Register					1 1111
9Fh	ADCON1		—	—	—	_	—	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4:	SUMMARY OF REGISTERS	ASSOCIATED WITH PORTE
-		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB Data Direction Register								1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution. **Note:** To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCFSTATUS, RP0;Bank 0CLRFTMR0;Clear TMR0 & PrescalerBSFSTATUS, RP0;Bank 1CLRWDT;Clears WDTMOVLWb'xxxxlxxx';Selects new prescale valueMOVWFOPTION_REG;and assigns the prescaler to the WDTBCFSTATUS, RP0;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT		;Clear WDT and prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	Timer0 module's register							xxxx xxxx	uuuu uuuu
0Bh,8Bh,	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	—	—	PORTA Data Direction Register					1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms		_

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	นนนน นนนน	นนนน นนนน
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	นนนน นนนน	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	xxxx xxxx	นนนน นนนน	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-0	-0	_u(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	qqq	luu	luu
ADCON1	00	00	uu

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

COMF	Complement f		DECFSZ	Decreme	ent f, Ski	p if 0	
Syntax:	[label] COMF f,d		Syntax:	[label]	DECFSZ	Z f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$		Operands:	$0 \le f \le 12$ $d \in [0,1]$.7		
Operation:	$(\bar{f}) \rightarrow (\text{dest})$		Operation:	(f) - 1 \rightarrow	(dest);	skip if re	sult = 0
Status Affected:	Z		Status Affected:	None			
Encoding:	00 1001 dfff	ffff	Encoding:	00	1011	dfff	ffff
Description:	The contents of register 'f' ar mented. If 'd' is 0 the result is W. If 'd' is 1 the result is store register 'f'.	re comple- s stored in ed back in	Description:	The content mented. If ' the W regist placed bac	nts of regis d' is 0 the ster. If 'd' is k in registe	ter 'f' are d result is pla 1 the resu er 'f'.	ecre- aced in It is
Words: Cycles:	1 1			executed. If executed in	f the result stead ma	t is 0, then a king it a 2T	a NOP is CY
Q Cycle Activity:	Q1 Q2 Q3	Q4	Words:	1			
	Decode Read Process	s Write to	Cycles:	1(2)			
	register data 'f'	dest	O Cycle Activity:	01	02	03	04
Example	COMF REG1,0			Decode	Read register	Process data	Write to dest
	Before Instruction				Т		
	REG1 = 0x	13	If Skip:	(2nd Cyc	le)		.
	REG1 = 0x	13		Q1	Q2	Q3	Q4
	W = 0x	EC		NOP	NOP	NOP	NOP
DEOE				HERE DECFSZ CNT, 1			
DECF	Decrement f		Example	HERE	DECF	SZ CNI	r, 1
Syntax:	Decrement f [<i>label</i>] DECF f,d		Example	HERE	DECF: GOTO JE •	SZ CNI LOC	7, 1)P
Syntax: Operands:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$		Example	HERE	DECF GOTO JE • •	SZ CNI LOC	7, 1 DP
Syntax: Operands: Operation:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)		Example	HERE CONTINU Before In PC	DECF: GOTO JE • • • struction	SZ CNT LOC	7, 1 DP
Syntax: Operands: Operation: Status Affected:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z		Example	HERE CONTINU Before In PC After Inst	DECF; GOTO UE • • struction = ado ruction	SZ CNT LOC I dress here	7, 1)P
Syntax: Operands: Operation: Status Affected: Encoding:	Decrement f[label]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011	ffff	Example	HERE CONTINU Before In PC After Inst CNT if CNT	DECF: GOTO UE struction = add ruction = CN	SZ CNI LOC I dress here T - 1	7, 1)P
Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z $\boxed{00}$ 0011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'.	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = add ruction = CN = 0, = add \neq 0, = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z $\boxed{00}$ 0011dfffDecrement register 'f'. If 'd' is result is stored in the W regists 1 the result is stored back i'f'.1	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE Struction = ado ruction = CN = 0, = ado \neq 0, = ado \neq 0, = ado	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP FINUE E+1
DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back i'f'.111	ffff s 0 the ster. If 'd' in register	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	C, 1 DP CINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z00011dfffDecrement register 'f'. If 'd' is result is stored in the W regists 1 the result is stored back if 'f'.11Q1Q2Q3	ffff s 0 the ster. If 'd' in register Q4	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO JE • • struction = add ruction = CN = $0,$ = add $\neq 0,$ = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regi is 1 the result is stored back if'r.11Q1Q2Q3DecodeRead register 'f'Process data	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO JE • • struction = add ruction = CN = $0,$ = add $\neq 0,$ = add	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP CINUE 5+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Decrement f[/abel]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'.11Q1Q2Q3DecodeRead register 'f'DecodeRead register 'f'DECFCNT, 1	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP FINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abe/]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back if'.11Q1Q2Q3DecodeRead register 'f'DECFCNT, 1Before Instruction	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE struction = adc ruction = CN = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP TINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abel]DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored back if'.111Q1Q2Q3DecodeRead register r'f'DecodeRead register result isDECFCNT, 1Before Instruction CNT=CNT=0x	ffff s 0 the ster. If 'd' in register Q4 s Write to dest 01	Example	HERE CONTINU Before In PC After Inst CNT if CNT PC if CNT PC	DECF: GOTO UE = add ruction = CN = 0, = add \neq 0, = add	SZ CNI LOC dress Here T - 1 dress CONI dress Here	7, 1 DP FINUE E+1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	Decrement f[/abe/] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) $-1 \rightarrow$ (dest)Z000011dfffDecrement register 'f'. If 'd' is result is stored in the W regisis 1 the result is stored back is 'f'.11Q1Q2Q3DecodeRead register 'f'.DeccfCNT, 1Before Instruction CNT $= 0xi$ ZCNT $= 0xi$ ZAfter Instruction	ffff s 0 the ster. If 'd' in register Q4 s Write to dest	Example	HERE CONTINU Before In PC After Inst if CNT PC if CNT PC	DECF: GOTO JE struction = adc ruction = 0, = adc \neq 0, = adc	SZ CNI LOC dress HERE T - 1 dress CONI dress HERE	7, 1 DP CINUE 5+1

INCFSZ	Increment f, Skip if 0						
Syntax:	[label]	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27					
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0			
Status Affected:	None						
Encoding:	00	1111	dfff	ffff			
Description:	The conte mented. If in the W re placed bac If the resul executed. executed i instruction	nts of regi 'd' is 0 the egister. If ' ck in regis It is 1, the If the resu nstead ma	ister 'f' are e result is j d' is 1 the ter 'f'. next instru ilt is 0, a N aking it a 2	incre- olaced result is uction is IOP is 2Tcy			
Words:	1						
Cycles:	1(2)						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode Read Process Write to register 'f' data dest						
If Skip:	(2nd Cyc	le)					
	Q1	Q2	Q3	Q4			
	NOP	NOP	NOP	NOP			
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE •						
	Before In PC After Inst CNT if CNT PC if CNT PC	struction = adc ruction = CN = 0, = adc ≠ 0, = adc	Iress HERF T + 1 Iress Cont Iress HERF	: 'INUE : +1			

IORLW	Inclusive	e OR Lite	eral with	w
Syntax:	[label]	IORLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$)	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	The conte OR'ed wit result is pl	nts of the h the eigh aced in th	W register t bit literal ne W regist	r is 'k'. The ter.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	IORLW	0x35		
Example				
Example	Before In	struction	1	
Example	Before In	struction W =	0x9A	
Example	Before In After Inst	struction W = ruction	0x9A	

PIC16C71X

SLEEP

Syntax:	[label]	SLEEF)			
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$	/DT, T presca	ıler,			
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0011		
Description:	cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 8.8 for more details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	NOP	NOP	Go to Sleep		
Example:	SLEEP					

SUBLW	Subtract	Subtract W from Literal						
Syntax:	[label]	SUBLV	V k					
Operands:	$0 \le k \le 25$	55						
Operation:	k - (W) \rightarrow	• (W)						
Status Affected:	C, DC, Z							
Encoding:	11	110x	kkkk	kkkk				
Description:	The W reg ment meth The result	ister is sul lod) from t is placed	btracted (2's he eight bit in the W reg	s comple- literal 'k'. gister.				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example 1:	SUBLW	0x02						
·	Before In	struction						
		W = C = Z =	1 ? ?					
	After Inst	ruction						
		W = C = Z =	1 1; result is 0	spositive				
Example 2:	Before In:	struction						
		W = C = Z =	2 ? ?					
	After Inst	ruction						
		W = C = Z =	0 1; result i 1	s zero				
Example 3:	Before In:	struction						
		W = C = Z =	3 ? ?					
	After Inst	ruction						
		W = C =	0xFF 0; result is	s nega-				
		Z =	0					

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

		PIC12C5XX	PIC14000	PIC16C5X	PIC16CXXX	PIC16C6X	PIC16C7XX	PIC16C8X	PIC16C9XX	PIC17C4X	PIC17C75X	24CXX 25CXX 93CXX	HCS200 HCS300 HCS301
stoubor	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	2	2	>	2	2	2	2	2	2	Available 3Q97		
Emulator	ICEPIC Low-Cost In-Circuit Emulator	7		7	7	7	7	7					
	MPLAB™ Integrated Development Environment	7	7	7	7	7	7	7	7	7	7		
sjo	MPLAB™ C Compiler	7	2	>	7	7	7	2	2	7	7		
oT siswito	<i>fuzz</i> yTECH [®] -MP Explorer/Edition Fuzzy Logic Dev. Tool	7	7	7	2	2	7	7	2	2			
S	MP-DriveWay™ Applications Code Generator			7	7	7	7	7		7			
	Total Endurance™ Software Model											7	
	PICSTART® Lite Ultra Low-Cost Dev. Kit			7		7	7	7					
ຣາອເມເທຣ	PICSTART® Plus Low-Cost Universal Dev. Kit	7	7	7	7	7	7	7	7	7	7		
Progr	PRO MATE [®] II Universal Programmer	7	7	7	7	7	7	7	7	7	7	7	7
	KEELOQ [®] Programmer												7
	SEEVAL [®] Designers Kit											7	
spie	PICDEM-1			7	7			7		7			
0 <u>8</u> 0	PICDEM-2					7	7						
məŪ	PICDEM-3								2				
	KEELOQ [®] Evaluation Kit												7

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

11.5 <u>Timing Diagrams and Specifications</u>

FIGURE 11-2: EXTERNAL CLOCK TIMING

TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	-	-	ns	XT osc mode
		(Note 1)	250	—	-	ns	HS osc mode (-04)
			100	—	-	ns	HS osc mode (-10)
			50	—	-	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	-	-	ns	RC osc mode
		(Note 1)	250	-	10,000	ns	XT osc mode
			250	-	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	-	250	ns	HS osc mode (-20)
			5			μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200		DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High	50	—	-	ns	XT oscillator
	TosH	or Low Time	2.5	—	-	μs	LP oscillator
			10	—		ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	-	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.

FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

TABLE 12-1: RC OSCILLATOR FREQUENCIES

Cevt	Rovt	Average	
UEAL	Next	Fosc @ 5V, 2	25°C
22 pF	5k	4.12 MHz	± 1.4%
	10k	2.35 MHz	± 1.4%
	100k	268 kHz	± 1.1%
100 pF	3.3k	1.80 MHz	± 1.0%
	5k	1.27 MHz	± 1.0%
	10k	688 kHz	± 1.2%
	100k	77.2 kHz	± 1.0%
300 pF	3.3k	707 kHz	± 1.4%
	5k	501 kHz	± 1.2%
	10k	269 kHz	± 1.6%
	100k	28.3 kHz	±1.1%

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

OSC		PIC16C715-04		<pre>PIC16C715-10</pre>		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
PC	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at \$.5)	IDD:	2.7 mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max. >	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V /	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
VT	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at 5.5V	IDD:	2.7/mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	NgD:	1.5 µA typ at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq.	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	V6p:	4.5V/to 5,5V/			Vdd:	4.5V to 5.5V
це	IDD:	13.5 mA typ. at 5.5V	IDD:	30 mA max. at 5.5V	IDD:	30 mA max. at 5.5V		tuco in US modo	IDD:	30 mA max. at 5.5V
	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V		d use in HS mode	IPD:	1.5 μA typ. at 4.5V
	Freq:	4 MHz max.	Freq:	10 MHz max.	Freq:	20 MHz max.	$\langle \rangle$		Freq:	10 MHz max.
	VDD:	4.0V to 5.5V					YOD:	2.5V to 5.5V	Vdd:	2.5V to 5.5V
	IDD:	52.5 μA typ. at 32 kHz, 4.0V	Dong	tuso in LP modo	Dono		IDD:/	48 μA max. at 32 kHz, 3.0V	IDD:	48 μA max. at 32 kHz, 3.0V
	IPD:	0.9 μA typ. at 4.0V					IPG: /	/5.Ø μA max. at 3.0V	IPD:	5.0 μA max. at 3.0V
	Freq:	200 kHz max.				/	Freq:	/ 200 kHz max.	Freq:	200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (

				lard O	oerati	ng Con	ditions (unless otherwise stated)
	PACTERISTICS		Opera	ating te	mpera	ture ($D^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)
	RACIERISTICS					-	$40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)
						-	40° C \leq TA \leq +125 $^{\circ}$ C (extended)
Param.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
D001	Supply Voltage	Vdd	4.0	-	5.5	V	XT, RC and LP osc configuration
D001A			4.5	-	5.5	V	HS osc configuration
D002*	RAM Data Retention	Vdr	-	1.5	-	V	Device in SLEEP mode
	Voltage (Note 1)						
D003	VDD start voltage to	VPOR	-	Vss	-	V	See section on Power-on Reset for details
	ensure internal Power-						
	on Reset signal						
D004*	VDD rise rate to ensure	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
	internal Power-on Reset						
	signal						$\langle \rangle \rangle \langle \rangle \sim$
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V_	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04)
						\land	Fosc = 4 MHz, VDD = 5.5V (Note 4)
DO40				40.5/			
D013			-	13.5	30	AM	$HS_0SC \text{ contiguration (PIC16C715-20)}$
Date						\land	FOSC = 20 Will 2, VD = 5.5 V
D015	Brown-out Reset Current	ΔIBOR	-<	300*	500	MA .	BOR enabled VDD = 5.0V
			\wedge	\searrow			
D020	Power-down Current	IPD	\ -\	10.5	42/	μA	VDD = $4.0V$, WDT enabled, -40° C to $+85^{\circ}$ C
D021	(Note 3)			1.5	21	μΑ	VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C
D021A		\land	- \		24	μΑ	$VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
DUZID					30	μΑ	$100 = 4.0^{\circ}, 00^{\circ}$ usableu, -40 C l0 +125°C
D023	Brown-out Reset Current	ABOR	/-/	300*	500	μΑ	BOR enabled VDD = 5.0V
	(Note 5)						

* These parameters are characterized but not tested.

† Data in "Typ" column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Vod can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

(The)test conditions for all IDD measurements in active operation mode are:

OSCT = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (1K now as opposed to 512 before) and register file (68 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	

W

W Register	
ALU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	65
Programming Considerations	65
Timeout	
WDT Period	65
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow 10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	13
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	22
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	24
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	28
Figure 5-6:	Successive I/O Operation	30
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	32
Figure 6-4:	Timer0 Interrupt Timing	32
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02