E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address				
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h				
01h	TMR0	OPTION					
02h	PCL	PCL					
03h	STATUS	STATUS	83h				
04h	FSR	FSR					
05h	PORTA	TRISA					
06h	PORTB	TRISB					
07h			87h				
08h			88h				
09h			89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch	PIR1	PIE1	8Ch				
0Dh			8Dh				
0Eh		PCON	8Eh				
0Fh			8Fh				
10h							
11h							
12h							
13h			 93h				
14h							
15h			95h				
16h			96h				
17h			97h				
18h							
19h							
1Ah			9Ah				
1Bh			9Bh				
1Ch			9Ch				
1Dh			9Dh				
1Eh	ADRES		9Eh				
1Fh	ADCON0	ADCON1					
20h	General Purpose	General Purpose	A0h				
	Register	Register	BFh				
			Con				
7Fh	Bank 0	Bank 1	_ FFh				
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.							

6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

7.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

7.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

7.8 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

Note:	Care must be taken when using the RA0
	pin in A/D conversions due to its proximity
	to the OSC1 pin.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

TABLE 7-3: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	ADIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	sult Regist	ter						xxxx xxxx	uuuu uuuu
08h	ADCON0	ADCS1	ADCS0	_	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	_	_			_	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	PORTA	Data Dire	ction Registe	1 1111	1 1111		

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	-	—	—	—	-0	-0
8Ch	PIE1		ADIE	_	—	-	—	—	—	-0	-0
1Eh	ADRES	A/D Re	sult Regis	ster	-					XXXX XXXX	uuuu uuuu
1Fh	ADCON 0	ADCS 1	ADCS 0	CHS2	CHS1	CHS0	GO/ DONE	-	ADON	0000 00-0	0000 00-0
9Fh	ADCON 1	—	—	—	—	-	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA 3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

No	te: F If C b R W	For the PIC16C71 If an interrupt occurs while the Global Inter- rupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:								
	1	1. An instruction clears the GIE bit while an interrupt is acknowledged.								
	2	The program branches to the Interrupt vector and executes the Interrupt Service Routine.								
	3	B. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.								
	F	Perform the following to ensure that inter- upts are globally disabled:								
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit								
	BTFSC	INTCON, GIE ; Global interrupt ; disabled?								
	GOTO	LOOP : NO try again								

:

Yes, continue

with program

flow

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

For the PIC16C71 Note: if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ③	(4)			/	
INT pin		1	1 1 1 1		1 1 1 1 1 1 1 1
INTF flag (INTCON<1>)			Interrupt Latency (2)		
GIE bit (INTCON<7>)					
INSTRUCTION	FLOW		, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
PC	PC	PC+1	PC+1	X 0004h	X 0005h
Instruction (fetched	Inst (PC)	Inst (PC+1)	_	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

FIGURE 8-19: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode. 4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

NOTES:

CLRF	Clear f								
Syntax:	[<i>label</i>] C	LRF f							
Operands:	$0 \le f \le 127$								
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z								
Encoding:	00	0001	lfff	ffff					
Description:	The contents of register 'f' are cleared and the Z bit is set.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	CLRF	FLAG	G_REG						
	Before Instruction								
	FLAG_REG = 0x5A								
	AITELINST	FLAG RF	EG =	0x00					
		Ζ	=	1					

CLRW	Clear W								
Syntax:	[label]	CLRW							
Operands:	None								
Operation:	$00h \rightarrow (V)$	V)							
Status Affected	Z								
Encoding:	00 0001 0xxx xxxx								
Description:	W register	is cleare	d Zero bit	(7) is					
Description.	set.	le cleare		(上) 10					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	NOP	Process data	Write to W					
Example	CLRW								
Example	Before In	struction							
	Boloro III	W =	0x5A						
	After Inst	ruction	0.00						
		vv = Z =	0x00 1						
CLRWDT	Clear Wa	tchdog	Timer						
0 1			_						
Syntax:	[label]	CLRWD	I						
Syntax: Operands:	[<i>label</i>] None	CLRWD	I						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None 00h \rightarrow W	CLRWD DT	I						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$	CLRWD DT F presca	l ler,						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$	CLRWD DT F presca	l ler,						
Syntax: Operands: Operation: Status Affected:	$\begin{bmatrix} label \\ \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD	CLRWD DT Γpresca	l ler,						
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} Iabel \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD 00	CLRWD DT F presca	l er, 0110	0100					
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} Iabel \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $\boxed{00}$ CLRWDT in	CLRWD DT F presca	l ler, 0110 resets the	0100 Watch-					
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} Iabel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline O0 \\ CLRWDT in \\ dog Timer, \\ of the WD \\ are set. \\ \end{bmatrix}$	CLRWD DT F presca 0000 struction It also re T. Status I	0110 resets the provide TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{bmatrix} Iabel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in \\ dog Timer, of the WD \\ are set. \\ 1 \end{bmatrix}$	CLRWD DT presca 0000 struction It also re T. Status I	0110 resets the poits TO and	0100 Watch- re <u>sca</u> ler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline O0\\ CLRWDT indog Timerof the WDare set. 1\\ 1\\ \end{bmatrix}$	CLRWD DT F presca output struction It also re T. Status I	I 0110 resets the set <u>s</u> the pi bits TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WDare set. 1\\ 1\\ 2\\ 1\\ Q1\\ \end{bmatrix}$	CLRWD DT presca 0000 Istruction It also re T. Status I	I 0110 resets the set <u>s the</u> pi bits TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline O0\\ \hline CLRWDT indog Timer,of the WDare set. 1\\ 1\\ Q1\\ \hline Decode\\ \end{bmatrix}$	CLRWD DT presca on on struction It also re T. Status I Q2 NOP	I 0110 resets the province of the province of the process Q3 Process	0100 Watch- rescaler d PD Q4 Clear					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WD are set. 11\\ 1\\ Q1\\ \hline Decode \\ \end{bmatrix}$	CLRWD DT presca 0000 Istruction It also re T. Status I Q2 NOP	0110 resets the sets the pi bits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ CLRWDT indog Timer,of the WDare set. 1\\ 1\\ Q1\\ \hline Decode\\ \hline \end{bmatrix}$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP	0110 resets the sets the provide TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WDare set.11Q1\\ \hline Decode\\ \hline CLRWDT\\ \end{bmatrix}$	CLRWD DT presca oooo struction It also re T. Status I Q2 NOP	0110 resets the sets the pi bits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline OO\\ CLRWDT indog Timer,of the WDare set.11Q1DecodeCLRWDTBefore In$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP	I OIIO resets the sets the ploits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} abel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WD1 \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in \\ dog Timer \\ of the WD \\ are set. \\ 1 \\ 1 \\ Q1 \\ \hline Q1 \\ \hline CLRWDT \\ Before In \\ After Inst$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP struction WDT cou	I ler, 0110 resets the provide the providet the provide the providet the p	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Oh \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in dog Timer. of the WD are set. \\ 1 \\ 1 \\ Q1 \\ \hline CLRWDT \\ Before In \\ After Inst$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP struction WDT cou ruction WDT cou	I OIIO resets the sets the province of the process data Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Oh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline O0\\ CLRWDT indog Timer,of the WDare set.11Q1CLRWDTBefore InAfter Inst$	CLRWD DT presca r presca struction It also re T. Status I Q2 NOP struction WDT cou WDT cou WDT cou WDT cou	I ler, 0110 resets the provide the providet the	0100 Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00 0					

Applicable Devices 710 71 711 715

FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16LC710/711	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16 LC 710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H time). (Note 1)		—	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
					_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock sta		Tosc/2§		_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_	—	TAD	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
ХТ	200 kHz	47-68 pF	47-68 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15-33 pF	15-33 pF	
	20 MHz	15-33 pF	15-33 pF	
	1		•	
Crystals Used				
32 kHz	Epson C-00	± 20 PPM		
200 kHz	STD XTL 2	± 20 PPM		
1 MHz	ECS ECS-	± 50 PPM		
4 MHz	ECS ECS-4	± 50 PPM		
8 MHz	EPSON CA	EPSON CA-301 8.000M-C		
20 MHz	EPSON CA	± 30 PPM		

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

Applicable Devices71071711715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING

TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CI KIN Frequency	DC		4	MHZ	XTosc mode
	100	(Note 1)		_	4		HS osc mode (PIC16C715-04)
			DC	_	20	MHZ	HS osc mode (PIC16C715-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—		MHz	RC osc mode
		(Note 1)	0.1		4	MHz	XT osc mode
			4	$ \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	$\wedge - \land$	10	MHz	HS osc mode (PIC16C715-10)
			4		20	MHz	HS osc mode (PIC16C715-20)
		<	5	$\sqrt{7}$	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	\searrow	_	ns	XT osc mode
		(Note 1)	250	Ň	—	ns	HS osc mode (PIC16C715-04)
			100	$ ^{\sim}-$	—	ns	HS osc mode (PIC16C715-10)
			50	-	-	ns	HS osc mode (PIC16C715-20)
			> 5	—		μs	LP osc mode
		Oscillator Period	250	-	—	ns	RC osc mode
			250	-	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C715-04)
			100	-	250	ns	HS osc mode (PIC16C715-10)
		$() \subset ($	50	_	250	ns	HS osc mode (PIC16C715-20)
		$\checkmark \land \checkmark$	5	_	_	μs	LP osc mode
2 /	TGY	Instruction Cycle Time (Note 1)	200	_	DC	ns	TCY = 4/FOSC
3/	ŢosĻ,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
$ \setminus \rangle$	TosH	or Low Time	2.5	—	—	μs	LP oscillator
	\leq		10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise		_	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			-	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

Applicable Devices 710 71 711 715

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typt \	Max	Units	Conditions
No.							
130	TAD	A/D clock period	1.6	$\langle // / \rangle$	× _	μs	VREF ≥ 3.0V
			2.0			μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source		$\langle \rangle$			(RC oscillator source)
		$\langle \rangle$	3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time		9.5TAD	—	—	
		(not including S/H	\sim				
		time). Note [*] 1	12				
132	TACQ	Acquisition time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

Applicable Devices 710 71 711 715

FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

20 MHz

DS30272A-page 132

± 30 PPM

EPSON CA-301 20.000M-C

6.0

Applica	ble Devices 710 71 711 715								
15.3	DC Characteristics: PIC16C71 PIC16C71 PIC16LC7 PIC16LC7	-04 (0 -20 (0 1-04 (0	Commerc Commerc Commerc	cial, cial, cial,	Indust Indust Indust	rial) rial) rial)			
	Standard Operating Conditions (unless otherwise stated)								
	OOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)								
DC CHA	RACTERISTICS	•		\/-	-40°	C _≤	$IA \leq +85^{\circ}C$ (industrial)		
	Operating voltage VDD range as described in DC spec Section 15.1								
Daram	Characteristic		Min	Tvn	Max	Unite	Conditions		
No.	Gharacteristic	Sym		1 1	WIAN	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range		
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$		
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports (Note 4)	Vін		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$		
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range		
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current		50	250	†400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С		
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
·			· · · ·						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

FIGURE 16-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

Data based on matrix samples. See first page of this section for details.

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

I

I/O Ports	
PORTA2	25
PORTB2	27
Section2	25
I/O Programming Considerations	30
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	35
In-Circuit Serial Programming47, 6	37
INDF Register	24
Indirect Addressing2	24
Instruction Cycle1	C
Instruction Flow/Pipelining1	C
Instruction Format6	36
Instruction Set	_
ADDLW	<u> 1</u>
ADDWF	<u> 1</u>
ANDLW	1
ANDWF	'1
BCF	'2
BSF	'2
BIFSC	2
BIF55	, C
CALL	73
CLRF	74
	- 4 7 /
	76
	75
DECESZ 7	75
GOTO 7	76
INCE 7	76
INCESZ 7	77
IORLW	77
IORWF7	78
MOVF7	78
MOVLW7	78
MOVWF7	78
NOP7	79
OPTION7	79
RETFIE7	79
RETLW8	30
RETURN8	30
RLF8	31
RRF8	31
SLEEP	32
SUBLW	32
SUBWF	33
SWAPF8	50
1 KIS8	50
XURLW8	54 57
AURWF	54 20
Summary Table 7): 70
INT Interrupt 6	32
INTCON Register 1	i C
INTE bit	
INTEDG bit	33
Internal Sampling Switch (Rss) Impedence	10
Interrupts	17
A/D6	51
External6	31
PORTB Change6	51
PortB Change6	33
RB7:RB4 Port Change2	27
Section6	31
THE	32

TMR0 Overflow	61
INTF bit	
IRP bit	17
К	
KeeLoq [®] Evaluation and Programming Tools	87
L	
Loading of PC	23
LP	54
Μ	
MCLR	52, 56
Memory	
Data Memory	
Program Memory	11
Register File Maps	
PIC16C71	12
PIC16C710	12
PIC16C711	13
PIC16C715	13
MP-DriveWay™ - Application Code Generator	87
MPEEN bit	22, 48
MPLAB™ C	87
MPLAB [™] Integrated Development Environment	
Software	86

0

OPCODE	
OPTION Register	
Orthogonal	7
OSC selection	47
Oscillator	
HS	49, 54
LP	49, 54
RC	49
XT	49, 54
Oscillator Configurations	49
Oscillator Start-up Timer (OST)	53

Ρ

Packaging	
18-Lead CERDIP w/Window	155
18-Lead PDIP	156
18-Lead SOIC	157
20-Lead SSOP	158
Paging, Program Memory	23
PCL Register 14, 15	, 16, 23
PCLATH	. 57, 58
PCLATH Register 14, 15	, 16, 23
PCON Register	. 22, 54
PD bit 17	, 52, 55
PER bit	22
PIC16C71	147
AC Characteristics	147
PICDEM-1 Low-Cost PIC16/17 Demo Board	86
PICDEM-2 Low-Cost PIC16CXX Demo Board	86
PICDEM-3 Low-Cost PIC16CXXX Demo Board	86
PICMASTER [®] In-Circuit Emulator	85
PICSTART® Plus Entry Level Development System	85
PIE1 Register	20
Pin Functions	
MCLR/VPP	9
OSC1/CLKIN	9
OSC2/CLKOUT	9
RA0/AN0	9
RA1/AN1	9

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.