

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

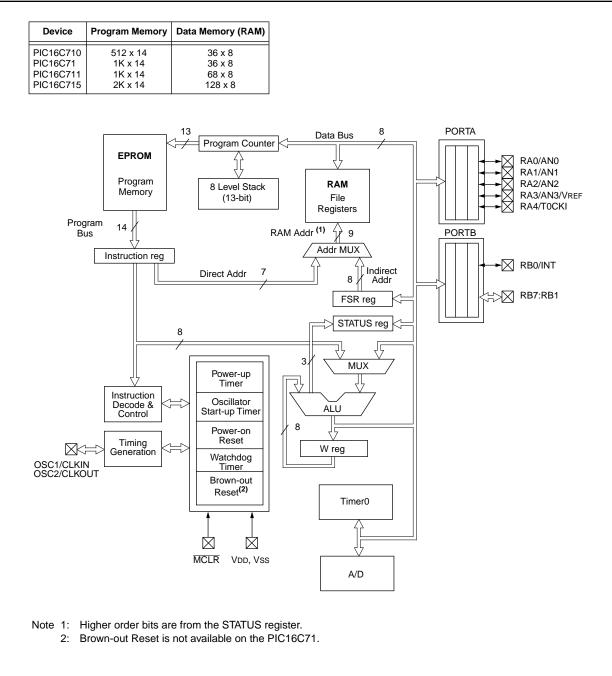
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Table of Contents

1.0	General Description	
2.0	PIC16C71X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	. 11
5.0	I/O Ports	. 25
6.0	Timer0 Module	. 31
7.0	Analog-to-Digital Converter (A/D) Module	. 37
8.0	Special Features of the CPU	. 47
9.0	Instruction Set Summary	. 69
10.0	Development Support	. 85
11.0	Electrical Characteristics for PIC16C710 and PIC16C711	
12.0	DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711	101
13.0	Electrical Characteristics for PIC16C715	
14.0	DC and AC Characteristics Graphs and Tables for PIC16C715	
15.0	Electrical Characteristics for PIC16C71	135
16.0	DC and AC Characteristics Graphs and Tables for PIC16C71	147
17.0	Packaging Information	155
Appen	dix A:	161
	dix B: Compatibility	
Appen	dix C: What's New	162
	dix D: What's Changed	
	-	
PIC16	C71X Product Identification System	173
	·	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0					•	•					
00h ⁽³⁾	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000									0000 0000
01h	TMR0	Timer0 mod	lule's register	r						xxxx xxxx	uuuu uuuu
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	DRTB pins wł	nen read				xxxx xxxx	uuuu uuuu
07h	—	Unimpleme	nted							—	—
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
0Ah ^(2,3)	PCLATH	_	—	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh (3)	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address dat	a memory (no	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Data Direction Control Register 1111 1111							1111 1111		
87h ⁽⁴⁾	PCON	—	—	—	_	—	_	POR	BOR	dd	uu
88h	ADCON1	—	—	_	_	_	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	A/D Result Register xxxx x							uuuu uuuu		
8Ah ^(2,3)	PCLATH	_	—	—	Write Buffer	Write Buffer for the upper 5 bits of the Program Counter0 0000					0 0000
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

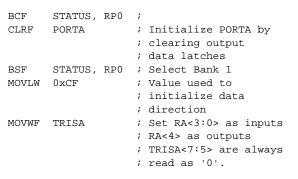
5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

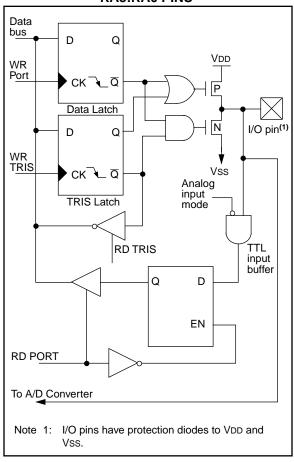
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.


Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

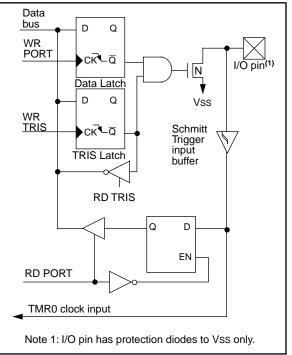

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

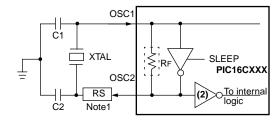
FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register 1111 1111 1111 1111					1111 1111			
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

8.2 <u>Oscillator Configurations</u>

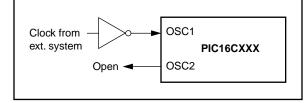
8.2.1 OSCILLATOR TYPES


The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

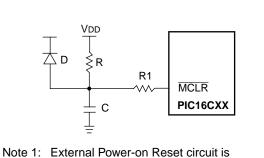
In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).


FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)


TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:						
Mode	Freq	OSC1	OSC2			
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF	47 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF	15 - 68 pF 10 - 47 pF			
These values are for design guidance only. See notes at bottom of page.						
Resonator	s Used:					
455 kHz	Panasonic EFO-A455K04B ± 0.3%					
2.0 MHz	Murata Erie CS	Murata Erie CSA2.00MG ± 0.5%				
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%					
All resonators used did not have built-in capacitors.						

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

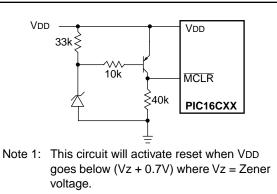

Mode	Freq	OSC1	OSC2	
LP	32 kHz	33 - 68 pF	33 - 68 pF	
	200 kHz	15 - 47 pF	15 - 47 pF	
XT	100 kHz	47 - 100 pF	47 - 100 pF	
	500 kHz	20 - 68 pF	20 - 68 pF	
	1 MHz	15 - 68 pF	15 - 68 pF	
	2 MHz	15 - 47 pF	15 - 47 pF	
	4 MHz	15 - 33 pF	15 - 33 pF	
HS	8 MHz	15 - 47 pF	15 - 47 pF	
	20 MHz	15 - 47 pF	15 - 47 pF	
These values are for design guidance only. See notes at bottom of page.				

FIGURE 8-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

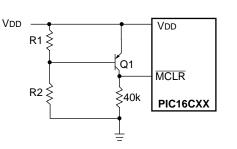

- required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 8-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources				
External interrupt RB0/INT				
TMR0 overflow interrupt				
PORTB change interrupts (pins RB7:RB4)				
A/D Interrupt				
The interrupt control register (INTCON) records indi-				

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

~							
No	l r C F	For the PIC16C71 If an interrupt occurs while the Global Inter- rupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:					
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.					
	2	2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.					
	3	3. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.					
		Perform the following to ensure that inter- upts are globally disabled:					
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit					
		INTCON, GIE ; Global interrupt ; disabled?					
	GOTO	LOOP ; NO, try again					

:

Yes, continue

with program

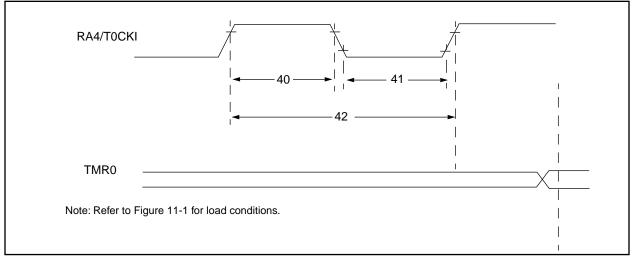
flow

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:


- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W
SWAPP	•	L
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry				
Syntax:	[label] RLF f,d	Syntax:	[label] RRF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]				
Operation:	See description below	Operation:	See description below				
Status Affected:	С	Status Affected:	С				
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1	Words:	1				
Cycles:	1	Cycles:	1				
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4				
	Decode Read register data Write to dest		Decode Read register 'f' Vite to dest				
Example	RLF REG1,0	Example	RRF REG1,0				
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Before Instruction REG1 = 1110 0110 C = 0 - After Instruction - - - REG1 = 1110 0110 W = 0111 0011 C = 0 -				

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20*	—		ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
42	Tt0P	T0CKI Period	Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)	
48	Tcke2tmrl	Delay from external clock edg	2Tosc	—	7Tosc	—		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C71X

Applicable Devices 710 71 711 715

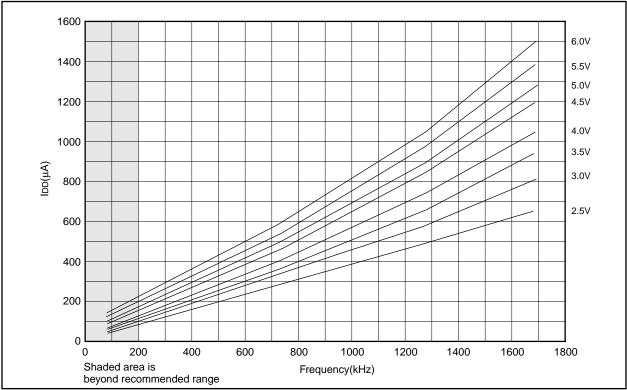


FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

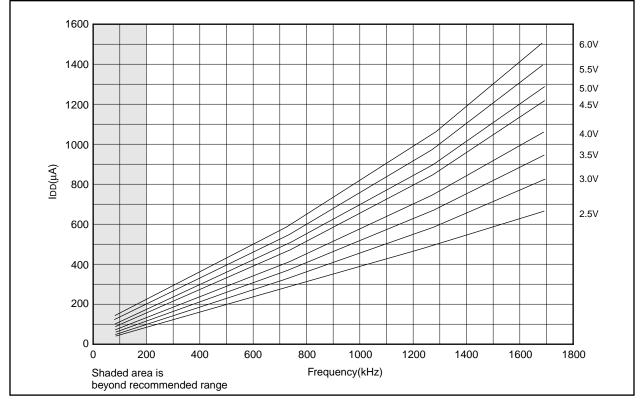
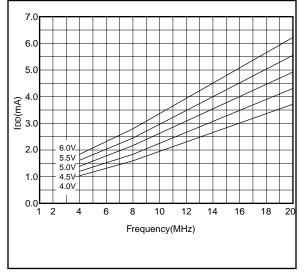
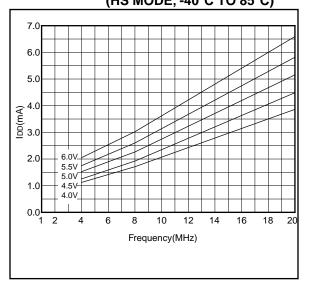
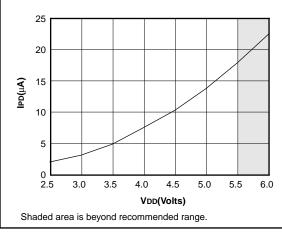




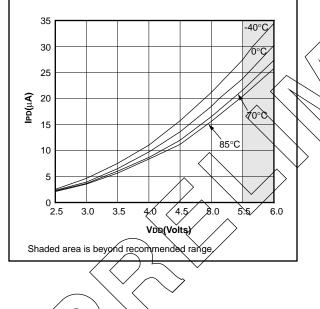
FIGURE 12-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

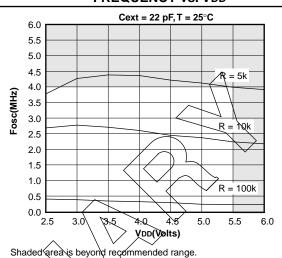
FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

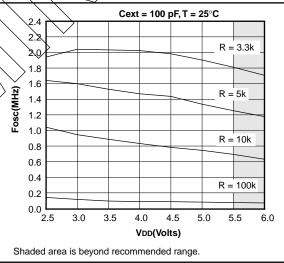

OSC		PIC16C715-04	•	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ. at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	· /·	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	nt use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do no	ot use in LP mode	1/ /	2.SV to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

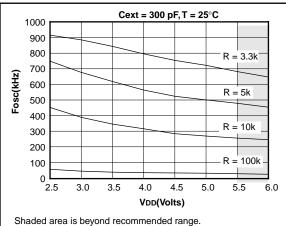
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.


TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)






FIGURE 14-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

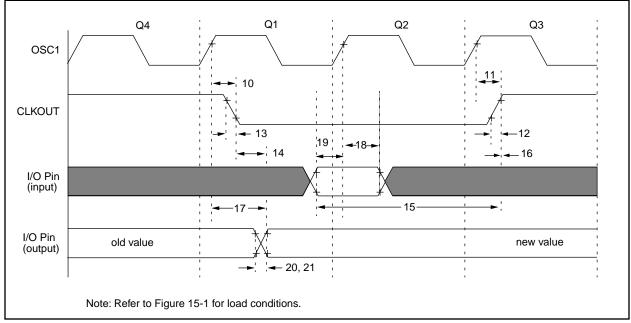

FIGURE 14-6: TYPICAL RC OSCILLATOR

FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

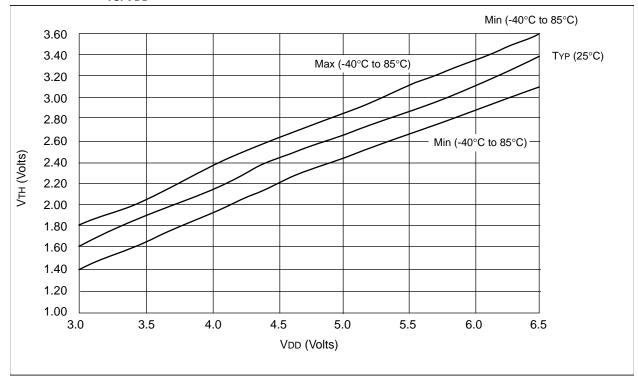
FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	—	15	30	ns	Note 1	
12*	TckR	CLKOUT rise time	—	5	15	ns	Note 1	
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	—	—	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOU	0.25Tcy + 25	—		ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—		ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 71	100	—		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)		0	—	-	ns	
20*	TioR	Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time PIC16 C 71		—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
22††*	Tinp	INT pin high or low time	20	—		ns		
23††*	Trbp	RB7:RB4 change INT high	20	—	_	ns		

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 16-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

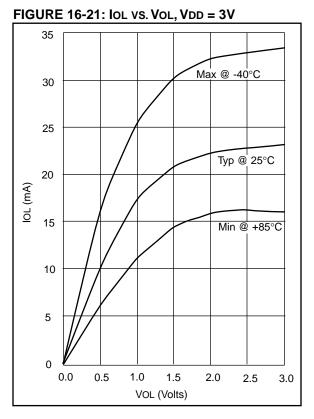
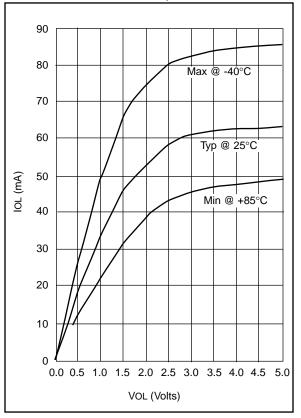



FIGURE 16-22: IOL VS. VOL, VDD = 5V

PIC16C71X

Figure 14-6:	Typical RC Oscillator Frequency vs.
riguio i i o.	VDD126
Figure 14-7:	Typical RC Oscillator Frequency vs. VDD126
Figure 14-8:	Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode)127
Figure 14-9:	Maximum IPD vs. VDD Brown-out Detect Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 14-12:	85°C to -40°C, RC Mode)
Figure 14-13:	(RC Mode @ 22 pF, 25 C) 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) 128
Figure 14-14:	(RC Mode @ 22 pF, -40 C to 85 C) 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C)
Figure 14-15:	Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 14-17:	Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) 130
Figure 14-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of XT Oscillator vs. VDD131
Figure 14-22:	Typical XTAL Startup Time vs. VDD (LP Mode, 25°C)132
Figure 14-23:	Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)132
Figure 14-24:	Typical XTAL Startup Time vs. VDD (XT Mode, 25°C)132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)
Figure 14-27:	Typical IDD vs. Frequency (XT Mode, 25°C)133
Figure 14-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)134
Figure 15-1:	Load Conditions140
Figure 15-2:	External Clock Timing141
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Figure 45 5	Timing
Figure 15-5:	Timer0 External Clock Timings
Figure 15-6:	A/D Conversion Timing146
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature
Figure 10.0	VDD147
Figure 16-3:	Typical RC Oscillator Frequency vs. VDD147

Figure 16-4:	Typical RC Oscillator Frequency vs. VDD
Figure 16-5:	Typical lpd vs. VDD Watchdog Timer Disabled 25°C148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C 148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog Disabled149
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled149
Figure 16-9:	Vth (Input Threshold Voltage) of I/O Pins vs. VDD149
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage) of OSC1 Input (in XT, HS, and
	LP Modes) vs. VDD 150
Figure 16-12:	Typical IDD vs. Freq (Ext Clock, 25°C) 151
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C)151
Figure 16-14:	Maximum IDD vs. Freq with A/D Off
	(Ext Clock, -55° to +125°C) 152
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
E: 10.17	HS Oscillator vs. VDD 152
Figure 16-17:	Transconductance (gm) of LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
. igure te tet	XT Oscillator vs. VDD 153
Figure 16-19:	IOH vs. VOH, VDD = 3V 153
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.