E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710t-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	SSOP Pin# ⁽⁴⁾	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	4	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	RA0 can also be analog input0
RA1/AN1	18	20	18	I/O	TTL	RA1 can also be analog input1
RA2/AN2	1	1	1	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	3	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	-	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	-	Positive supply for logic and I/O pins.
Legend: I = inp	ut	O = outp	ut .	I	/O = input/out	put P = power
		— = Not	used	-	IIL = TTL inp	ut SI = Schmitt Trigger input

TABLE 3-1:	PIC16C710/71/711/715 PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
4: The PIC16C71 is not available in SSOP package.

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

File	.e		File
004	IND=(1)	илос(1)	
00n			- 80n
010		OPTION	- 0111 - 02h
020		PUL	- 0211 - 02h
031		STATUS ESD	- 0311 - 046
0411 05b			- 0411 - 056
051			
076	PURID		- 0011 - 976
0711			
001			001
0911			0911
	INTCON		
0Ch		General	
	General	Purpose	
	Purpose	Register	
	Register	Mapped	
		In Bank 0.00	
2Fh			AFh
30h			B0h
(\		
			\checkmark
7Fh			FFh
	Bank 0	Bank 1	_
	Banko	Bank	
	Unimplemented	data memory locat	tions read
	as '0'.		
Note 1:	Not a physical re	gister.	
2:	The PCON regist	ter is not impleme	nted on the
3:	These locations a	are unimplemented	d in Bank 1.
5.	Any access to the	ese locations will a	access the
	corresponding Ba	ank 0 register.	

4.2.2.1 STATUS REGISTER

Applicable Devices 710 71 711 715

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x	
bit7	RP1	RP0	ТО	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	IRP: Regi 1 = Bank 0 = Bank	ster Bank 2, 3 (100h 0, 1 (00h -	Select bit - 1FFh) FFh)	(used for	indirect ad	dressing)		
bit 6-5:	RP1:RP0 11 = Banl 10 = Banl 01 = Banl 00 = Banl Each ban	: Register < 3 (180h - < 2 (100h - < 1 (80h - I < 0 (00h - 7 k is 128 by	Bank Sel 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ect bits (u	sed for dire	ct address	ing)	
bit 4:	TO: Time- 1 = After 0 = A WD	-out bit power-up, T time-out	CLRWDT ir	nstruction,	or sleep ii	nstruction		
bit 3:	PD : Powe 1 = After 0 = By ex	er-down bit power-up o ecution of	or by the othe street	CLRWDT ins	struction			
bit 2:	Z: Zero bi 1 = The re 0 = The re	t esult of an esult of an	arithmetio arithmetio	c or logic o c or logic o	operation is	zero not zero		
bit 1:	DC: Digit 1 = A carr 0 = No ca	carry/borro ry-out from rry-out fro	ow bit (AD the 4th le m the 4th	DWF, ADDL Dw order b low order	w,SUBLW,S bit of the res bit of the re	UBWF instru Sult occurre Sult	uctions)(for ed	borrow the polarity is reversed)
bit 0:	C: Carry/I 1 = A carr 0 = No ca Note: For the secon bit of the	porrow bit ry-out from arry-out from borrow the od operand source reg	(ADDWF, A the most m the mo e polarity l. For rota ister.	DDLW, SUB t significar st significa is reverse te (RRF, RL	LW, SUBWF at bit of the ant bit of the d. A subtra F) instruction	instruction result occu result occu ction is ex ons, this bi	s) urred curred ecuted by a t is loaded	adding the two's complement of with either the high or low order

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

4.2.2.4 PIE1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual enable bits for the Peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch)

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
ADCS1	ADCS0	(1)	CHS1	CHS0	GO/DONE	ADIF	ADON	R = Readable bit					
bit7	1						bit0	W = Writable bit U = Unimplemented bit. read as '0'					
								- n =Value at POR reset					
bit 7-6:	ADCS1:A	DCS0: A/D	Conversi	on Clock S	Select bits								
	00 = Fosc/2												
	10 = FOS	c/32											
	11 = FRC	(clock deriv	ed from a	n RC oscil	lation)								
bit 5:	Unimplemented: Read as '0'.												
bit 4-3:	CHS1:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3)												
bit 2:	GO/DON	E: A/D Con	version Sta	atus bit									
	$\frac{\text{If ADON}}{1 = A/D c}$ $0 = A/D c$ sion is co	<u>= 1</u> : onversion ir onversion n mplete)	n progress lot in prog	(setting th ress (This	his bit starts th bit is automat	ie A/D con ically cleai	version) ed by hardw	are when the A/D conver-					
bit 1:	ADIF: A/E 1 = conve 0 = conve	D Conversio ersion is con ersion is not	n Comple nplete (mu complete	te Interrup ist be clea	t Flag bit red in softwar	e)							
bit 0:	ADON: A	/D On bit											
	1 = A/D c 0 = A/D c	onverter mo onverter mo	odule is op odule is sh	erating utoff and o	consumes no	operating	current						
Note 1:	Bit5 of Al	DCON0 is a nented, read	l General I d as '0'.	Purpose R	R/W bit for the	PIC16C71	0/711 only. F	For the PIC16C71, this bit is					
	ampen	ionieu, iea											

FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

	BSF	STATUS,	RP0	;	Select	Banł	c 1					
	CLRF	ADCON1		;	Config	ure A	A/D i	nputs				
	BCF	STATUS,	RP0	;	Select	Banł	c 0					
	MOVLW	0xC1		;	RC Clo	ck, A	A/D i	s on, Cha	annel (0 is sel	ected	d
	MOVWF	ADCON0		;								
	BSF	INTCON,	ADIE	;	Enable	A/D	Inte	errupt				
	BSF	INTCON,	GIE	;	Enable	all	inte	errupts				
En	sure tha	at the re	equired	samplin	g time	for	the	selected	input	channel	has	elapsed.

Then the conversion may be started.

;

;;

;

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion.

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13		—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplen	nented	: Read	as '1'										
bit 4:	CP0: Code 1 = Code 0 = All me	e prote protecti mory is	ction bi ion off 3 code p	t protecte	ed, but	00h - 3	Fh is w	vritable						
bit 3:	PWRTE: F 1 = Power 0 = Power	Power-u -up Tim -up Tim	up Time ner ena ner disa	er Enabl bled Ibled	e bit									
bit 2:	WDTE: Wa 1 = WDT e 0 = WDT e	atchdog enablec disablec	g Timer 1 d	Enable	e bit									
bit 1-0:	FOSC1:F0 11 = RC o 10 = HS o 01 = XT o 00 = LP o	OSC0: oscillato oscillato scillato scillato	Oscillat or or r r	tor Sele	ction b	its								

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 9-2 lists the instructions recognized by the MPASM assembler.

Figure 9-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

BCF	Bit Clear f					BTFSC	Bit Test,	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>] B0	CF f,b				Syntax:	[<i>label</i>] B1	[<i>label</i>] BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					Operands:	$0 \le f \le 127$ $0 \le b \le 7$				
Operation:	$0 \rightarrow (f < b)$	>)				Operation:	skip if (f<	b>) = 0			
Status Affected:	None					Status Affected:	None				
Encoding:	01	00bb	bfff	ffff		Encoding:	01	10bb	bfff	ffff	
Description:	Bit 'b' in re	egister 'f' is	s cleared.			Description:	lf bit 'b' in	register 'f' is	s '1' then th	e next	
Words:	1						instruction	is execute register 'f'	d. is '0' then t	he next	
Cycles:	1						instruction	is discarde	ed, and a N	OP is	
Q Cycle Activity:	tivity: Q1 Q2 Q3 Q4						executed instead, making this a 2Tcy instruction.				
	Decode	Read register 'f'	Process data	Write register 'f'		Words: Cycles:	1 1(2)				
Example	BCF	FLAG_	REG, 7			Q Cycle Activity:	Q1	Q2	Q3	Q4	
·	Before In	struction		,			Decode	Read register 'f'	Process data	NOP	
	After Inst	ruction	=G = 0xC7			If Skip:	(2nd Cvcle)				
		FLAG_RE	EG = 0x47				Q1	Q2	Q3	Q4	
							NOP	NOP	NOP	NOP	
						Example	HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE	

-	
Before Instruction	
PC = address	HERE
After Instruction	
if $FLAG < 1 > = 0$,	

PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f							
Syntax:	[<i>label</i>] BS	SF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$1 \rightarrow (f < b;$	>)						
Status Affected:	None							
Encoding:	01	01bb	bfff	ffff				
Description:	Bit 'b' in register 'f' is set.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Process data	Write register 'f'					
Example	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction							
				1 1				

CLRF	Clear f								
Syntax:	[<i>label</i>] C	[<i>label</i>] CLRF f							
Operands:	$0 \le f \le 127$								
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z								
Encoding:	00	0001	lfff	ffff					
Description:	The contents of register 'f' are cleared and the Z bit is set.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	CLRF	FLAG	G_REG						
	Before In	struction	l						
	$FLAG_REG = 0x5A$								
	AITELINST	FLAG RF	EG =	0x00					
		Ζ	=	1					

CLRW	Clear W								
Syntax:	[label]	CLRW							
Operands:	None								
Operation:	$00h \rightarrow (V)$	V)							
Status Affected	$1 \rightarrow Z$	Z							
Encoding:	00	0001	0xxx	xxxx					
Description:	W register	is cleare	d Zero bit	(7) is					
Description.	set.	le cleare		(上) 10					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	NOP	Process data	Write to W					
Example	CLRW								
Example	Before In	struction							
	Boloro	W =	0x5A						
	After Inst	ruction	0.00						
		vv = Z =	0x00 1						
CLRWDT	Clear Wa	tchdog	Timer						
0 1			_						
Syntax:	[label]	CLRWD	I						
Syntax: Operands:	[<i>label</i>] None	CLRWD	I						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None 00h \rightarrow W	CLRWD DT	I						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$	CLRWD DT F presca	l ler,						
Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$	CLRWD DT F presca	l ler,						
Syntax: Operands: Operation: Status Affected:	$\begin{bmatrix} label \\ \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD	CLRWD DT Γpresca	l ler,						
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} Iabel \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD 00	CLRWD DT F presca	l er, 0110	0100					
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} Iabel \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $\boxed{00}$ CLRWDT in	CLRWD DT F presca	l ler, 0110 resets the	0100 Watch-					
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} Iabel \end{bmatrix}$ None $00h \rightarrow W$ $0 \rightarrow WDT$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $\boxed{00}$ CLRWDT in dog Timer, of the WDT are set.	CLRWD DT F presca 0000 struction It also re T. Status I	0110 resets the provide TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{bmatrix} Iabel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in \\ dog Timer \\ of the WD \\ are set. \\ 1 \end{bmatrix}$	CLRWD DT presca 0000 struction It also re T. Status I	0110 resets the poits TO and	0100 Watch- re <u>sca</u> ler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} Iabel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WD1 \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in \\ dog Timer \\ of the WD \\ are set. \\ 1 \\ 1 \end{bmatrix}$	CLRWD DT F presca output struction It also re T. Status I	I 0110 resets the set <u>s</u> the pi bits TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WDare set. 1\\ 1\\ 2\\ 1\\ Q1\\ \end{bmatrix}$	CLRWD DT presca 0000 Istruction It also re T. Status I	I 0110 resets the set <u>s the</u> pi bits TO and	0100 Watch- rescaler d PD					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WD1 \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline O0 \\ CLRWDT in \\ dog Timer, of the WD \\ are set. \\ 1 \\ 1 \\ Q1 \\ \hline Decode \\ \end{bmatrix}$	CLRWD DT presca on on struction It also re T. Status I Q2 NOP	I 0110 resets the province of the province of the process Q3 Process	0100 Watch- rescaler d PD Q4 Clear					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WD are set. 11\\ 1\\ Q1\\ \hline Decode\\ \hline \end{bmatrix}$	CLRWD DT presca 0000 Istruction It also re T. Status I Q2 NOP	0110 resets the sets the pi bits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ CLRWDT indog Timer,of the WDare set. 1\\ 1\\ Q1\\ \hline Decode\\ \hline \end{bmatrix}$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP	0110 resets the sets the provide TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline 00\\ \hline CLRWDT indog Timerof the WDare set.11Q1\\ \hline Decode\\ \hline CLRWDT\\ \end{bmatrix}$	CLRWD DT presca oooo struction It also re T. Status I Q2 NOP	0110 resets the sets the pi bits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Ooh \rightarrow W\\ O \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline OO\\ CLRWDT indog Timer,of the WDare set.11Q1DecodeCLRWDTBefore In$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP	I OIIO resets the sets the ploits TO and Q3 Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} abel \\ None \\ 00h \rightarrow W \\ 0 \rightarrow WD1 \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in \\ dog Timer \\ of the WD \\ are set. \\ 1 \\ 1 \\ Q1 \\ \hline Q1 \\ \hline CLRWDT \\ Before In \\ After Inst$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP struction WDT cou	I ler, 0110 resets the provide the providet the provide the providet the p	0100 Watch- rescaler d PD Q4 Clear WDT Counter					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Oh \rightarrow W \\ 0 \rightarrow WDT \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 \\ CLRWDT in dog Timer. of the WD are set. \\ 1 \\ 1 \\ Q1 \\ \hline Q1 \\ \hline CLRWDT \\ Before In \\ After Inst$	CLRWD DT presca 0000 struction It also re T. Status I Q2 NOP struction WDT cou ruction WDT cou	I OIIO resets the sets the province of the process data Process data	0100 Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00					
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Example	$\begin{bmatrix} Iabel \\ Oh \rightarrow W\\ 0 \rightarrow WDT\\ 1 \rightarrow TO\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline O0\\ CLRWDT indog Timer,of the WDare set.11Q1CLRWDTBefore InAfter Inst$	CLRWD DT presca r presca struction It also re T. Status I Q2 NOP struction WDT cou WDT cou WDT cou WDT cou	I ler, 0110 resets the provide the providet the	0100 Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00 0					

NOP	No Operation								
Syntax:	[label]	NOP							
Operands:	None								
Operation:	No opera	ition							
Status Affected:	None								
Encoding:	00	0000	0xx0	0000					
Description:	No operati	ion.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	NOP	NOP	NOP					
Example	NOP								

RETFIE	Return from Interrupt							
Syntax:	[label]	RETFIE						
Operands:	None							
Operation:	$\begin{array}{l} \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \end{array}$							
Status Affected:	None							
Encoding:	00	0000	0000	1001				
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.							
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack				
2nd Cycle	NOP	NOP	NOP	NOP				
Example	RETFIE							

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register						
Syntax:	[label]	OPTION	٧				
Operands:	None						
Operation:	$(W) \rightarrow O$	PTION					
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description: Words: Cycles: Example	The conter loaded in t instruction patibility w Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TION is a le user ca	W register DN registe rted for coo C5X produ readable/v n directly a	r are r. This de com- ucts. vritable address			
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

Appli	cable Devices	710 71	711 715
11.1	DC Character	ristics:	PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended)
			PIC16C711-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercia $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)							
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3)		-	1.5	21	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A D021B			-	1.5	30	μΑ μΑ	$VDD = 4.0V$, VDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

Applicable Devices71071711715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING

TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CI KIN Frequency	DC		4	MHZ	XTosc mode
	100	(Note 1)		_	4		HS osc mode (PIC16C715-04)
			DC	_	20	MHZ	HS osc mode (PIC16C715-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—		MHz	RC osc mode
		(Note 1)	0.1		4	MHz	XT osc mode
			4	$ \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	$\wedge - \land$	10	MHz	HS osc mode (PIC16C715-10)
			4		20	MHz	HS osc mode (PIC16C715-20)
		<	5	$\bigvee \downarrow \setminus$	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	\searrow	_	ns	XT osc mode
		(Note 1)	250	Ň	—	ns	HS osc mode (PIC16C715-04)
			100	$ $	—	ns	HS osc mode (PIC16C715-10)
			50	—	-	ns	HS osc mode (PIC16C715-20)
			> 5	—		μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
			250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C715-04)
			100	_	250	ns	HS osc mode (PIC16C715-10)
		$() \subset ($	50	_	250	ns	HS osc mode (PIC16C715-20)
		$\bigvee \land \searrow$	5	_	_	μs	LP osc mode
2 /	TGY	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy = 4/Fosc
3	ŢosĻ,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
$ \setminus \setminus$	TosH	or Low Time	2.5	—	—	μs	LP oscillator
	\leq		10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise		—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			-	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

Applicable Devices 710 71 711 715

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.							
	Nr	Resolution	_	_	8-bits	_	$VREF = VDD, VSS \leq Ain \leq VREF$
	Nint	Integral error	_	_	less than ±1 LSb		$VREF = VDD, VSS \le Ain \le VREF$
	Ndif	Differential error	—	—	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDD, VS S ≤ AIN ≤ VREF
	_	Monotonicity	—	guaranteed	—	_	VSS & ANT & VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	$\langle \langle \rangle \rangle$
	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	_		10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when AVD is on. (Note 1)
	IREF	VREF input current (Note 2)			The second secon	mA μA	During sampling All other times

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

FIGURE 14-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 14-6: TYPICAL RC OSCILLATOR

FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

$\ensuremath{\textcircled{}^{\odot}}$ 1997 Microchip Technology Inc.

Applicable Devices 710 71 711 715

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)OOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC spec Section 15.1and Section 15.2.					
Param	Characteristic	Sym	Min	Typ +	Мах	Units	Conditions
NO.	Conscitive Londing Space on						
	Output Pins						
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю			50	pF	
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only							

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 3: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.