

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc710t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RP0	;				
CLRF	PORTB		;	Initialize PORTB by			
			;	clearing output			
			;	data latches			
BSF	STATUS,	RP0	;	Select Bank 1			
MOVLW	0xCF		;	Value used to			
			;	initialize data			
			;	direction			
MOVWF	TRISB		;	Set RB<3:0> as inputs			
			;	RB<5:4> as outputs			
			;	RB<7:6> as inputs			

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71					
	if a change on the I/O pin should occur					
	when the read operation is being executed					
	(start of the Q2 cycle), then interrupt flag bit					
	RBIF may not get set.					

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

7.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 7-5. The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 7-1: A/D MINIMUM CHARGING TIME

 $\mathsf{VHOLD} = (\mathsf{VREF} - (\mathsf{VREF}/\mathsf{512})) \bullet (1 - e^{(\mathsf{-TCAP/CHOLD}(\mathsf{Ric} + \mathsf{Rss} + \mathsf{Rs}))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $TCAP = -(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $V\text{DD} = 5\text{V} \rightarrow \text{Rss} = 7 \text{ k}\Omega$

Temp (application system max.) = 50°C

 $\mathsf{VHOLD}=0 @ t=0$

FIGURE 7-5: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- Note 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- Note 4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED AQUISITION TIME

TACQ = Amplifier Settling Time +

Holding Capacitor Charging Time + Temperature Coefficient

- TACQ = $5 \,\mu s + TCAP + [(Temp 25^{\circ}C)(0.05 \,\mu s/^{\circ}C)]$
- TCAP = -CHOLD (RIC + RSS + RS) ln(1/511)
 - -51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020) -51.2 pF (18 kΩ) ln(0.0020) -0.921 μs (-6.2364)

5.747 μs

TACQ = 5 μs + 5.747 μs + [(50°C - 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt		
W	XXXX XXXX	uuuu uuuu	นนนน นนนน		
INDF	N/A	N/A	N/A		
TMR0	xxxx xxxx	นนนน นนนน	นนนน นนนน		
PCL	0000h	0000h	PC + 1 (2)		
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾		
FSR	xxxx xxxx	นนนน นนนน	นนนน นนนน		
PORTA	x 0000	u 0000	u uuuu		
PORTB	xxxx xxxx	<u>uuuu</u> uuuu	นนนน นนนน		
PCLATH	0 0000	0 0000	u uuuu		
INTCON	0000 000x	0000 000u	uuuu uuuu (1)		
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน		
ADCON0	00-0 0000	00-0 0000	uu-u uuuu		
OPTION	1111 1111	1111 1111	นนนน นนนน		
TRISA	1 1111	1 1111	u uuuu		
TRISB	1111 1111	1111 1111	นนนน นนนน		
PCON ⁽⁴⁾	Ou		uu		
ADCON1	00	00	uu		

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

8.7 <u>Watchdog Timer (WDT)</u>

Applicable Devices 710 71 711 715

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 8-21: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 8-1, Figure 8-2 and Figure 8-3 for operation of these bits.

© 1997 Microchip Technology Inc.

PIC16C71X

BCF	Bit Clear	r f				BTFSC	Bit Test,	Skip if Cl	ear		
Syntax:	[<i>label</i>] B0	CF f,b				Syntax:	[<i>label</i>] B1	[<i>label</i>] BTFSC f,b			
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f < b >)$					Operation:	skip if (f<	b>) = 0			
Status Affected:	None					Status Affected:	None				
Encoding:	01	00bb	bfff	ffff		Encoding:	01	10bb	bfff	ffff	
Description:	Bit 'b' in re	egister 'f' is	s cleared.			Description:	lf bit 'b' in	register 'f' is	s '1' then th	e next	
Words:	1						instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is				
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4			executed instead, making this a 2 ⁻			2TCY	
	Decode	Read register 'f'	Process data	Write register 'f'		Words: Cycles:	1 1(2)				
Example	BCF	FLAG_	REG, 7			Q Cycle Activity:	Q1	Q2	Q3	Q4	
·	Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47					lf Skip:	Decode	Read register 'f'	Process data	NOP	
							(2nd Cvcle)				
							Q1	Q2	Q3	Q4	
						NOP	NOP	NOP	NOP		
						Example	HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE	

-							
Before Instruction							
PC = address	HERE						
After Instruction							
if $FLAG < 1 > = 0$,							

PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f							
Syntax:	[<i>label</i>] BS	[<i>label</i>] BSF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$1 \rightarrow (f < b;$	>)						
Status Affected:	None							
Encoding:	01 01bb bfff ffff							
Description:	Bit 'b' in register 'f' is set.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write register 'f'				
Example	BSF Before In After Inst	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction						
				1 1				

Applicable Devices 710 71 711 715

TABLE 12-1: RC OSCILLATOR FREQUENCIES

Cevt	Rovt	Average				
UEAL	Next	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	±1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
ХТ	200 kHz	200 kHz 47-68 pF				
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
	1		•			
Crystals Used						
32 kHz	Epson C-00	Epson C-001R32.768K-A				
200 kHz	STD XTL 2	STD XTL 200.000KHz				
1 MHz	ECS ECS-	± 50 PPM				
4 MHz	ECS ECS-4	ECS ECS-40-20-1				
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM			
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM			

OSC		PIC16C715-04		<pre>PIC16C715-10</pre>		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
PC	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at \$.5)	IDD:	2.7 mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max. >	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V /	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
VT	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at 5.5V	IDD:	2.7/mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	NgD:	1.5 µA typ at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq.	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	V6p:	4.5V/to 5,5V/			Vdd:	4.5V to 5.5V
Це	IDD:	13.5 mA typ. at 5.5V	IDD:	30 mA max. at 5.5V	IDD:	30 mA max. at 5.5V		tuco in US modo	IDD:	30 mA max. at 5.5V
	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V		d use in HS mode	IPD:	1.5 μA typ. at 4.5V
	Freq:	4 MHz max.	Freq:	10 MHz max.	Freq:	20 MHz max.	$\langle \rangle$		Freq:	10 MHz max.
	VDD:	4.0V to 5.5V					YOD:	2.5V to 5.5V	Vdd:	2.5V to 5.5V
	IDD:	52.5 μA typ. at 32 kHz, 4.0V	Dong	tuso in LP modo	Dono		IDD:/	48 μA max. at 32 kHz, 3.0V	IDD:	48 μA max. at 32 kHz, 3.0V
	IPD:	0.9 μA typ. at 4.0V					IPG: /	/5.Ø μA max. at 3.0V	IPD:	5.0 μA max. at 3.0V
	Freq:	200 kHz max.				/	Freq:	/ 200 kHz max.	Freq:	200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

Applicable Devices71071711715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)				
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions	
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled	
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μÀ	BOR enabled VDD = 5.0V	
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	35 5	μ Α μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$	
D023	Brown-out Reset Current (Note 5)		- `	300*	500	μA	BOR enabled VDD = 5.0V	

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.							
	Nr	Resolution	_	_	8-bits	_	$VREF = VDD, VSS \leq Ain \leq VREF$
	Nint	Integral error	_	_	less than ±1 LSb		$VREF = VDD, VSS \le Ain \le VREF$
	Ndif	Differential error	_	—	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDD, VS S ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	—	_	VSS & ANT & VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	$\langle \langle \rangle \rangle$
	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	_		10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when AVD is on. (Note 1)
	IREF	VREF input current (Note 2)			The second secon	mA μA	During sampling All other times

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C71X

Applicable Devices 710 71 711 715

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into Vod pin	100 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ	$\{(VDD-VOH) \times IOH\} + \sum (VOI \times IOL)$

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
нѕ	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CH		Standa Operat	ard Op ing terr	eratin perati	g Cond ure 0° -4	litions (unless otherwise stated) $^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $^{\circ}O^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)	
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3)	IPD	- - -	7 1.0 1.0	28 14 16	μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applica	ble Devices 710 71 711 715								
15.3	DC Characteristics: PIC16C71 PIC16C71 PIC16LC7 PIC16LC7	-04 (0 -20 (0 1-04 (0	Commerc Commerc Commerc	cial, cial, cial,	Indust Indust Indust	rial) rial) rial)			
		Standa	rd Opera	ting	Conditi	ons (u	nless otherwise stated)		
		OOpera	ating temp	erat	ure 0°C	≤	$TA \leq +70^{\circ}C$ (commercial)		
DC CHA	RACTERISTICS	•		× /-	-40°	C _≤	$IA \leq +85^{\circ}C$ (industrial)		
	operating voltage vold range as described in DC spec Section 15.1								
Daram	Characteristic		Nu Sculut 15.2.						
No.	Gharacteristic	Sym		1 1	WIAN	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range		
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \le VDD \le 5.5V$		
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports (Note 4)	Vін		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$		
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range		
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С		
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
·			· · · ·						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

PIC16C71X

TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cart	Devt	Average				
Cext	Rext	Fosc @ 5V, 25°C				
20 pF	4.7k	4.52 MHz	±17.35%			
	10k	2.47 MHz	±10.10%			
	100k	290.86 kHz	±11.90%			
100 pF	3.3k	1.92 MHz	±9.43%			
	4.7k	1.49 MHz	±9.83%			
	10k	788.77 kHz	±10.92%			
	100k	88.11 kHz	±16.03%			
300 pF	3.3k	726.89 kHz	±10.97%			
	4.7k	573.95 kHz	±10.14%			
	10k	307.31 kHz	±10.43%			
	100k	33.82 kHz	±11.24%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

FIGURE 16-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD

NOTES:

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	

W

W Register	
ALU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	
Programming Considerations .	65
Timeout	
WDT Period	
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow 10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB27
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	13
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	22
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	24
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	28
Figure 5-6:	Successive I/O Operation	30
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	32
Figure 6-4:	Timer0 Interrupt Timing	32
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38