

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	- ·
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc711-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1		•								-	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	—	Unimpleme	nted							—	—
88h	—	Unimpleme	nted							—	_
89h	—	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							—	_
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	_	Unimpleme	nted							-	—
90h	_	Unimpleme	nted							_	—
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	_	Unimpleme	nted							_	—
95h		Unimpleme	nted								
96h		Unimpleme	nted								_
97h		Unimpleme	nted								
98h		Unimpleme	nted								
99h		Unimpleme	nted								_
9Ah		Unimpleme	nted								
9Bh	_	Unimpleme	nted		_	—					
9Ch	—	Unimpleme	nted		-	—					
9Dh	_	Unimpleme	nted								_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	—	_	—	—	—	-	PCFG1	PCFG0	00	00

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices 710 71 711 715

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

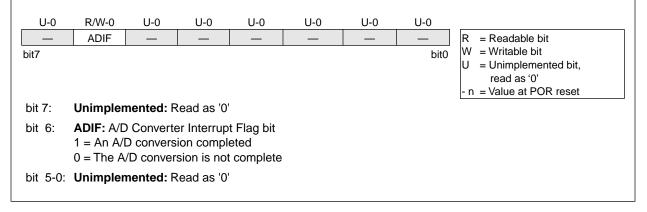
For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

<u>R/W-0</u>	R/W-0	R/W-0	<u>R-1</u> TO	<u>R-1</u> PD	R/W-x Z	R/W-x	R/W-x C	D. Deedeble hit		
IRP bit7	RP1	RP0	10	<u>PD</u>	2	DC	bitO	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	IRP: Regi 1 = Bank 0 = Bank	2, 3 (100h	- 1FFh)	(used for	indirect add	Iressing)				
bit 6-5:	RP1:RP0 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each ban	x 3 (180h - x 2 (100h - x 1 (80h - 1 x 0 (00h - 3	1FFh) 17Fh) FFh) 7Fh)	ect bits (us	ed for dired	ct addressi	ing)			
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred									
bit 3:	PD : Power $1 = \text{After } \mu$ 0 = By exercised	power-up o	or by the c							
bit 2:		sult of an		•	peration is					
bit 1:	1 = A carr	y-out from	the 4th lo	w order b	w,SUBLW,S it of the res bit of the re	ult occurre		borrow the polarity is reversed		
bit 0:	1 = A carr 0 = No ca Note: For	y-out from rry-out fro borrow th d operand	the most m the most e polarity . For rotat	significan st significa is reverse		result occu result occ ction is exe	irred curred ecuted by a	adding the two's complement of with either the high or low orde		

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)


4.2.2.5 PIR1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function			
RA0/AN0	bit0	TTL	nput/output or analog input			
RA1/AN1	bit1	TTL	nput/output or analog input			
RA2/AN2	bit2	TTL	Input/output or analog input			
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF			
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0			
			Output is open drain type			

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	—	—	_	PORTA D	Data Direct	ion Registe		1 1111	1 1111	
9Fh	ADCON1	_	_	_	_	_		PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	Data Directic		1111 1111	1111 1111					
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

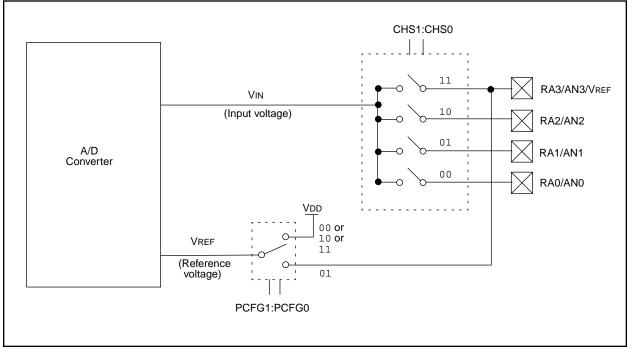
NOTES:

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.


2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

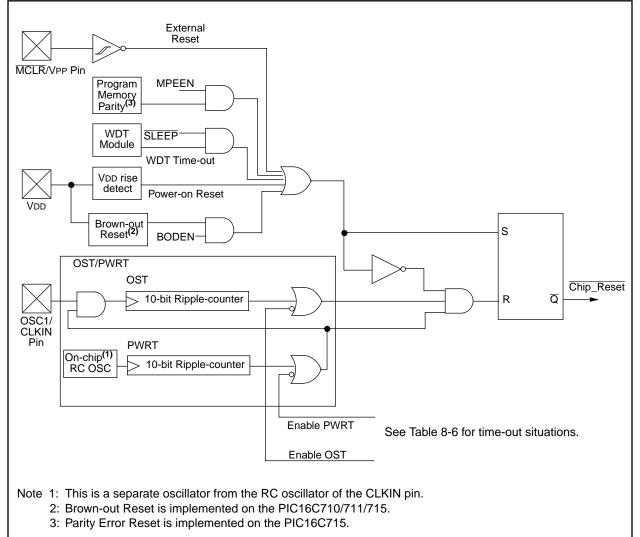
bit13	- -	—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpler	nented	: Read	as '1'										
bit 4:	CP0: Code protection bit 1 = Code protection off 0 = All memory is code protected, but 00h - 3Fh is writable													
bit 3:	PWRTE: 1 = Power 0 = Power	-up Tin	ner ena	bled	le bit									
bit 2:	WDTE: W 1 = WDT 0 = WDT	enabled	ł	Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC c 10 = HS c 01 = XT c 00 = LP o	oscillato oscillato oscillato	or r	tor Sele	ection b	vits								

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

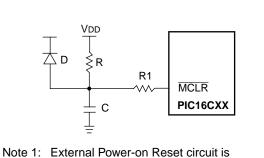
It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

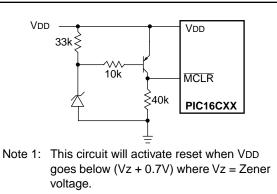

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

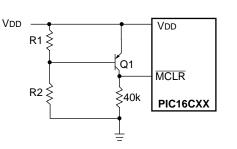

- required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 8-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

RETLW	Return w	ith Lite	ral in W						
Syntax:	[label]	RETLW	k						
Operands:	$0 \le k \le 255$								
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow F \end{array}$	$k \rightarrow (W);$ TOS $\rightarrow PC$							
Status Affected:	None								
Encoding:	11	01xx	kkkk	kkkk					
Description:	bit literal 'k loaded fro	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction							
Words:	1								
Cycles:	2								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
1st Cycle	Decode	Read literal 'k'	NOP	Write to W, Pop from the Stack					
2nd Cycle	NOP	NOP	NOP	NOP					
Example	CALL TABLE ;W contains table ;offset value ;W now has table value								
TABLE	fset table f table								
	RETLW kn Before In								
		W =	0x07						
	After Inst	ruction W =	value of k	8					

Syntax:	[label] RETURN								
Operands:	None								
Operation:	$TOS \rightarrow PC$								
Status Affected:	None								
Encoding:	00	0000	0000	1000					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.								
Words:	1								
Cycles:	2								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
1st Cycle	Decode	NOP	NOP	Pop from the Stack					
2nd Cycle	NOP	NOP	NOP	NOP					
Example	RETURN								
After Interrupt PC = TOS									

Applicable Devices 710 71 711 715

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	_	8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	EABS	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	_	_	<±1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	—	guaranteed	-	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	—	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			—	_	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C71X

Applicable Devices 710 71 711 715

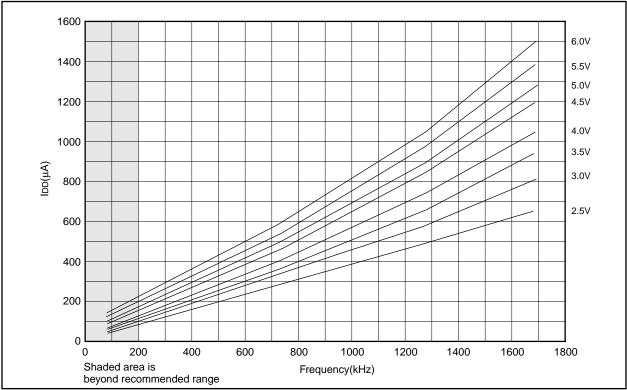
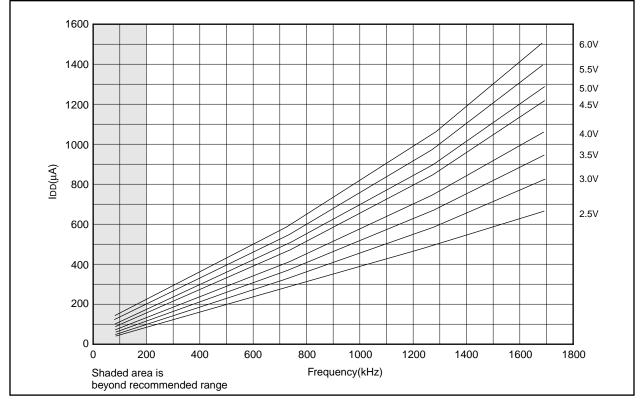
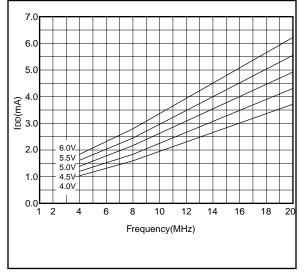
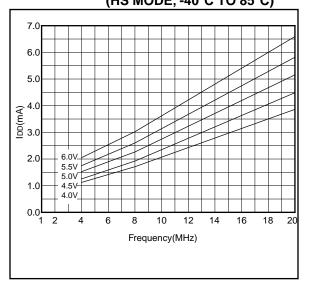


FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)


FIGURE 12-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

Applicable Devices 710 71 711 715

FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

Applicable Devices 710 71 711 715

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (

DC CHARACTERISTICS				lard Op ating ter		ture (ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS øsc configuration (PIC16C715-20) Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-<	300*	500	ha `	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD <	-	10,5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ALBOR		>300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Vod can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

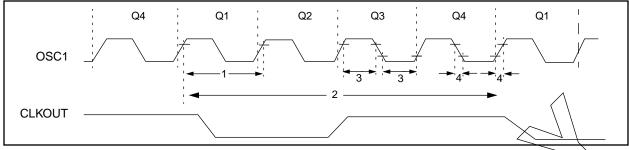
(The)test conditions for all IDD measurements in active operation mode are:

OSCT = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.


5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C71X

Applicable Devices71071711715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING

TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C715-04)
			DC	_	20/	MHz	HS osc mode (PIC16C715-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	1	MHz	RØ osc mode
		(Note 1)	0.1		<u> </u>	MHz	XT osc mode
			4	$ \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	$\wedge - \land$	10	MHz	HS osc mode (PIC16C715-10)
			4	$\langle \not F \rangle$	20	MHz	HS osc mode (PIC16C715-20)
			5	\overline{M}	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	$ \rightarrow $	_	ns	XT osc mode
		(Note 1)	250	Ň	-	ns	HS osc mode (PIC16C715-04)
			100	$ ^{\sim}-$	_	ns	HS osc mode (PIC16C715-10)
			50	_	—	ns	HS osc mode (PIC16C715-20)
			5	_	—	μs	LP osc mode
		Oscillator Períod	250	—	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C715-04)
	/		100	_	250	ns	HS osc mode (PIC16C715-10)
		$() \leftarrow \vee$	50	_	250	ns	HS osc mode (PIC16C715-20)
		\sim	5	_	-	μs	LP osc mode
2	Tgy	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosĻ,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
\setminus	TosH	or Low Time	2.5	—	—	μs	LP oscillator
\searrow	\langle		10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

Applicable Devices 710 71 711 715									
15.3 [DC Characteristics: PIC16C71 PIC16C71 PIC16C71 PIC16LC7	-20 (0 1-04 (0	Commero Commero	cial, cial,	Indust Indust	rial) rial)			
							nless otherwise stated)		
		OOpera	OOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)						
DC CHAP	RACTERISTICS	Oporati			-40°	-	TA \leq +85°C (industrial) cribed in DC spec Section 15.1		
			ction 15.2		Diange	as uesi	chibed in DC spec Section 15.1		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				t					
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range		
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$		
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports (Note 4)	Vih		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$		
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range		
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С		
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
+ [Data in "Typ" column is at 5V, 25°C unl	ooo oth	nuico oto	tod	Those n	oromo			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

I

I/O Ports	
PORTA2	
PORTB2	
Section2	
I/O Programming Considerations	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
In-Circuit Serial Programming47, 6	37
INDF Register	
Indirect Addressing2	
Instruction Cycle1	
Instruction Flow/Pipelining1	
Instruction Format	36
Instruction Set	_
ADDLW7	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	'2
BTFSC7	
BTFSS	
CALL	73
CLRF	
CLRWDT	
COMF	
DECF	
DECFSZ	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF7	
MOVLW7	
MOVWF7	78
NOP7	79
OPTION7	79
RETFIE7	
RETLW8	30
RETURN8	
RLF8	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF8	
TRIS	
XORLW	
XORWF	
Section	
INT Interrupt	
INTCON Register	
INTE bit	
INTEDG bit	
Internal Sampling Switch (Rss) Impedence	
Interrupts	
A/D	
External6	
PORTB Change6	
PortB Change6	
RB7:RB4 Port Change2	
Section6	51
TMR06	32

TMR0 Overflow	61
INTF bit	
IRP bit	17
К	
KeeLoq [®] Evaluation and Programming Tools	87
L	
Loading of PC	23
LP	
Μ	
MCLR	52, 56
Memory	
Data Memory	
Program Memory	11
Register File Maps	
PIC16C71	12
PIC16C710	12
PIC16C711	13
PIC16C715	13
MP-DriveWay™ - Application Code Generator	87
MPEEN bit	22, 48
MPLAB™ C	87
MPLAB [™] Integrated Development Environment	
Software	86

0

OPCODE	69
OPTION Register	
Orthogonal	7
OSC selection	47
Oscillator	
HS	49, 54
LP	49, 54
RC	49
XT	49, 54
Oscillator Configurations	49
Oscillator Start-up Timer (OST)	53

Ρ

Packaging	
18-Lead CERDIP w/Window	155
18-Lead PDIP	156
18-Lead SOIC	157
20-Lead SSOP	158
Paging, Program Memory	23
PCL Register 14, 15,	16, 23
PCLATH	57, 58
PCLATH Register 14, 15,	16, 23
PCON Register	22, 54
PD bit	52, 55
PER bit	
PIC16C71	147
AC Characteristics	147
PICDEM-1 Low-Cost PIC16/17 Demo Board	86
PICDEM-2 Low-Cost PIC16CXX Demo Board	86
PICDEM-3 Low-Cost PIC16CXXX Demo Board	
PICMASTER [®] In-Circuit Emulator	85
PICSTART [®] Plus Entry Level Development System	85
PIE1 Register	20
Pin Functions	
MCLR/VPP	9
OSC1/CLKIN	9
OSC2/CLKOUT	
RA0/AN0	9
RA1/AN1	9

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
Fror	m: Name			
	Company			
A	Telephone: ()	FAX: ()		
	blication (optional):			
Wou	uld you like a reply?YN			
Dev	vice: PIC16C71X Literatu	ire Number: DS30272A		
Que	estions:			
1	What are the best features of this docum	pent?		
1.	What are the best leatures of this docum			
2.	How does this document meet your hard	ware and software development needs?		
	,	·		
3.	Do you find the organization of this data	sheet easy to follow? If not, why?		
4.	. What additions to the data sheet do you think would enhance the structure and subject?			
5.	What deletions from the data sheet could	d be made without affecting the overall usefulness?		
-				
6.	Is there any incorrect or misleading infor	mation (what and where)?		
7				
7.	How would you improve this document?			
8	How would you improve our software, sy	stems, and silicon products?		
0.	The model you improve our soluvale, sy			