

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	68 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc711-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	
02h	PCL	PCL	
03h	STATUS	STATUS	83h
04h	FSR	FSR	
05h	PORTA	TRISA	
06h	PORTB	TRISB	
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			
11h			
12h			
13h			 93h
14h			
15h			95h
16h			96h
17h			97h
18h			
19h			
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	
20h	General Purpose	General Purpose	A0h
	Register	Register	BFh
			Con
7Fh	Bank 0	Bank 1	_ FFh
Note 1: N	Jnimplemented dat as '0'. Not a physical regis	a memory locatio	ons, read

4.2.2.3 INTCON REGISTER

Applicable Devices 710 71 711 715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R. – Roodoblo hit
bit7				KDIE			bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:⁽¹⁾ GI 1 = Enabl 0 = Disab	lobal Inter es all un-r les all inte	rupt Enabl nasked int rrupts	e bit errupts				
bit 6:	ADIE: A/E 1 = Enabl 0 = Disab	D Converte les A/D int les A/D in	er Interrup errupt terrupt	t Enable b	bit			
bit 5:	TOIE: TM 1 = Enabl 0 = Disab	R0 Overflo les the TM les the TM	ow Interrup R0 interru 1R0 interru	ot Enable I pt upt	oit			
bit 4:	INTE: RB 1 = Enabl 0 = Disab	0/INT Exte les the RB les the RE	ernal Inter 0/INT exte 30/INT ext	rupt Enabl ernal interr ernal inter	le bit upt rupt			
bit 3:	RBIE: RB 1 = Enabl 0 = Disab	B Port Cha les the RB les the RB	nge Interr port char 3 port chai	upt Enable ige interru nge interru	e bit pt ıpt			
bit 2:	TOIF: TMI 1 = TMRC 0 = TMRC	R0 Overflo) register ł) register o	ow Interrup has overflo did not ove	ot Flag bit wed (mus erflow	t be cleare	d in softwa	re)	
bit 1:	INTF: RB 1 = The R 0 = The R	0/INT Exte 80/INT ex 80/INT ex	ernal Inter aternal inte aternal inte	rupt Flag b errupt occu errupt did r	oit urred (must not occur	be cleared	d in softwar	e)
bit 0:	RBIF: RB 1 = At lea 0 = None	Port Cha ist one of t of the RB	nge Interro he RB7:R 7:RB4 pin	upt Flag bi B4 pins ch s have cha	it nanged sta anged state	te (must be	e cleared in	software)
Note 1:	For the P tionally re for a deta	IC16C71, -enabled I iled descr	if an interr by the RET iption.	rupt occurs	s while the ction in the	GIE bit is t user's Inter	being cleare rrupt Servic	ed, the GIE bit may be uninten- e Routine. Refer to Section 8.5
Interru global enabli	upt flag bits I enable bit, ing an interr	get set whe GIE (INTC	en an interru ON<7>). Us	pt condition er software	n occurs reg should ens	ardless of th ure the appr	e state of its opriate interr	corresponding enable bit or the rupt flag bits are clear prior to

4.2.2.5 PIR1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q	
MPEEN		—	—	—	PER	POR	BOR ⁽¹⁾	R = Readable bit
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	MPEEN: I Reflects t	Memory P he value c	arity Erron of configur	r Circuitry ation word	Status bit bit, MPEE	N		
bit 6-3:	Unimpler	nented: R	lead as '0					
bit 2:	PER : Mer 1 = No Er 0 = Progra	nory Parit ror occurr am Memo	y Error Re ed ry Fetch F	eset Status Parity Error	bit occurred (must be se	et in softwa	re after a Parity Error Reset)
bit 1:	POR : Pow 1 = No Po 0 = A Pow	ver-on Res wer-on Res ver-on Res	set Status eset occur set occurr	bit rred ed (must b	e set in sof	tware afte	r a Power-o	n Reset occurs)
bit 0:	BOR: Bro 1 = No Bro 0 = A Bro	wn-out Re own-out R wn-out Re	eset Statu leset occu eset occur	s bit Irred red (must	be set in so	ftware afte	er a Brown-	out Reset occurs)

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;					PORT	latch	PORT 1	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	б	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.

2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

8.2 <u>Oscillator Configurations</u>

8.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).

FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:					
Mode	Freq	OSC1	OSC2		
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF	47 - 100 pF 15 - 68 pF 15 - 68 pF		
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF	15 - 68 pF 10 - 47 pF		
These values are for design guidance only. See notes at bottom of page.					
Resonators Used:					
455 kHz Panasonic EFO-A455K04B ± 0.3%					
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%				
4.0 MHz	Murata Erie CS	SA4.00MG	± 0.5%		
8.0 MHz	Murata Erie CS	SA8.00MT	± 0.5%		
16.0 MHz	Murata Erie CS	SA16.00MX	± 0.5%		
All reso	nators used did r	ot have built-in	capacitors.		

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2
LP	32 kHz	33 - 68 pF	33 - 68 pF
	200 kHz	15 - 47 pF	15 - 47 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF
Th	tes at bottom o	e for design guic f page.	lance only. See

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

No	te: F If C b R W	For the PIC16C71 f an interrupt occurs while the Global Inter- upt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.
	2	 The program branches to the Interrupt vector and executes the Interrupt Ser- vice Routine.
	3	B. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.
	F	Perform the following to ensure that inter- upts are globally disabled:
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit
	BTFSC	INTCON, GIE ; Global interrupt ; disabled?
	GOTO	LOOP : NO try again

:

Yes, continue

with program

flow

|--|

INTF flag (INTCON<1>)	// / 	(/ 	-\/ 	/\'\	
INT pin			1	1	1	
INTF flag (INTCON<1>)	I I	·		1 1	<u> </u>	
(IN I CON<1>)		· •	ı .			
	1		1	(Note 2)	1	
GIE bit (INTCON<7>)	 	Processor in	I I		1 	
(1	SLEEP	1		1	
NSTRUCTION FLOW	1		1	· · ·	1	
PC X PC	PC+1	-X PC+2	/ / <u>PC+2</u>	γ <u>PC + 2</u> γ	0004hX	0005h
fetched { Inst(PC) =	SLEEP Inst(PC + 1)	1	Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Δ. CLKOUT is not available in these osc modes, but shown here for timing reference.

8.9 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 **ID** Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

PIC16C71X

GOTO	Uncondi	Unconditional Branch					
Syntax:	[label]	GOTO	k				
Operands:	$0 \le k \le 20$	047					
Operation:	$k \rightarrow PC < PCLATH$	10:0> <4:3> →	PC<12:1	1>			
Status Affected:	None						
Encoding:	10	1kkk	kkkk	kkkk			
Description:	GOTO is an eleven bit into PC bit PC are loa GOTO is a	n uncondit immediate is <10:0>. ided from two cycle	tional bran e value is l The uppe PCLATH< instructior	ch. The oaded r bits of 4:3>. n.			
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	GOTO TI After Inst	HERE ruction PC =	Address	THERE			

INCF	Increme	nt f		
Syntax:	[label]	INCF f	,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7		
Operation:	(f) + 1 \rightarrow	(dest)		
Status Affected:	Z			
Encoding:	00	1010	dfff	ffff
Description:	The conter mented. If in the W re placed bac	nts of reg 'd' is 0 the egister. If ' ck in regis	ister 'f' are e result is d' is 1 the ster 'f'.	incre- placed result is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example	INCF	CNT,	1	
	Before In	struction CNT Z	= 0xFf = 0	=
	After Inst	ruction		
		CNT 7	= 0x00)

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

		Standa Operati	ind Operation	t ing ratur	Conditio	ons (un ≤ T	less otherwise stated) A ≤ +70°C (commercial)
DC CHAI	RACTERISTICS				-40°C	; ≤I	$A \leq +85^{\circ}C$ (industrial)
		Operati	ing voltage) 04- 2 range a	∠ ≤ I s descr	$A \leq +125$ C (extended)
		Section	11.2.	, 101	o lange a	3 06301	ibed in DO spec Dection 11.1 and
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	Юн = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 12-1: RC OSCILLATOR FREQUENCIES

Cevt	Rovt	Average				
UEAL	Next	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	±1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (

			Stand	lard O	oerati	ng Con	ditions (unless otherwise stated)
	PACTERISTICS		Opera	ating te	mpera	ture ($D^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)
	RACIERISTICS					-	40° C \leq TA \leq +85 $^{\circ}$ C (industrial)
						-	40° C \leq TA \leq +125 $^{\circ}$ C (extended)
Param.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
D001	Supply Voltage	Vdd	4.0	-	5.5	V	XT, RC and LP osc configuration
D001A			4.5	-	5.5	V	HS osc configuration
D002*	RAM Data Retention	Vdr	-	1.5	-	V	Device in SLEEP mode
	Voltage (Note 1)						
D003	VDD start voltage to	VPOR	-	Vss	-	V	See section on Power-on Reset for details
	ensure internal Power-						
	on Reset signal						
D004*	VDD rise rate to ensure	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
	internal Power-on Reset						
	signal						$\langle \rangle \rangle \langle \rangle \sim$
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04)
						\land	Fosc = 4 MHz, VDD = 5.5V (Note 4)
D010				10 5/			
D013			-	13.5	30	AMA	HS_0SC configuration (PIC16C715-20) $E_{OSC} = 20 \text{ MHz}$ $V_{DD} = 5.5V$
DOAL						\land	
D015	Brown-out Reset Current		-<	300."	200	K MA	BOR enabled VDD = 5.0V
			\wedge				
D020	Power-down Current	IPD `	<u> </u>	10.5	42/	μΑ	VDD = $4.0V$, WDT enabled, -40° C to $+85^{\circ}$ C
D021	(Note 3)			1.5	21	μΑ	$VDD = 4.0V$, VDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A		\land			30	μΑ	VDD = 4.0V, VDT disabled, -40 C to +85 C
00210				200*	500		
0023	Note 5)	TIROK	/-/	300"	500	μΑ	
		1					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Vod can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

(The)test conditions for all IDD measurements in active operation mode are:

OSCT = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 10 0. CERCOT AND 10 THINKS REGOLIERIENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
NO.								
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	JT ↑	0.25Tcy + 25	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	↑	0	_	—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 71	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 71		10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71		_	60	ns	
22††*	Tinp	INT pin high or low time		20	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	_	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C71X

LIST OF TABLES

Table 1-1: Table 3-1	PIC16C71X Family of Devices	4
	Description	9
Table 4-1:	PIC16C710/71/711 Special Function	14
Table 4-2:	PIC16C715 Special Function Register	. 14
	Summary	. 15
Table 5-1:	PORTA Functions	. 26
Table 5-2:	PORTA	. 26
Table 5-3:	PORTB Functions	. 28
Table 5-4:	Summary of Registers Associated with	20
Table 6-1:	Registers Associated with Timer0	. 29
Table 7-1:	TAD vs. Device Operating Frequencies,	
	PIC16C71	. 41
Table 7-2:	TAD vs. Device Operating Frequencies,	11
Table 7-3	Registers/Bits Associated with A/D	. 41
	PIC16C710/71/711	. 46
Table 7-4:	Registers/Bits Associated with A/D,	
T 1 1 0 4	PIC16C715	. 46
Table 8-1:	Ceramic Resonators, PIC16C/1	. 49
	Oscillator PIC16C71	49
Table 8-3:	Ceramic Resonators.	. 40
	PIC16C710/711/715	. 50
Table 8-4:	Capacitor Selection for Crystal	
Table 0 C	Oscillator, PIC16C/10//11//15	. 50
Table 8-5:	PIC16C71	. 54
Table 8-6:	Time-out in Various Situations,	
Table 0.7	PIC16C710/711/715	. 54
Table 8-7:	PIC16C71	.55
Table 8-8:	Status Bits and Their Significance,	
	PIC16C710/711	. 55
Table 8-9:	Status Bits and Their Significance,	55
Table 8-10:	Reset Condition for Special Registers,	. 00
	PIC16C710/71/711	. 56
Table 8-11:	Reset Condition for Special Registers,	56
Table 8-12:	Initialization Conditions For All Registers.	. 50
	PIC16C710/71/711	. 57
Table 8-13:	Initialization Conditions for All Registers,	
	PIC16C715	. 58
Table 9-1:	PIC16CXX Instruction Set	. 69
Table 10-1	Development Tools From Microchip	. 70 88
Table 11-1:	Cross Reference of Device Specs for	
	Oscillator Configurations and	
	Frequencies of Operation	_
T-11- 11-0	(Commercial Devices)	. 89
Table 11-2:	External Clock Timing Requirements	. 95
Table 11-3:	CLKOUT and I/O Timing Requirements	. 96
	Start-up Timer, Power-up Timer,	
	and Brown-out Reset Requirements	. 97
Table 11-5:	Timer0 External Clock Requirements	. 98

Table 11-6:	A/D Converter Characteristics:
	PIC16C710/711-04
	(Commercial, Industrial, Extended)
	PIC16C710/711-10
	(Commercial, Industrial, Extended)
	PIC16C710/711-20
	(Commercial, Industrial, Extended)
	PIC16LC710/711-04
	(Commercial, Industrial, Extended)99
Table 11-7:	A/D Conversion Requirements 100
Table 12-1:	RC Oscillator Frequencies 107
Table 12-2:	Capacitor Selection for Crystal
	Oscillators 108
Table 13-1:	Cross Reference of Device Specs for
	Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices) 112
Table 13-2:	Clock Timing Requirements 118
Table 13-3:	CLKOUT and I/O Timing Requirements . 119
Table 13-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer,
	and Brown-out Reset Requirements 120
Table 13-5:	Timer0 Clock Requirements 121
Table 13-6:	A/D Converter Characteristics:
	PIC16C715-04
	(Commercial, Industrial, Extended)
	PIC16C715-10
	(Commercial, Industrial, Extended)
	(Commercial, Industrial, Extended) PIC16C715-20
	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122
Table 13-7:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics:
Table 13-7:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial,
Table 13-7:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123
Table 13-7: Table 13-8:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements
Table 13-7: Table 13-8: Table 14-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements
Table 13-7: Table 13-8: Table 14-1: Table 14-2:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements
Table 13-7: Table 13-8: Table 14-1: Table 14-2:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal Oscillators 132 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 135
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal Oscillators 132 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 135 External Clock Timing Requirements
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-2: Table 15-3:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal Oscillators 132 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 135 External Clock Timing Requirements 141 CLKOUT and I/O Timing Requirements
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal Oscillators 0scillator Configurations and Frequencies of Operation (Commercial Devices) 135 External Clock Timing Requirements 141 CLKOUT and I/O Timing Requirements 142 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 143
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial)
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4: Table 15-5: Table 15-6:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal 0scillators Oscillator Configurations and 132 Frequencies of Operation 135 External Clock Timing Requirements 141 CLKOUT and I/O Timing Requirements 142 Reset, Watchdog Timer, Oscillator 143 Timer0 External Clock Requirements 143 Arimer0 External Clock Requirements 144 A/D Converter Characteristics 144
Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4: Table 15-5: Table 15-6: Table 15-7:	(Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) Industrial) 123 A/D Conversion Requirements 124 RC Oscillator Frequencies 131 Capacitor Selection for Crystal Oscillators 132 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) 135 External Clock Timing Requirements 141 CLKOUT and I/O Timing Requirements 142 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements 143 Timer0 External Clock Requirements 144 A/D Converter Characteristics 145 A/D Conversion Requirements 146

NOTES: