E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc711t-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

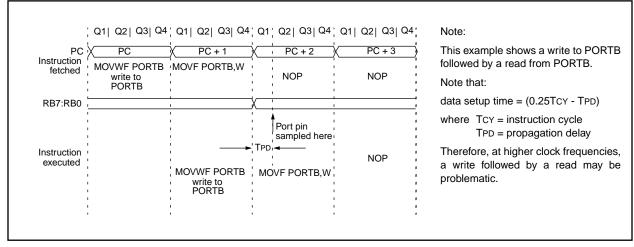
Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;					PORT	latch	PORT p	ins
;								
	BCF	PORTB,	7	;	01pp	pppp	llpp j	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS	, RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp g	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp j	pppp

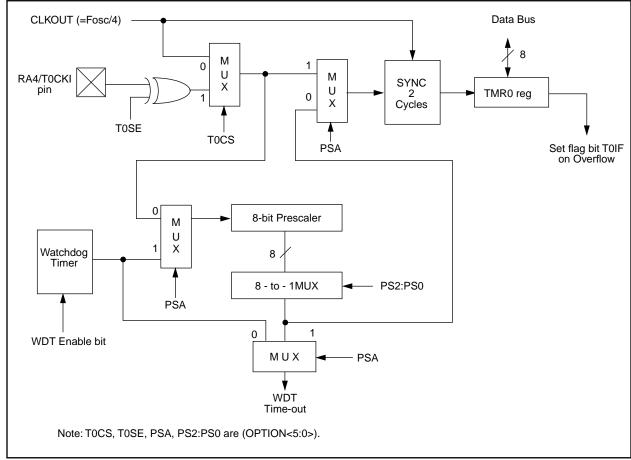

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION


6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	—	ADON	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7-6:	ADCS1:A	ADCS0: A	D Conver	sion Clock	Select bits			
	00 = Fos							
	01 = Fos 10 = Fos							
			rived from	an RC oso	cillation)			
bit 5:	Unused	· ·			,			
bit 6-3:	000 = cha	annel 0, (F		l Select bi	its			
		annel 1, (F						
		annel 2, (F annel 3, (F						
		annel 0, (F						
		annel 1, (F	,					
		annel 2, (F	,					
		annel 3, (F —	,					
bit 2:			nversion S	Status bit				
	If ADON :	-		<i>/</i>			• 、	
					this bit starts			lware when the A/D conver-
	sion is co		not in pro	grood (Th		ationally of	area by hare	
bit 1:	Unimple	mented: F	Read as '0'					
bit 0:	ADON: A	/D On bit						
			nodule is c					
	0 = A/D c	converter r	nodule is s	shutoff and	d consumes no	o operating	l current	

FIGURE 7-3: ADCON1 REGISTER, PIC16C710/71/711 (ADDRESS 88h), PIC16C715 (ADDRESS 9Fh)

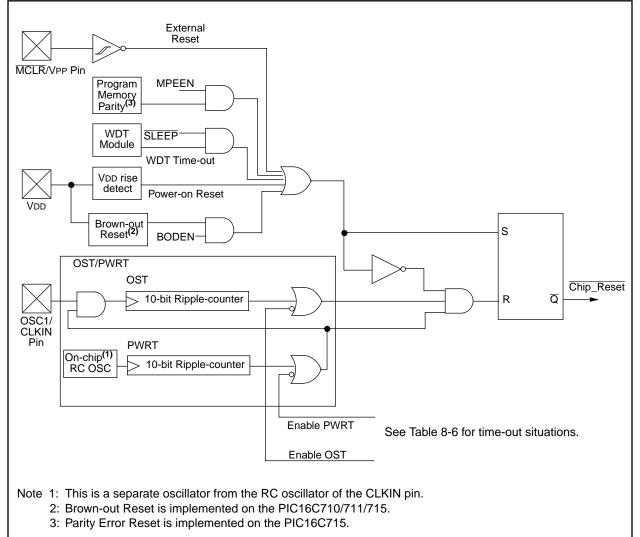
bit, read as '0') U-0	U-0 U-0	U-0	U-0	R/W-0	R/W-0	
 U = Unimplemented: bit, read as '0' PCFG1:PCFG0: A/D Port Configuration Control bits PCFG1:PCFG0 RA1 & RA0 RA2 RA3 VREF 00 A A A A VDD 01 A A VREF RA3 10 A D D VDD 	· _		_	_	PCFG1	PCFG0	R = Readable bit
00AAAVDD01AAVREFRA310ADDVDD	2: Unimplemen	ted: Read as '0	'			bitO	U = Unimplemented
01AAVREFRA310ADDVDD	0: PCFG1:PCFC	GO: A/D Port Co	nfiguration C	Control bits			
10 A D D VDD		1	-		VREF		
	PCFG1:PCFG0	RA1 & RA0	RA2	RA3	_		
11 D D D VDD	PCFG1:PCFG0	RA1 & RA0 A	RA2	RA3	Vdd		
	PCFG1:PCFG0 00 01	RA1 & RA0 A A	RA2 A A	RA3 A VREF	VDD RA3		
D = Digital I/O	PCFG1:PCFG0 00 01 10 11 A = Analog input	RA1 & RA0 A A D	RA2 A A D	RA3 A VREF D	VDD RA3 VDD		

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1(2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_ _u _(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	वेर्वेवे	luu	luu
ADCON1	00	00	

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

NOTES:

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

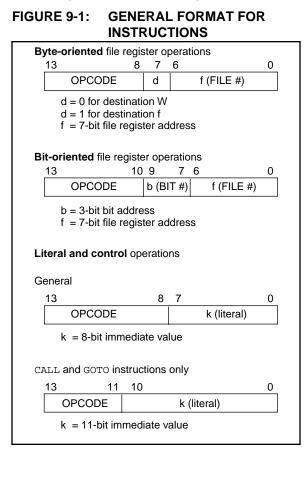
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 9-2 lists the instructions recognized by the MPASM assembler.


Figure 9-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	CALL	<	
Operands:	$0 \le f \le 127$			Operands:	$0 \le k \le 2$	047			
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,		
Operation:	skip if (f) = 1				$k \rightarrow PC < 10:0>,$				
Status Affected:	None				$(PCLATH{<}4:3{>}) \rightarrow PC{<}12:11{>}$:11>	
Encoding:	01	11bb	bfff	ffff	Status Affected:	None			
Description:	If bit 'b' in register 'f' is '0' then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.			Encoding:	10	0kkk	kkkk	kkkk	
				Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the sta address is The upper	ck. The s loaded [·] bits of	
Words:	1							rom PCLA instruction	
Cycles:	1(2)				Words:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2			
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4	1		Push PC to Stack		
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE	
	TRUE	•				Before Ir			
		•				After Ins		Address HE	RE
	Before In	struction					-	ddress TH	
			address H	IERE			TOS = A	Address HE	RE+1
	After Inst	ruction if FLAG<1>	- 0						
		-	> = 0, address F≠	ALSE					
		if FLAG<1> PC =	,						
		FU = 1	address TF	KUE					

IORWF	Inclusive	e OR W v	with f			
Syntax:	[label]	IORWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27				
Operation:	(W) .OR.	(f) \rightarrow (de	est)			
Status Affected:	Z					
Encoding:	00	0100	dfff	ffff		
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
Example	IORWF		RESULT,	0		
	Before Instruction RESULT = 0x13 W = 0x91					
	W = 0x91 After Instruction $RESULT = 0x13$ $W = 0x93$ $Z = 1$					

MOVLW	Move Lite	eral to V	v			
Syntax:	[label]	MOVLW	/ k			
Operands:	$0 \le k \le 25$	55				
Operation:	$k \to (W)$					
Status Affected:	None					
Encoding:	11	00xx	kkkk	kkkk		
Description:	0	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.				
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process data	Write to W		
Example	MOVLW	0x5A				
After Instruction W = 0x5A						

Move f						
[label]	MOVF	f,d				
$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	$0 \le f \le 127$ $d \in [0,1]$					
(f) \rightarrow (des	st)					
Z						
00 1000 dfff ffff						
The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected						
1						
1						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process data	Write to dest			
1	ruction W = valu		egister			
	$\begin{bmatrix} abel \\ 0 \le f \le 12 \\ d \in [0,1] \\ (f) \to (des Z \\ \hline 00 \\ \hline Decode \\ a destinati \\ tus of d. If \\ ister. If d = \\ register f it \\ file registe \\ affected. \\ 1 \\ 1 \\ \hline Q1 \\ \hline Decode \\ \hline MOVF \\ After Inst \\ \end{bmatrix}$	$\begin{bmatrix} label \\ \end{bmatrix} MOVF$ $0 \le f \le 127$ $d \in [0,1]$ $(f) \rightarrow (dest)$ Z $\boxed{00} 1000$ The contents of reg a destination depention tus of d. If d = 0, destination depentions of the second state o	$\begin{bmatrix} label \end{bmatrix} \text{ MOVF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (f) \rightarrow (dest) \\ Z \\ \hline 00 & 1000 & dfff \\ \hline The contents of register f is m a destination dependant upon tus of d. If d = 0, destination is ister. If d = 1, the destination is register f itself. d = 1 is useful to file register since status flag Z affected. 1 \\ 1 \\ Q1 & Q2 & Q3 \\ \hline Decode & Read & Process \\ data \\ \hline MOVF & FSR, 0 \\ \hline After Instruction \\ W = value in FSR register \\ \end{bmatrix}$			

MOVWF	Move W	to f		
Syntax:	[label]	MOVW	= f	
Operands:	$0 \le f \le 12$	27		
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00	0000	lfff	ffff
Description:	Move data 'f'.	from W r	egister to	register
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	MOVWF	OPTIC	N_REG	
	Before In			_
		OPTION W	= 0xFF = 0x4F	
	After Inst	••	- 0741	
		OPTION		
		W	= 0x4F	-

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

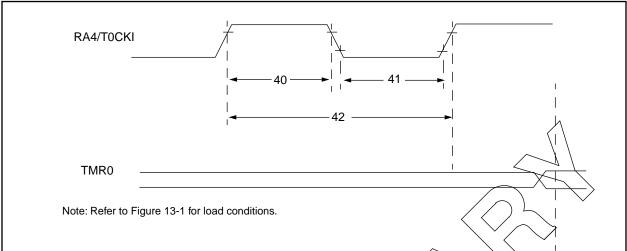
*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>


The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

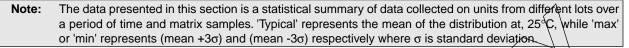
10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

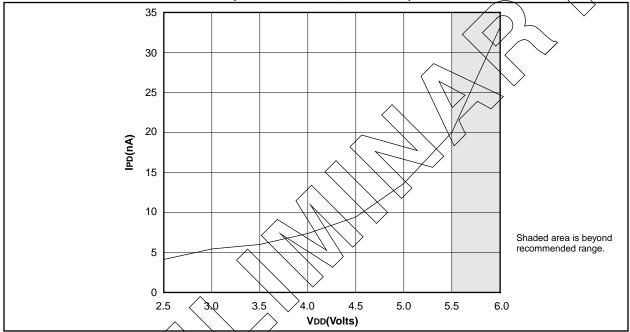
Applicable Devices 710 71 711 715

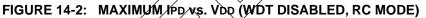
TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

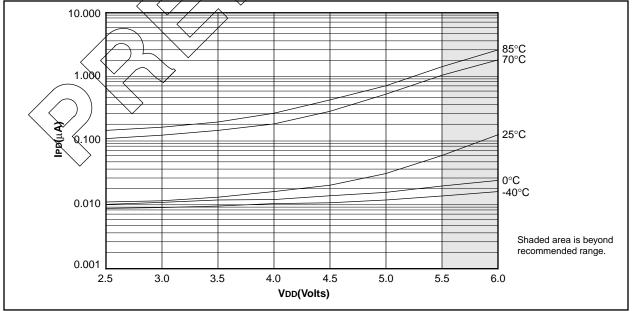
Param No.	Sym	Characteristic		Min	Турт	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20*		_	ns	
			With Prescaler	10*	1 –	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	-	_	ns	
			With Prescaler	10*	-	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N		_		N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge t	to timer increment	2Tosc	-	7Tosc	—	


- * These parameters are characterized but not tested. \checkmark
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Applicable Devices 710 71 711 715

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †

•	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD	р-Vон) x IOH} + Σ (VoI x IOL)
Note 2: Voltage spikes below Ves at the \overline{MCLP} pip, inducing currents greater than 80 m	A may cause latch-up. Thus

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
нѕ	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

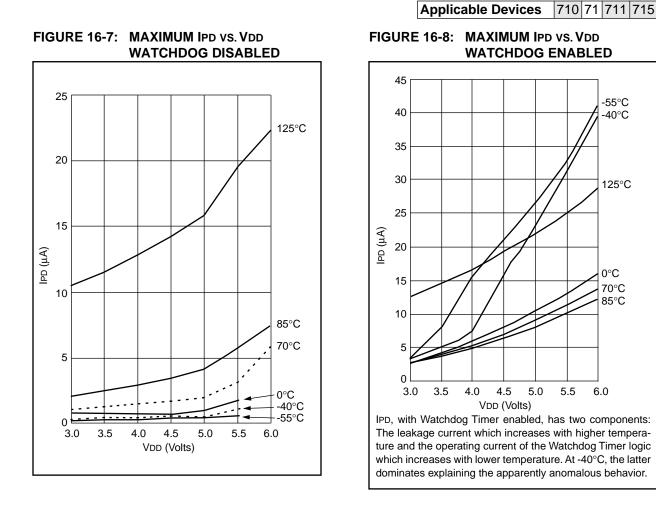
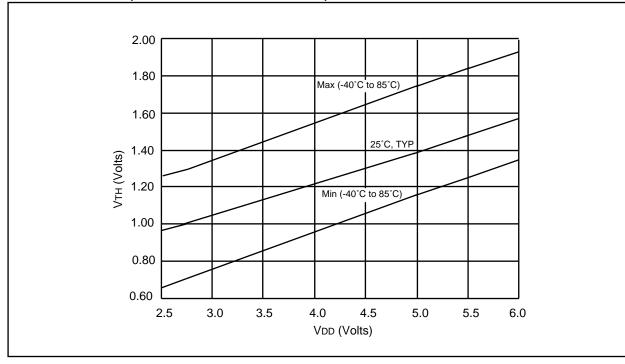
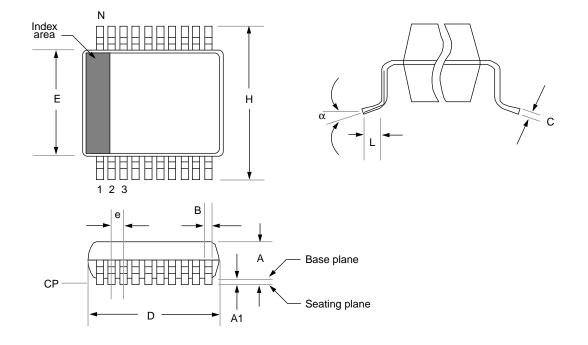




FIGURE 16-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD

17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

Package Group: Plastic SSOP						
		Millimeters				
Symbol	Min	Мах	Notes	Min	Max	Notes
α	0°	8 °		0°	8°	
А	1.730	1.990		0.068	0.078	
A1	0.050	0.210		0.002	0.008	
В	0.250	0.380		0.010	0.015	
С	0.130	0.220		0.005	0.009	
D	7.070	7.330		0.278	0.289	
E	5.200	5.380		0.205	0.212	
е	0.650	0.650	Reference	0.026	0.026	Reference
Н	7.650	7.900		0.301	0.311	
L	0.550	0.950		0.022	0.037	
Ν	20	20		20	20	
CP	-	0.102		-	0.004	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

- 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
- 3: This outline conforms to JEDEC MS-026.

APPENDIX C: WHAT'S NEW

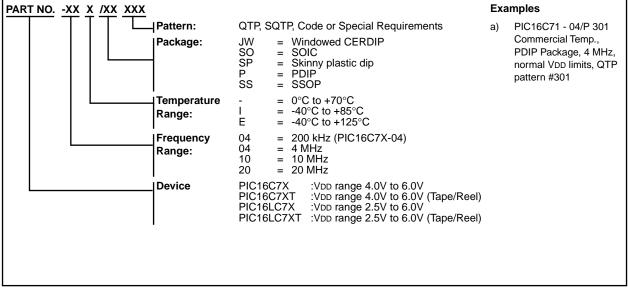
1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

RA2/AN2		a
RA3/AN3/VREF		-
RA4/T0CKI		9
RB0/INT		9
RB1		-
		-
RB2		9
RB3		. 9
RB4		
		-
RB5		9
RB6		9
RB7		a
		-
VDD		
Vss		9
Pinout Descriptions		
PIC16C71		~
PIC16C710		9
PIC16C711		9
PIC16C715		-
PIR1 Register		21
POP		23
POR	53	51
Oscillator Start-up Timer (OST)	47,	53
Power Control Register (PCON)		54
Power-on Reset (POR)	3 57	58
	, 07, 47	50
Power-up Timer (PWRT)		
Time-out Sequence		54
Time-out Sequence on Power-up		59
TO		
POR bit	22,	54
Port RB Interrupt		63
PORTA		
PORTA Register		
DODIA Degister 1/		
	ł, 15,	25
PORTB	57,	58
PORTB	57, 1, 15,	58 27
PORTB	57, 1, 15,	58 27 66
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11 67
PORTB	57, I, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 .7 23 11 11 11 11 11 11 67 18 18 18 23 53 48 19
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53 48 19 63
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 167 188 18 18 23 53 48 19 63 18
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 15, 4, 15, 47, 47, 51,	58 27 66 35 87 2 11 11 11 11 11 11 11 11 11 11 11 11 1
PORTB	57, 1, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30
PORTB	57, 1, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30

DIO100711	10
PIC16C711	
PIC16C715	13
Reset Conditions	56
Summary	
Reset	47, 52
Reset Conditions for Special Registers .	
RP0 bit	12, 17
RP1 bit	17


S

	Programming System87				
Services					
	ble (OTP) Devices				
	duction (QTP) Devices5				
	around Production (SQTP)				
	8™ SIM)87				
	J47				
Special Function Registers					
PIC16C71	14				
PIC16C710					
PIC16C711					
Special Function Registers,	Section14				
Т					
TOCS bit					
	19				
	41				
Timer0					
Timers					
Timer0					
Block Diagram					
External Clock					
External Clock Ti	ming				
	Diagram34				
	ler Assignment35				
	63				
0					
	63				
Timing Diagrams					
A/D Conversion	100, 124, 146				
Brown-out Reset					
CLKOUT and I/O					
External Clock Timing					
	g				
	Clock				
	through Interrupt67				
Watchdog Timer					

Maps

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.