

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc711t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1		•								-	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	—	Unimpleme	nted							—	—
88h	_	Unimpleme	nted							—	_
89h	—	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							—	_
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	_	Unimpleme	nted							-	—
90h	_	Unimpleme	nted							_	—
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	_	Unimpleme	nted							_	—
95h		Unimpleme	nted								
96h		Unimpleme	nted								_
97h		Unimpleme	nted								
98h		Unimpleme	nted								
99h		Unimpleme	nted								_
9Ah		Unimpleme	nted								
9Bh	_	Unimpleme	nted							_	—
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted								_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	—	_	—	—	—	-	PCFG1	PCFG0	00	00

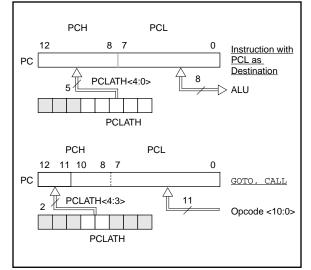
TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.


3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-14 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-14: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instruc-	Note 1:	There are no status bits to indicate stack overflow or stack underflow conditions.
	Note 2:	called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instruc- tions, or the vectoring to an interrupt

4.4 <u>Program Memory Paging</u>

The PIC16C71X devices ignore both paging bits (PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C71X is not recommended since this may affect upward compatibility with future products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	Data Directic	on Registe	ər					1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.0 TIMER0 MODULE

Applicable Devices71071711715

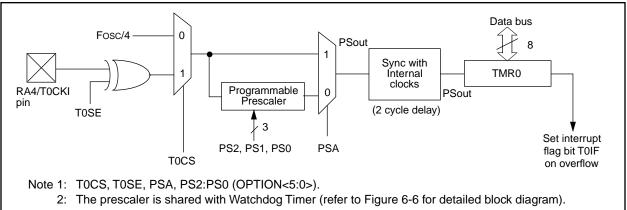
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

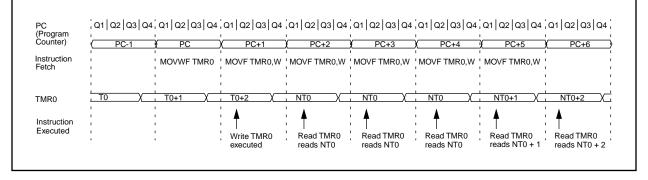
Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit TOSE (OPTION<4>). Clearing


FIGURE 6-1: TIMER0 BLOCK DIAGRAM

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

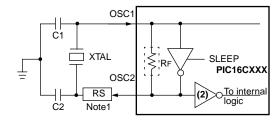
6.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

8.2 <u>Oscillator Configurations</u>

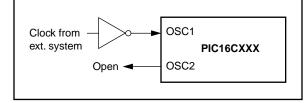
8.2.1 OSCILLATOR TYPES


The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).


FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:							
Mode	Freq	OSC2					
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF	47 - 100 pF 15 - 68 pF 15 - 68 pF				
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF	15 - 68 pF 10 - 47 pF				
These values are for design guidance only. See notes at bottom of page.							
Resonators Used:							
455 kHz Panasonic EFO-A455K04B ± 0.3%							
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz	Murata Erie CS	SA8.00MT	± 0.5%				
16.0 MHz	Murata Erie CS	SA16.00MX	± 0.5%				
All reso	All resonators used did not have built-in capacitors.						

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2
LP	32 kHz	33 - 68 pF	33 - 68 pF
	200 kHz	15 - 47 pF	15 - 47 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF
	tese values ar tes at bottom o	e for design guic f page.	lance only. See

TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711

Condition	Program Counter	STATUS Register	PCON Register PIC16C710/711
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	นนน0 0นนน	uu
Brown-out Reset (PIC16C710/711)	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 Ouuu	uuuu
WDT Reset	000h	0000 luuu	uuuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	uuu0
Parity Error Reset	000h	uuul Ouuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-22: WAKE-UP FROM SLEEP THROUGH INTERRUP
--

CLKOUT(4)	////	(//	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		/
· .	1	1 1			/ IN	/
INTE flag		1 1	1	1 I 1 I	1 1	
(INTCON<1>)	 		1 	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	 	Processor in	1 1 1			
STRUCTION FLOW	1 1 1	SLEEP	 	1 1 1 1 1 1	1	
PC X PC	PC+1	PC+2	V PC+2	↓ ↓ PC + 2 ↓	(<u>0004h</u>)	0005h
Instruction $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Δ. CLKOUT is not available in these osc modes, but shown here for timing reference.

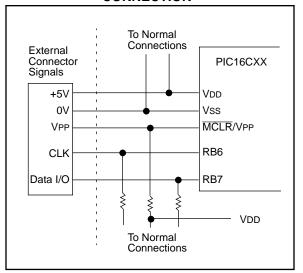
8.9 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 **ID** Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

GOTO	Unconditional Branch							
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 20$	047						
Operation:	$k \rightarrow PC < PCLATH$		PC<12:1	1>				
Status Affected:	None							
Encoding:	10	1kkk	kkkk	kkkk				
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.							
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC				
2nd Cycle	NOP	NOP	NOP	NOP				
Example GOTO THERE After Instruction PC = Address THERE								

INCF	Increment f						
Syntax:	[label] INCF f,d						
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]						
Operation:	(f) + 1 \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 1010 dfff	ffff					
Description:	The contents of register 'f' a mented. If 'd' is 0 the result in the W register. If 'd' is 1 th placed back in register 'f'.	is placed					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1 Q2 Q3	Q4					
	Decode Read register data	Write to dest					
Example	INCF CNT, 1						
	Before Instruction CNT = 0 Z = 0	٢F					
	After Instruction						
	$\begin{array}{rcl} CNT &=& 0;\\ Z &=& 1 \end{array}$	<00					

INCFSZ	Increment f, Skip if 0						
Syntax:	[label]	INCFSZ	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27					
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0			
Status Affected:	None						
Encoding:	00	1111	dfff	ffff			
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.						
Words:	1						
Cycles:	1(2)						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to dest			
If Skip:	(2nd Cycle)						
	`Q1	 Q2	Q3	Q4			
	NOP	NOP	NOP	NOP			
Example		NT, 1 DOP					
	S FINUE E +1						

IORLW			eral with	
Syntax:	[label]	IORLW	К	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$)	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	OR'ed wit	h the eigh	W register t bit literal ne W regist	'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	IORLW	0x35		
	Before In		1	
		W =	0x9A	
	After Inst			
		W =	0xBF	

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No opera	ition						
Status Affected:	None							
Encoding:	00	0000	0xx0	0000				
Description:	No operat	ion.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	NOP	NOP	NOP				
Example	NOP							

RETFIE	Return from Interrupt						
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$						
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Monda	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister			
Syntax:	[label]	OPTION	٧			
Operands:	None					
Operation:	$(W)\toOF$	PTION				
Status Affected:	None					
Encoding:	00	0000	0110	0010		
Description:	The conter loaded in the instruction patibility with Since OPT register, the it.	he OPTIC is suppoi ith PIC16 ION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable		
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.					

SLEEP

[label]	SLEEF)			
None					
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
TO, PD					
00	0000	0110	0011		
The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 8.8 for more details					
1					
1					
Q1	Q2	Q3	Q4		
Decode	NOP	NOP	Go to Sleep		
SLEEP					
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP		

SUBLW	Subtract	W from	Literal	
Syntax:	[label]	SUBLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	k - (W) →	• (W)		
Status Affected:	C, DC, Z			
Encoding:	11	110x	kkkk	kkkk
Description:	ment meth	od) from t	otracted (2's he eight bit n the W reg	iteral 'k'.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example 1:	SUBLW	0x02		
	Before In	struction		
		W = C = Z =	1 ? ?	
	After Inst	ruction		
		W = C = Z =	1 1; result is 0	s positive
Example 2:	Before In	-	0	
Example 2.	Delete III	W =	2	
		C =	?	
		Z =	?	
	After Inst		0	
		W = C = Z =	0 1; result i 1	s zero
Example 3:	Before In	struction		
		W =	3	
		C = Z =	? ?	
	After Inst	_		
		W =	0xFF	
		C =	0; result is	s nega-
		tive Z =	0	

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

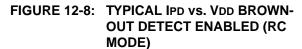
Extensive on-line help

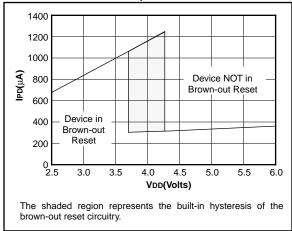
MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)


The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.


MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.


MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

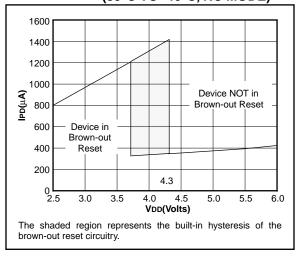
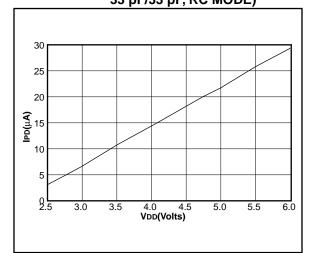

HCS200 HCS300 HCS301										>	7					7
										-	-					-
24CXX 25CXX 93CXX							7			7		7				
PIC17C75X	Available 3Q97		7	7					7	7						
PIC17C4X	2		2	2	7	7			7	7			7			
PIC16C9XX	>		2	2	7				7	7					٢	
PIC16C8X	2	7	7	7	7	7		7	7	2			7			
PIC16C7XX	7	7	7	7	7	7		7	7	7				7		
PIC16C6X	7	7	7	7	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	2	7	7	7	7	7		7	7	7			7			
PIC14000	7		7	7	7				7	7						
PIC12C5XX	>	7	>	2	7				7	7						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	CEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C Compiler	10 fuzzyTECH [®] -MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE [®] II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2	BICDEM-3	KEELOQ [®] Evaluation Kit

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP



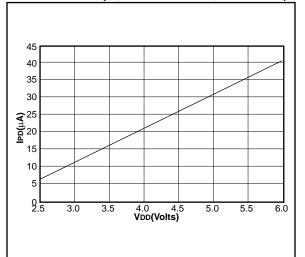
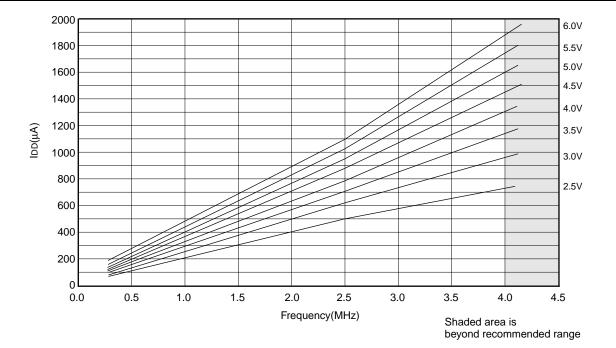
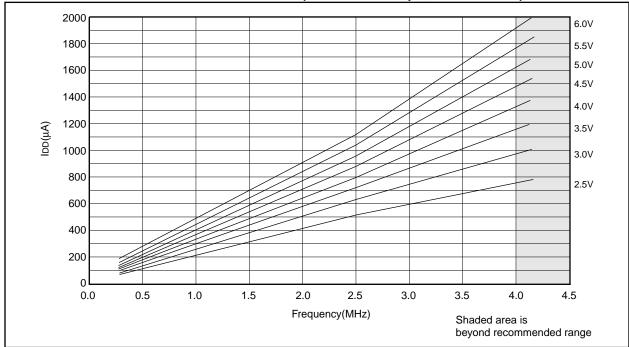


FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715





Applicable Devices 710 71 711 715

FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

Applicable Devices 710 71 711 715

13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715

Absolute Maximum Ratings †

Ambient temperature under bias	
Storage temperature	150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V)
Voltage on VDD with respect to Vss	+7.5V
Voltage on MCLR with respect to Vss0 to	+14V
Voltage on RA4 with respect to Vss0 to	+14V
Total power dissipation (Note 1)	.1.0W
Maximum current out of Vss pin	00 mA
Maximum current into VDD pin	50 mA
	20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)±2	20 mA
Maximum output current sunk by any I/O pin	25 mA
	201101
Maximum current sunk by PORTA	00 mA
Maximum current sourced by PORTA	00 mA
Maximum current sunk by PORTB	00 mA
Maximum current sourced by PORTB	00 mA
Note 1: Power dissipation is calculated as follows: Rdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x	
+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the	ne

TNOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 710 71 711 715

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution	_	_	8-bits	_	$VREF=VDD,VSS\leqAin\leqVREF$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_	_	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	_	VSS S AIN S VREF
	VREF	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle }$	<u></u> → A → A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	μA μA	During sampling All other times

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

NOTES:

INDEX

1	Δ
	•

A/D	
Accuracy/Error	44
ADIF bit	
Analog Input Model Block Diagram	
Analog-to-Digital Converter	37
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Connection Considerations	
Conversion Clock	
Conversion Time	
Conversions	
Converter Characteristics	
Delays	
Effects of a Reset	
Equations	
Faster Conversion - Lower Resolution Trade-off4	
Flowchart of A/D Operation	
GO/DONE bit	39
Internal Sampling Switch (Rss) Impedence	
Minimum Charging Time	
Operation During Sleep	44
Sampling Requirements	40
Source Impedence	40
Time Delays	40
Transfer Function	45
Absolute Maximum Ratings	35
AC Characteristics	
PIC16C710	01
PIC16C71110	
PIC16C715	
ADCON0 Register	
ADCON1	
ADCON1 Register	
ADCS0 bit	
ADCS1 bit	
ADIE bit	
ADIE bit	
ADON bit	
ADRES Register	
ALU	. 7
Application Notes	
AN546	
AN552	
AN5562	
AN607, Power-up Trouble Shooting	53
Architecture	
Harvard	. 7
Overview	. 7
von Neumann	. 7
Assembler	
MPASM Assembler	36
В	

Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	
PIC16C71X	8
RA3/RA0 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Pins	

RB7:RB4 Port Pins	28
	-
Timer0	
Timer0/WDT Prescaler	
Watchdog Timer	65
BODEN bit	48
BOR bit	22, 54
Brown-out Reset (BOR)	53

С

C bit	17
C16C71	47
Carry bit	7
CHS0 bit	37
CHS1 bit	37
Clocking Scheme	10
Code Examples	
Call of a Subroutine in Page 1 from Page 0	24
Changing Prescaler (Timer0 to WDT)	35
Changing Prescaler (WDT to Timer0)	35
Doing an A/D Conversion	42
I/O Programming	30
Indirect Addressing	
Initializing PORTA	25
Initializing PORTB	27
Saving STATUS and W Registers in RAM	64
Code Protection	47, 67
Computed GOTO	
Configuration Bits	47
CP0 bit	47, 48
CP1 bit	48

D

DC bit	17
DC Characteristics	147
PIC16C71	136
PIC16C710	90, 101
PIC16C711	90, 101
PIC16C715	113, 125
Development Support	
Development Tools	85
Diagrams - See Block Diagrams	
Digit Carry bit	7
Direct Addressing	24
-	

Е

Electrical Characteristics	
PIC16C71	135
PIC16C710	89
PIC16C711	89
PIC16C715	111
External Brown-out Protection Circuit	60
External Power-on Reset Circuit	60

F

Family of Devices	
PIC16C71X	4
FOSC0 bit	47, 48
FOSC1 bit	47, 48
FSR Register	
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH [®] -MP)	87
G	
General Description	3

General Description	3
GIE bit	
GO/DONE bit	