E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc715-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.4 PIE1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual enable bits for the Peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch)

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q		
MPEEN		—	—	—	PER	POR	BOR ⁽¹⁾	R = Readable bit	
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 	
bit 7:	MPEEN: I Reflects t	Memory P he value c	arity Erron of configur	r Circuitry ation word	Status bit bit, MPEE	N			
bit 6-3:	Unimpler	nented: R	lead as '0						
bit 2:	PER: Memory Parity Error Reset Status bit 1 = No Error occurred 0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset)								
bit 1:	POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)								
bit 0:	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)								

6.0 TIMER0 MODULE

Applicable Devices71071711715

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit TOSE (OPTION<4>). Clearing

FIGURE 6-1: TIMER0 BLOCK DIAGRAM

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

PIC16C71X

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13		—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplen	nented	: Read	as '1'										
bit 4:	CP0: Code 1 = Code 0 = All me	e prote protecti mory is	ction bi ion off 3 code p	t protecte	ed, but	00h - 3	Fh is w	vritable						
bit 3:	PWRTE: F 1 = Power 0 = Power	Power-u -up Tim -up Tim	up Time ner ena ner disa	er Enabl bled Ibled	e bit									
bit 2:	WDTE: Wa 1 = WDT e 0 = WDT e	atchdog enablec disablec	g Timer 1 d	Enable	e bit									
bit 1-0:	FOSC1:F0 11 = RC o 10 = HS o 01 = XT o 00 = LP o	OSC0: oscillato oscillato scillato scillato	Oscillat or or r r	tor Sele	ction b	its								

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:							
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68 - 100 pF	68 - 100 pF				
	2.0 MHz	15 - 68 pF	15 - 68 pF				
	4.0 MHz	15 - 68 pF	15 - 68 pF				
HS	8.0 MHz	10 - 68 pF	10 - 68 pF				
	16.0 MHz	10 - 22 pF	10 - 22 pF				
The note	se values are f	f or design guida r bage.	nce only. See				
Resonato	rs Used:						
455 kHz	Panasonic E	FO-A455K04B	± 0.3%				
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%				
4.0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz	.0 MHz Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz	16.0 MHz Murata Erie CSA16.00MX ± 0.5%						
All reso	onators used did	d not have built-in	capacitors.				

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

Crystals Used					
32 kHz	Epson C-001R32.768K-A	\pm 20 PPM			
200 kHz	STD XTL 200.000KHz	\pm 20 PPM			
1 MHz	ECS ECS-10-13-1	\pm 50 PPM			
4 MHz	ECS ECS-40-20-1	\pm 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	\pm 30 PPM			
20 MHz	EPSON CA-301 20.000M-C	\pm 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

No	te: F If C b R W	For the PIC16C71 f an interrupt occurs while the Global Inter- upt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.
	2	 The program branches to the Interrupt vector and executes the Interrupt Ser- vice Routine.
	3	B. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.
	F	Perform the following to ensure that inter- upts are globally disabled:
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit
	BTFSC	INTCON, GIE ; Global interrupt ; disabled?
	GOTO	LOOP : NO try again

:

Yes, continue

with program

flow

NOTES:

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No opera	ition				
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operati	ion.				
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	NOP	NOP	NOP		
Example	NOP					

RETFIE	Return from Interrupt				
Syntax:	[label]	RETFIE			
Operands:	None				
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,			
Status Affected:	None				
Encoding:	00	0000	0000	1001	
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.				
Words:	1				
Cycles:	2				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack	
2nd Cycle	NOP	NOP	NOP	NOP	
Example	RETFIE				

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister			
Syntax:	[label]	OPTION	٧			
Operands:	None					
Operation:	$(W) \rightarrow O$	PTION				
Status Affected:	None					
Encoding:	00	0000	0110	0010		
Description: Words: Cycles: Example	The conter loaded in t instruction patibility w Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TION is a le user ca	W register DN registe rted for coo C5X produ readable/v n directly a	r are r. This de com- ucts. vritable address		
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.					

SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 122 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(f) - (W) –	→ (dest)		
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2 ister from r stored in th result is sto	's compler egister 'f'. I le W regist pred back i	nent metho f 'd' is 0 the er. If 'd' is 1 n register 'f	d) W reg- e result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example 1:	SUBWF	reg1,1		
	Before Ins	struction		
	REG1	=	3	
	VV C	=	2 ?	
	Z	=	?	
	After Instr	uction		
	REG1	=	1	
	C	=	∠ 1; result is	positive
	Z	=	0	•
Example 2:	Before Ins	struction		
	REG1	=	2	
	W C	=	2 ?	
	Z	=	?	
	After Instr	uction		
	REG1	=	0	
	W C	=	2 1: result is	zero
	Z	=	1	2010
Example 3:	Before Ins	struction		
	REG1	=	1	
	W C	=	2	
	Z	=	?	
	After Instr	uction		
	REG1	=	0xFF	
	W C	=	2 0: result is	negative
	7	_	0	

SWAPF	Swap Nibbles in f										
Syntax:	[label]	SWAPF 1	i,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$										
Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$										
Status Affected:	None										
Encoding:	00	1110	dfff	ffff							
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.										
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Proces data	s Write to dest							
Example	SWAPF	REG,	0								
	Before In	struction									
		REG1	= 0	xA5							
	After Inst	ruction									
	REG1 = 0xA5 W = 0x5A										

TRIS	Load TR	IS Regis	ster				
Syntax:	[<i>label</i>]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;				
Status Affected:	None						
Encoding:	00	0000	0110	Offf			
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

Applicable Devices 710 71 711 715

		Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)								
DC CHAI	RACTERISTICS				-40°C	; ≤I	$IA \leq +85^{\circ}C$ (industrial)			
		Operati	ing voltage		$A \leq +125$ C (extended)					
		Section 11.2.								
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С			
D090A			Vdd - 0.7	-	-	V	Юн = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C			
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Output Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

		\sim								
OSC		PIC16C715-04		<pre>PIC16C715-10</pre>		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
PC	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at \$.5)	IDD:	2.7 mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	1.5 μA typ. at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max. >	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.0V to 5.5V	VDD:	4.5V to 5.5V /	VDD:	4.5V to 5.5V	VDD:	2.5V to 5.5V	VDD:	4.0V to 5.5V
VT	IDD:	5 mA max. at 5.5V	IDD:	2.7 mA typ. at 5.5V	IDD:	2.7/mA typ. at 5.5V	IDD:	2.0 mA typ. at 3.0V	IDD:	5 mA max. at 5.5V
	IPD:	21 μA max. at 4V	IPD:	1.5 μA typ. at 4V	NgD:	1.5 µA typ at 4V	IPD:	0.9 μA typ. at 3V	IPD:	21 μA max. at 4V
	Freq:	4 MHz max.	Freq:	4 MHz max.	Freq.	4 MHz max.	Freq:	4 MHz max.	Freq:	4 MHz max.
	VDD:	4.5V to 5.5V	VDD:	4.5V to 5.5V	V6p:	4.5V/to 5,5V/			Vdd:	4.5V to 5.5V
це	IDD:	13.5 mA typ. at 5.5V	IDD:	30 mA max. at 5.5V	IDD:	30 mA max. at 5.5V		tuco in US modo	IDD:	30 mA max. at 5.5V
	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V		d use in HS mode	IPD:	1.5 μA typ. at 4.5V
	Freq:	4 MHz max.	Freq:	10 MHz max.	Freq:	20 MHz max.	$\langle \rangle$		Freq:	10 MHz max.
	VDD:	4.0V to 5.5V					YOD:	2.5V to 5.5V	Vdd:	2.5V to 5.5V
	IDD:	52.5 μA typ. at 32 kHz, 4.0V	Dong	tuso in LP modo	Dono		IDD:/	48 μA max. at 32 kHz, 3.0V	IDD:	48 μA max. at 32 kHz, 3.0V
	IPD:	0.9 μA typ. at 4.0V					IPG: /	/5.Ø μA max. at 3.0V	IPD:	5.0 μA max. at 3.0V
	Freq:	200 kHz max.				/	Freq:	/ 200 kHz max.	Freq:	200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

Applicable Devices71071711715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	ACTERISTICS		Standa Operat	ard Ope ing tem	erating peratu	g Cond i ire 0°0 -40	itions (unless otherwise stated) $C \leq T_A \leq +70^{\circ}C$ (commercial) $0^{\circ}C \leq T_A \leq +85^{\circ}C$ (industrial)
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μÀ	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	35 5	μ Α μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$
D023	Brown-out Reset Current (Note 5)		- `	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

FIGURE 14-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 14-6: TYPICAL RC OSCILLATOR

FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

$\ensuremath{\textcircled{}^{\odot}}$ 1997 Microchip Technology Inc.

PIC16C71X

Applicable Devices 710 71 711 715

15.5 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	1,000	ns	HS osc mode (-04)
			50	—	1,000	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15		—	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

Applicable Devices 710 71 711 715

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet
			With Prescaler	10	-	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	-	—	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-	—	ns	N = prescale value
		With Presca		Greater of: 20 ns or <u>Tcy + 40</u> N				(2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C71

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

Applicable Devices71071711715

FIGURE 16-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 16-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 710 71 711 715

FIGURE 16-22: IOL VS. VOL, VDD = 5V

