

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc715t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	
2.0	PIC16C71X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	. 11
5.0	I/O Ports	. 25
6.0	Timer0 Module	. 31
7.0	Analog-to-Digital Converter (A/D) Module	. 37
8.0	Special Features of the CPU	. 47
9.0	Instruction Set Summary	. 69
10.0	Development Support	. 85
11.0	Electrical Characteristics for PIC16C710 and PIC16C711	
12.0	DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711	101
13.0	Electrical Characteristics for PIC16C715	
14.0	DC and AC Characteristics Graphs and Tables for PIC16C715	
15.0	Electrical Characteristics for PIC16C71	135
16.0	DC and AC Characteristics Graphs and Tables for PIC16C71	147
17.0	Packaging Information	155
Appen	dix A:	161
	dix B: Compatibility	
Appen	dix C: What's New	162
	dix D: What's Changed	
	-	
PIC16	C71X Product Identification System	173
	·	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1		•								-	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	—	Unimpleme	nted							—	—
88h	—	Unimpleme	nted							—	_
89h	—	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							—	_
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	_	Unimpleme	nted							-	—
90h	_	Unimpleme	nted							_	—
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	_	Unimpleme	nted							_	—
95h		Unimpleme	nted								
96h		Unimpleme	nted								_
97h		Unimpleme	nted								
98h		Unimpleme	nted								
99h		Unimpleme	nted								_
9Ah		Unimpleme	nted								
9Bh	_	Unimpleme	nted							_	_
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted								_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	—	_	—	—	—	-	PCFG1	PCFG0	00	00

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

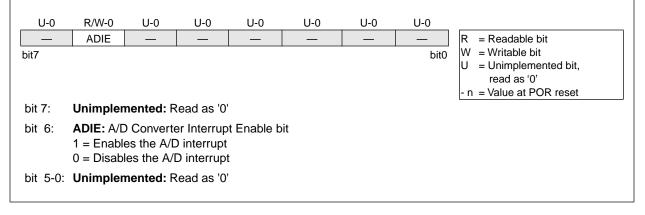
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.


4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.4 PIE1 REGISTER

Applicable Devices 710 71 711 715

This register contains the individual enable bits for the Peripheral interrupts.

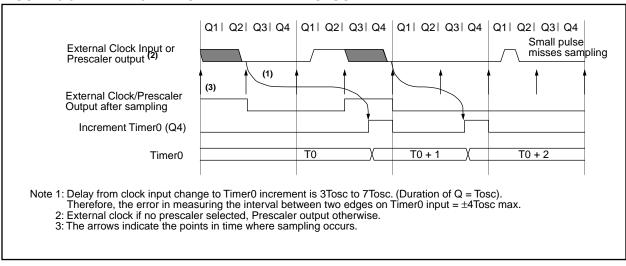
FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch)

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:						
Mode	Freq	OSC1	OSC2			
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF			
	se values are f es at bottom of p	ior design guidar bage.	nce only. See			
Resonator	rs Used:					
455 kHz	Panasonic E	FO-A455K04B	± 0.3%			
2.0 MHz	Murata Erie (CSA2.00MG	± 0.5%			
4.0 MHz	Murata Erie (CSA4.00MG	± 0.5%			
8.0 MHz	0 MHz Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%					
All reso	onators used did	d not have built-in	capacitors.			

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2				
LP	32 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
XT	200 kHz	47-68 pF	47-68 pF				
	1 MHz	15 pF	15 pF				
	4 MHz	15 pF	15 pF				
HS	4 MHz	15 pF	15 pF				
	8 MHz	15-33 pF	15-33 pF				
	20 MHz	15-33 pF	15-33 pF				
These values are far design guidenes only See							

These values are for design guidance only. See notes at bottom of page.

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	\pm 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. NOTES:

PIC16C71X

IORWF	Inclusive	e OR W v	with f			
Syntax:	[label]	IORWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27				
Operation:	(W) .OR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00	0100	dfff	ffff		
Description:	Inclusive C ter 'f'. If 'd' the W regi placed bac	is 0 the re ster. If 'd'	esult is pla is 1 the re	ced in		
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
Example	IORWF		RESULT,	0		
		struction RESULT W		-		
	After Inst			3		

MOVLW	Move Literal to W					
Syntax:	[label]	MOVLW	/ k			
Operands:	$0 \le k \le 25$	55				
Operation:	$k \to (W)$					
Status Affected:	None					
Encoding:	11	00xx	kkkk	kkkk		
Description:	The eight the register. The as 0's.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process data	Write to W		
Example	MOVLW	0x5A				
	After Inst	ruction W =	0x5A			

Move f				
[label]	MOVF	f,d		
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$				
$(f) \rightarrow (dest)$				
Z				
00	1000	dfff	ffff	
The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is				
1				
1				
Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Process data	Write to dest	
MOVF FSR, 0 After Instruction W = value in FSR register Z = 1				
	$\begin{bmatrix} abel \\ 0 \le f \le 12 \\ d \in [0,1] \\ (f) \to (des Z \\ \hline 00 \\ \hline Decode \\ a destinati \\ tus of d. If \\ ister. If d = \\ register f it \\ file registe \\ affected. \\ 1 \\ 1 \\ \hline Q1 \\ \hline Decode \\ \hline MOVF \\ After Inst \\ \end{bmatrix}$	$\begin{bmatrix} label \\ \end{bmatrix} MOVF$ $0 \le f \le 127$ $d \in [0,1]$ $(f) \rightarrow (dest)$ Z $\boxed{00} 1000$ The contents of reg a destination depentus of d. If d = 0, destister. If d = 1, the deregister f itself. d = 1 file register since state affected. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{bmatrix} label \end{bmatrix} \text{ MOVF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (f) \rightarrow (dest) \\ Z \\ \hline 00 & 1000 & dfff \\ \hline The contents of register f is m a destination dependant upon tus of d. If d = 0, destination is ister. If d = 1, the destination is register f itself. d = 1 is useful to file register since status flag Z affected. 1 \\ 1 \\ Q1 & Q2 & Q3 \\ \hline Decode & Read & Process \\ data \\ \hline MOVF & FSR, 0 \\ \hline After Instruction \\ W = value in FSR register \\ \end{bmatrix}$	

MOVWF	Move W	to f		
Syntax:	[label]	MOVW	= f	
Operands:	$0 \le f \le 12$	27		
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00	0000	lfff	ffff
Description:	Move data 'f'.	from W r	egister to	register
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	MOVWF	OPTIC	N_REG	
	Before In			_
		OPTION W	= 0xFF = 0x4F	
	After Inst	••	- 0741	
		OPTION		
		W	= 0x4F	-

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	00	0000	0xx0	0000	
Description:	No operat	ion.			
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	NOP	NOP	NOP	
Example	NOP				

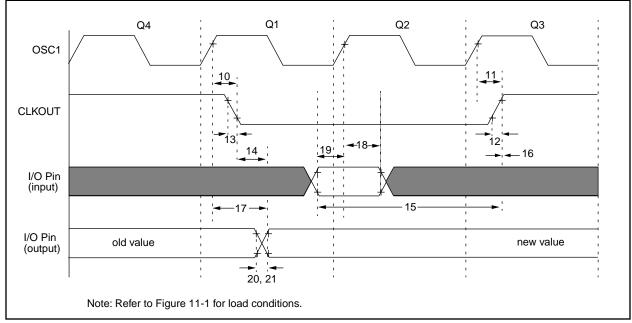
RETFIE	Return from Interrupt					
Syntax:	[label]	RETFIE				
Operands:	None					
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$					
Status Affected:	None					
Encoding:	00	0000	0000	1001		
Monda	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack		
2nd Cycle	NOP	NOP	NOP	NOP		
Example	RETFIE					

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister	
Syntax:	[label]	OPTION	١	
Operands:	None			
Operation:	$(W)\toOF$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The conter loaded in the instruction patibility with Since OPT register, the it.	he OPTIC is suppoi ith PIC16 ION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable
Words:	1			
Cycles:	1			
Example				
	To mainta with futur not use th	re PIC16	CXX prod	

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry		
Syntax:	[label] RLF f,d	Syntax:	[label] RRF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$		
Operation:	See description below	Operation:	See description below		
Status Affected:	С	Status Affected:	С		
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff		
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.		
			C Register f		
Words:	1	Words:	1		
Cycles:	1	Cycles:	1		
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4		
	Decode Read register data Write to dest		Decode Read register 'f' Vite to dest		
Example	RLF REG1,0	Example	RRF REG1,0		
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Before Instruction REG1 = 1110 0110 C = 0 - After Instruction - - - REG1 = 1110 0110 W = 0111 0011 C = 0 -		


PIC16C71X

SLEEP

[label]	SLEEF)		
None				
	,	ller,		
TO, PD				
00	0000	0110	0011	
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped.				
1				
1				
Q1	Q2	Q3	Q4	
Decode	NOP	Go to Sleep		
SLEEP				
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP	

SUBLW	Subtract	W from	Literal				
Syntax:	[label]	SUBL	V k				
Operands:	$0 \le k \le 25$	55					
Operation:	k - (W) \rightarrow	• (W)					
Status Affected:	C, DC, Z						
Encoding:	11	110x	kkkk kkk				
Description:	ment meth	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3 Q4				
	Decode	Read literal 'k'	Process Write to data				
Example 1:	SUBLW	0x02					
	Before In:	structior					
		W = C = Z =	1 ? ?				
	After Instruction						
		W = C = Z =	1 1; result is positive 0				
Example 2:	Before Instruction						
		W = C = Z =	2 ? ?				
	After Instruction						
		W = C = Z =	0 1; result is zero 1				
Example 3:	Before In	structior					
		W =	3				
		C =	?				
		Z =	?				
	After Inst	Z =	?				
	After Inst	Z =	? 0xFF				
	After Inst	Z = ruction					

FIGURE 11-3: CLKOUT AND I/O TIMING

TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	15	30	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑			15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	TT ↑	0.25Tcy + 25	—	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	_	_	80 - 100	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in ho	TBD	_	_	ns		
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	TBD	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 710/711		10	25	ns	
			PIC16LC710/711	_	—	60	ns	
21*	TioF	Port output fall time PIC16 C 710/711		_	10	25	ns	
			PIC16LC710/711	—	—	60	ns	
22††*	Tinp	INT pin high or low time	20	—	_	ns		
23††*	Trbp	RB7:RB4 change INT high	20	—	—	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

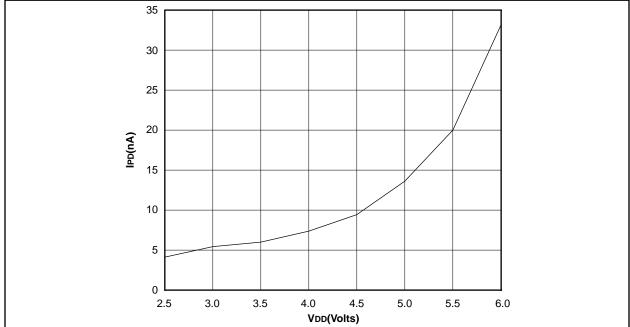
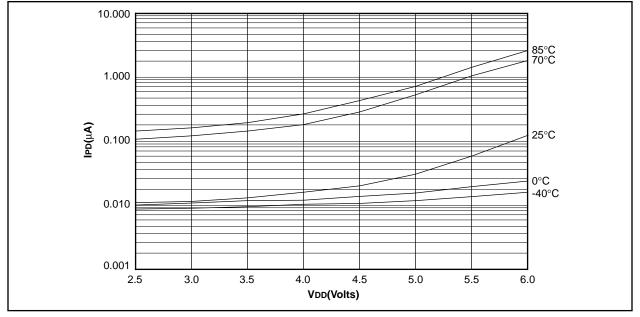
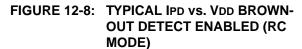
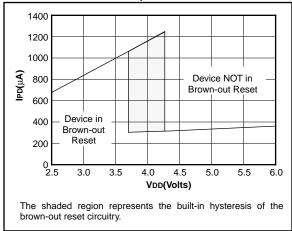
12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

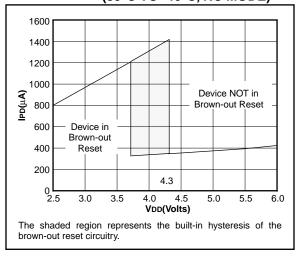
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

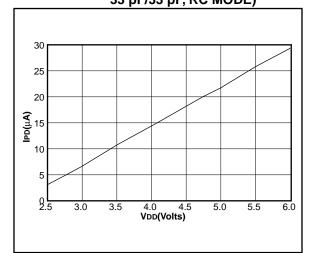
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)



FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)



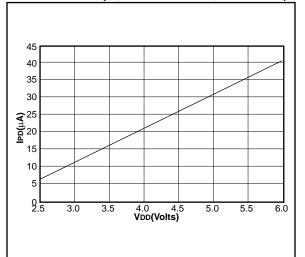
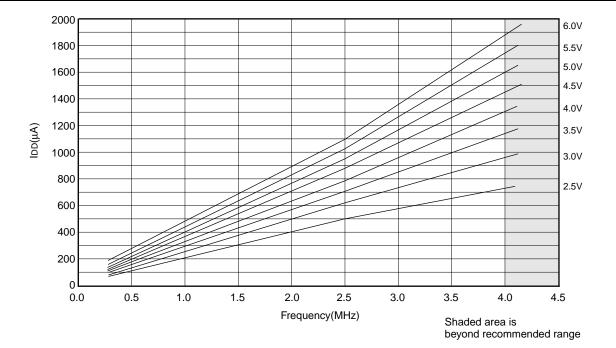


FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)


Applicable Devices 710 71 711 715

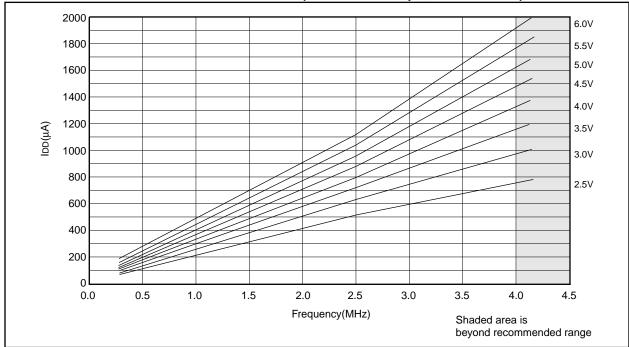


FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

OSC		PIC16C715-04	•	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	· /·	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	nt use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do no	ot use in LP mode	1/ /	2.SV to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

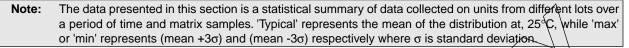
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

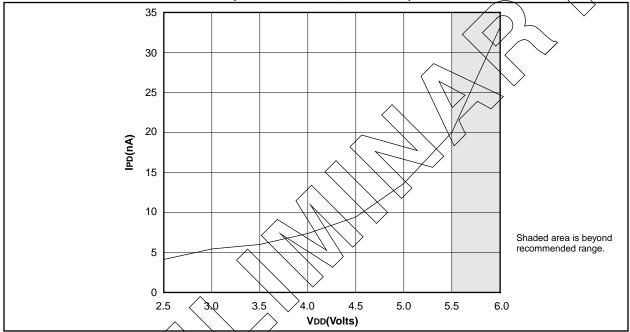
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	NR	Resolution	_	—	8-bits	—	$VREF = VDD, VSS \le AIN \le VREF$
	Nint	Integral error	_		less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	—	—	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	—	—	less than ±1 LSb	_	$VREF = VDD, VSS \leq AIN \leq VREF$
	NOFF	Offset error	—		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
		Monotonicity	_	guaranteed	_	—	VSS & AKT S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	—	_	10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_	- ~	A A A A A A A A A A A A A A A A A A A	hnA μA	During sampling All other times

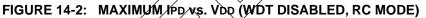
These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

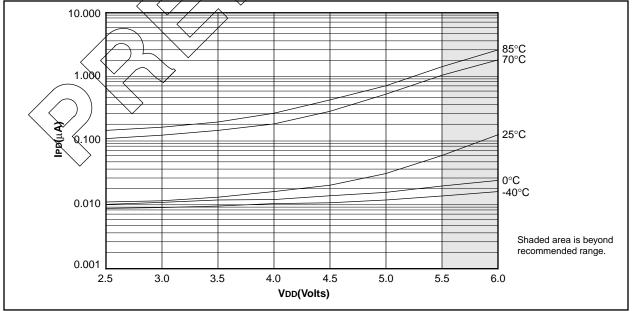
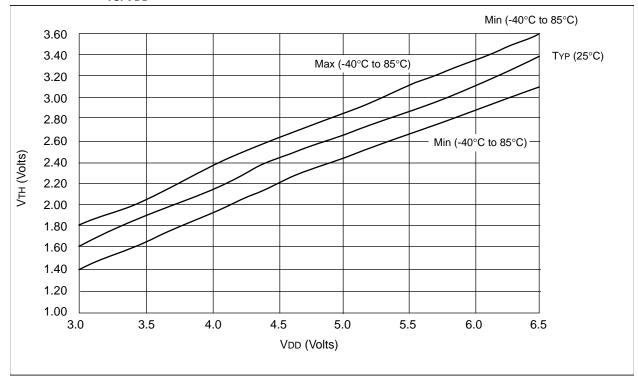



FIGURE 16-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	m: Name	
	Company	
A	Telephone: ()	FAX: ()
	blication (optional):	
Wou	uld you like a reply?YN	
Dev	vice: PIC16C71X Literatu	ire Number: DS30272A
Que	estions:	
1	What are the best features of this docum	pent?
1.	What are the best leatures of this docum	
2.	How does this document meet your hard	ware and software development needs?
	,	·
3.	Do you find the organization of this data	sheet easy to follow? If not, why?
4.	What additions to the data sheet do you	think would enhance the structure and subject?
5.	What deletions from the data sheet could	d be made without affecting the overall usefulness?
-		
6.	Is there any incorrect or misleading infor	mation (what and where)?
7		
7.	How would you improve this document?	
8	How would you improve our software, sy	stems, and silicon products?
0.	The model you improve our soluvale, sy	