

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc715t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Pin Name	DIP Pin#	SSOP Pin# ⁽⁴⁾	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	4	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	RA0 can also be analog input0
RA1/AN1	18	20	18	I/O	TTL	RA1 can also be analog input1
RA2/AN2	1	1	1	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	3	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = inp		O = outp — = Not			/O = input/out TTL = TTL inp	I I

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
4: The PIC16C71 is not available in SSOP package.

4.2.2.2 OPTION REGISTER

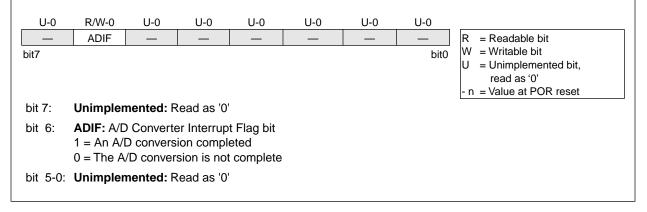
Applicable Devices 710 71 711 715

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7	· · ·						bit0	W = Writable bit U = Unimplemented bit, read as '0'
								- n = Value at POR reset
bit 7:	RBPU: PC	RTB Pull	-up Enabl	le bit				
	1 = PORT							
	0 = PORTE	3 pull-ups	s are enab	led by ind	ividual port	latch valu	es	
bit 6:	INTEDG:	nterrupt E	Edge Sele	ct bit				
	1 = Interru	pt on risir	ng edge of	f RB0/INT	pin			
	0 = Interru	pt on falli	ng edge o	f RB0/INT	pin			
bit 5:	TOCS: TM	R0 Clock	Source S	elect bit				
	1 = Transit							
	0 = Interna	al instruct	ion cycle (clock (CLk	(OUT)			
bit 4:	TOSE: TM							
					on RA4/T0			
	0 = Increm	ent on lo	w-to-high	transition	on RA4/T00	JKI pin		
bit 3:	PSA: Pres		0					
	1 = Presca 0 = Presca				modulo			
			•		module			
bit 2-0:	PS2:PS0:	Prescale	r Rate Sel	lect bits				
	Bit Value	TMR0 R	ate WD	Γ Rate				
	000	1:2	1:					
	001	1:4	1:					
	010 011	1:8	1:					
	100	1:16		16				
	101	1:64	. 1:	32				
	110	1 : 12		64				
	111	1:25	6 1	128				

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).


4.2.2.5 PIR1 REGISTER

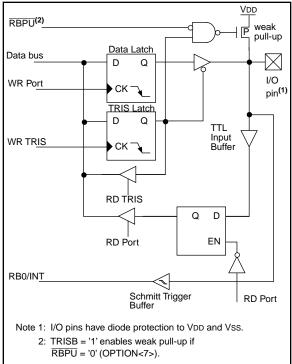
Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS, RPC	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPC	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0 C	P0 CI	P0 CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		1										bit0	Address	2007h
bit 13-7 5-4: bit 6:	1 = Co 0 = All BODE 1 = BC	Code prote ode protec memory N: Brown OR enable OR disable	ction off is code -out Re ed	protec			Fh is w	vritable						
bit 3:	1 = PV	Ē: Power VRT disal VRT enat	bled	er Ena	ble bit	(1)								
bit 2:	1 = W	: Watchd DT enable DT disabl	ed	er Enab	le bit									
bit 1-0:	11 = F 10 = F 01 = X	1:FOSC0 RC oscilla IS oscillat (T oscillat P oscillat	tor tor tor	ator Se	lection	bits								
Note 1:	Ensur	e the Pow	er-up T	imer is	enable		ne Brov	vn-out l	Reset is	enable	d.		value of bit F	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

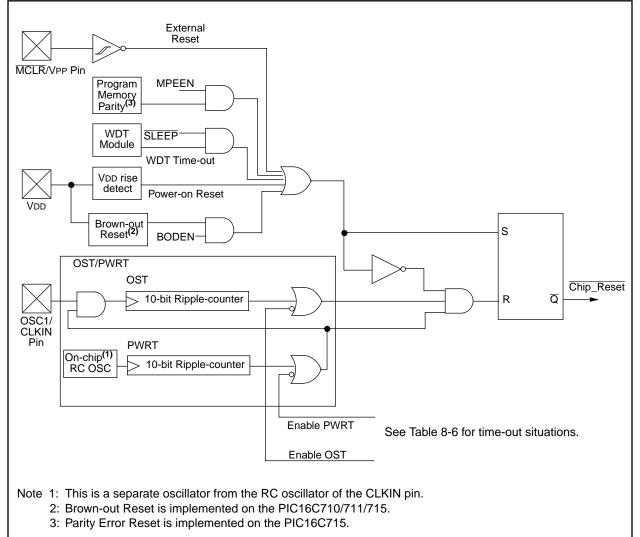
CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13-8 CP1:CP0: Code Protection bits ⁽²⁾ 5-4: 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected															
bit 7:	it 7: MPEEN: Memory Parity Error Enable 1 = Memory Parity Checking is enabled 0 = Memory Parity Checking is disabled														
bit 6:	1	BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:	1	WRTE : = PWF = PWF	RT disa	bled	mer Ei	nable bit	(1)								
bit 2:	1	DTE: \ = WDT = WDT	enabl	ed	ner En	able bit									
bit 1-0	11 10 01	DSC1: L = RC D = HS L = XT D = LP	oscilla oscilla oscilla	ator itor tor	llator \$	Selectior	n bits								
Note 7							cally ena ed anytir		•		,	0	ess of the	value of bit	PWRTE.
	2: Al	l of the	CP1:0	CP0 pa	airs ha	ve to be	given the	e same	value	to enable	e the co	de prote	ection sch	eme listed.	

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine				
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	CALL	<			
Operands:	$0 \le f \le 12$				Operands:	$0 \le k \le 2$	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,				
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC <$		50.40			
Status Affected:	None	i				,	1<4:3>) -	\rightarrow PC<12	:11>		
Encoding:	01	11bb	bfff	ffff	Status Affected:	None					
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk		
	If bit 'b' is discarded	is execute 1', then the and a NOF aking this a	next instru is execute	ed	Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the state address is The upper	ck. The s loaded [·] bits of		
Words:	1							rom PCLA instruction			
Cycles:	1(2)				Words:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2					
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4		
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC		
	Q1	Q2	Q3	Q4	1		Push PC to Stack				
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP		
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE			
	TRUE	•				Before Ir					
		•				After Ins		Address HE	RE		
	Before In	struction					-	ddress TH			
			address H	IERE			TOS = A	Address HE	RE+1		
	After Inst	ruction if FLAG<1>	- 0								
		-	> = 0, address F≠	ALSE							
		if FLAG<1> PC =	,								
		FU = 1	address TF	KUE							

NOP	No Operation								
Syntax:	[label]	NOP							
Operands:	None								
Operation:	No opera	ition							
Status Affected:	None								
Encoding:	00	0000	0xx0	0000					
Description:	No operat	ion.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	NOP	NOP	NOP					
Example	NOP								

RETFIE	Return from Interrupt							
Syntax:	[label]	RETFIE						
Operands:	None							
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,						
Status Affected:	None							
Encoding:	00	0000	0000	1001				
Monda	and Top of the PC. Int ting Globa (INTCON- instruction	errupts a I Interrupt 7>). This	re enabled Enable bi	l by set- t, GIE				
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack				
2nd Cycle	NOP	NOP	NOP	NOP				
Example	RETFIE							

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister	
Syntax:	[label]	OPTION	١	
Operands:	None			
Operation:	$(W)\toOF$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The conter loaded in the instruction patibility with Since OPT register, the it.	he OPTIC is suppoi ith PIC16 ION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable
Words:	1			
Cycles:	1			
Example				
	To mainta with futur not use th	re PIC16	CXX prod	

		Standa	rd Operat	ting	Conditio	ons (un	less otherwise stated)			
		Operati	ng temper	atur		, ≤ T	$A \leq +70^{\circ}C$ (commercial)			
			•		-40°0		A ≤ +85°C (industrial)			
DC CHAP	RACTERISTICS	$-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)								
		Operati Section		e Vde	range a	s descr	ibed in DC spec Section 11.1 and			
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions			
No.		- C.J		t	max	0				
	Output Low Voltage			-						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D090A			Vdd - 0.7	-	-	V	ІОН = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			Vdd - 0.7	-	-	V	ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C			
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Output Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	_	8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	EABS	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A05	Efs	Full scale error	_	_	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	_	_	<±1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	_	guaranteed	-	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			—		10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	RACTERISTICS			ard Ope ing tem		ire 0°	itions (unless otherwise stated) $C \leq TA \leq +70^{\circ}C$ (commercial) $0^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = $3.0V$, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μΑ	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	30 5	μ Α μΑ μΑ	$VDD = 3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ $VDD = 3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D023	Brown-out Reset Current (Note 5)		-	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

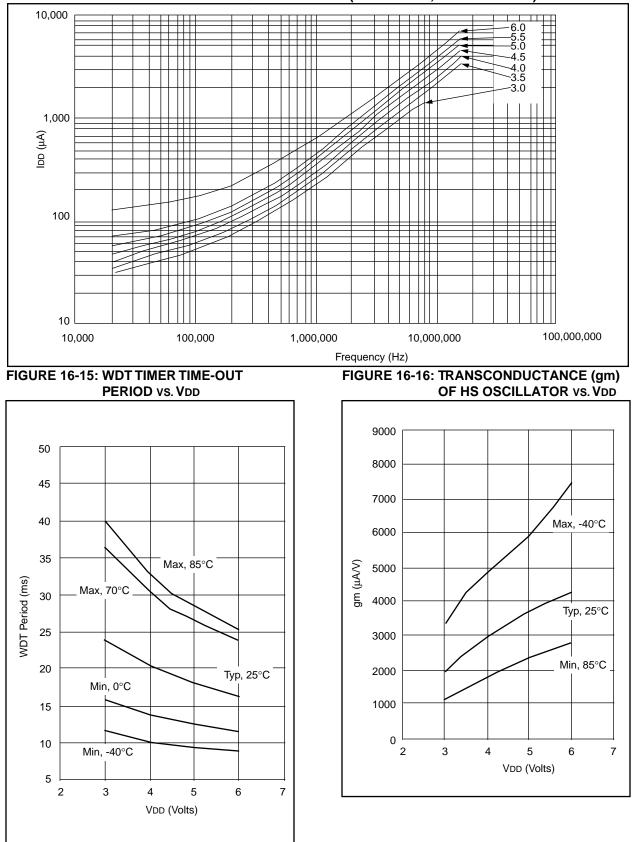
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_		8 bits	bits	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Absolute error	PIC16 C 71		_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	—	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A03	EIL	Integral linearity error	PIC16 C 71	_	_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A04	Edl	Differential linearity error	PIC16 C 71		_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A05	EFS	Full scale error	PIC16 C 71	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A06	EOFF	Offset error	PIC16 C 71	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16 LC 71	—	_	< ±2	LSb	VREF = VDD = 3.0V (Note 3)
A10	—	Monotonicity		—	guaranteed	—	-	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref	V	
A30	Zain	Recommended impedance voltage source	of analog	—	—	10.0	kΩ	
A40	IAD	A/D conversion current (VD	D)	—	180	_	μA	Average current consump- tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	PIC16 C 71	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle
			PIC16 LC 71	_	_	1	mA μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle

TABLE 15-6: A/D CONVERTER CHARACTERISTICS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: These specifications apply if VREF = 3.0V and if VDD \ge 3.0V. VAIN must be between VSS and VREF.

*

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

NOTES:

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

I

I/O Ports	
PORTA2	
PORTB2	
Section2	
I/O Programming Considerations	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
In-Circuit Serial Programming47, 6	37
INDF Register	
Indirect Addressing2	
Instruction Cycle1	
Instruction Flow/Pipelining1	
Instruction Format	36
Instruction Set	_
ADDLW7	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	'2
BTFSC7	
BTFSS	
CALL	73
CLRF	
CLRWDT	
COMF	
DECF	
DECFSZ	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF7	
MOVLW7	
MOVWF7	78
NOP7	79
OPTION7	79
RETFIE7	
RETLW8	30
RETURN8	
RLF8	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF8	
TRIS	
XORLW	
XORWF	
Section	
INT Interrupt	
INTCON Register	
INTE bit	
INTEDG bit	
Internal Sampling Switch (Rss) Impedence	
Interrupts	
A/D	
External6	
PORTB Change6	
PortB Change6	
RB7:RB4 Port Change2	
Section6	51
TMR06	32

TMR0 Overflow	61
INTF bit	
IRP bit	17
К	
KeeLoq [®] Evaluation and Programming Tools	87
L	
Loading of PC	23
LP	
Μ	
MCLR	52, 56
Memory	
Data Memory	
Program Memory	11
Register File Maps	
PIC16C71	12
PIC16C710	12
PIC16C711	13
PIC16C715	13
MP-DriveWay™ - Application Code Generator	87
MPEEN bit	22, 48
MPLAB™ C	87
MPLAB [™] Integrated Development Environment	
Software	86

0

OPCODE	69
OPTION Register	
Orthogonal	7
OSC selection	47
Oscillator	
HS	49, 54
LP	49, 54
RC	49
XT	49, 54
Oscillator Configurations	49
Oscillator Start-up Timer (OST)	53

Ρ

Packaging	
18-Lead CERDIP w/Window	155
18-Lead PDIP	156
18-Lead SOIC	157
20-Lead SSOP	158
Paging, Program Memory	23
PCL Register 14, 15,	16, 23
PCLATH	57, 58
PCLATH Register 14, 15,	16, 23
PCON Register	22, 54
PD bit	52, 55
PER bit	
PIC16C71	147
AC Characteristics	147
PICDEM-1 Low-Cost PIC16/17 Demo Board	86
PICDEM-2 Low-Cost PIC16CXX Demo Board	86
PICDEM-3 Low-Cost PIC16CXXX Demo Board	
PICMASTER [®] In-Circuit Emulator	85
PICSTART [®] Plus Entry Level Development System	85
PIE1 Register	20
Pin Functions	
MCLR/VPP	9
OSC1/CLKIN	9
OSC2/CLKOUT	
RA0/AN0	9
RA1/AN1	9

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe $^{\circledast}$ communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

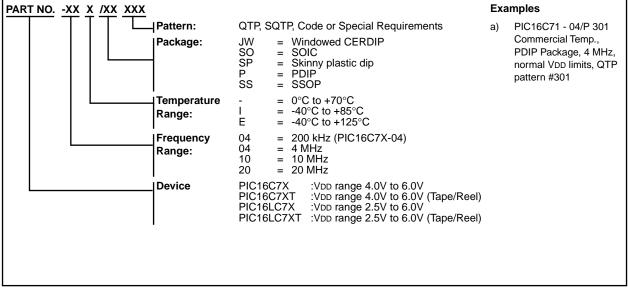
Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

970301


Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

NOTES: