

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc715t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C71X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C71X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**71. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C71X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

File	.e		File
004	IND=(1)	илос(1)	
00n			- 80n
010		OPTION	- 0111 - 02h
020		PUL	- 0211 - 02h
031		STATUS ESD	- 0311 - 046
0411 05b			- 0411 - 056
051			0011
076	PURID		- 0011 - 976
0711			
001			001
0911			0911
	INTCON		
0Ch		General	
	General	Purpose	
	Purpose	Register	
	Register	Mapped	
		In Bank 0.00	
2Fh			AFh
30h			B0h
(\		
			\checkmark
7Fh			FFh
	Bank 0	Bank 1	_
	Banko	Bank	
	Unimplemented	data memory locat	tions read
	as '0'.		
Note 1:	Not a physical re	gister.	
2:	The PCON regist	ter is not implemer	nted on the
3:	These locations a	are unimplemented	d in Bank 1.
5.	Any access to the	ese locations will a	access the
	corresponding Ba	ank 0 register.	

								•	,		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1				•	•			•			
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	_	Unimpleme	nted							_	_
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	-	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							_	—
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	—	Unimpleme	nted							—	—
90h	_	Unimpleme	nted							—	—
91h	—	Unimpleme	nted							_	—
92h	—	Unimpleme	nted							_	—
93h	_	Unimpleme	nted							_	—
94h	—	Unimpleme	nted							_	—
95h	—	Unimpleme	nted							—	—
96h	_	Unimpleme	nted							—	—
97h	—	Unimpleme	nted							_	—
98h	—	Unimpleme	nted							—	—
99h	_	Unimpleme	nted							—	—
9Ah	_	Unimpleme	nted							—	—
9Bh	—	Unimpleme	nted							—	—
9Ch	—	Unimplemented								_	—
9Dh	_	Unimpleme	nted							_	—
9Eh	—	Unimpleme	nted							_	—
9Fh	ADCON1	_	_	_	_	_	_	PCFG1	PCFG0	00	00

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices 710 71 711 715

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x		
bit7	RP1	RP0	ТО	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:	IRP: Regi 1 = Bank 0 = Bank	ster Bank 2, 3 (100h 0, 1 (00h -	Select bit - 1FFh) FFh)	(used for	indirect ad	dressing)			
bit 6-5:	RP1:RP0 11 = Banl 10 = Banl 01 = Banl 00 = Banl Each ban	: Register < 3 (180h - < 2 (100h - < 1 (80h - I < 0 (00h - 7 k is 128 by	Bank Sel 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ect bits (u	sed for dire	ct address	ing)		
bit 4:	TO: Time- 1 = After 0 = A WD	-out bit power-up, T time-out	CLRWDT ir	nstruction,	or sleep ii	nstruction			
bit 3:	PD : Powe 1 = After 0 = By ex	er-down bit power-up o ecution of	or by the othe street	CLRWDT ins	struction				
bit 2:	Z: Zero bi 1 = The re 0 = The re	t esult of an esult of an	arithmetio arithmetio	c or logic o c or logic o	operation is	zero not zero			
bit 1:	DC: Digit 1 = A carr 0 = No ca	carry/borro ry-out from rry-out fro	ow bit (AD the 4th le m the 4th	DWF, ADDL Dw order b low order	w,SUBLW,S bit of the res bit of the re	UBWF instru Sult occurre Sult	uctions)(for ed	borrow the polarity is reversed)	
bit 0:	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.								

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

NOTES:

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADCS1	ADCS0	(1)	CHS1	CHS0	GO/DONE	ADIF	ADON	R = Readable bit				
bit7	1						bit0	W = Writable bit U = Unimplemented bit. read as '0'				
								- n =Value at POR reset				
bit 7-6:	ADCS1:A	DCS0: A/D	Conversi	on Clock S	Select bits							
	00 = FOS	C/2										
	01 = FOSC/8											
	11 = FRC (clock derived from an RC oscillation)											
bit 5:	Unimplemented: Read as '0'.											
bit 4-3:	CHS1:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3)											
bit 2:	GO/DON	E: A/D Con	version Sta	atus bit								
	$\frac{\text{If ADON}}{1 = A/D c}$ $0 = A/D c$ sion is co	<u>= 1</u> : onversion ir onversion n mplete)	n progress lot in prog	(setting th ress (This	his bit starts th bit is automat	ie A/D con ically cleai	version) ed by hardw	are when the A/D conver-				
bit 1:	ADIF: A/E 1 = conve 0 = conve	D Conversio ersion is con ersion is not	n Comple nplete (mu complete	te Interrup ist be clea	t Flag bit red in softwar	e)						
bit 0:	ADON: A	/D On bit										
	1 = A/D c 0 = A/D c	onverter mo onverter mo	odule is op odule is sh	erating utoff and o	consumes no	operating	current					
Note 1:	Bit5 of Al	DCON0 is a nented, read	l General I d as '0'.	Purpose R	R/W bit for the	PIC16C71	0/711 only. F	For the PIC16C71, this bit is				
	ampen	ionieu, iea										

FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.

2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0	CF	0 C	P0	CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
oit13														bit0	Address	2007h
bit 13- 5- bit 6:	-7 4:	CP0: 1 = C 0 = Al BODE 1 = B 0 = B	Cod ode II me E N: I OR (OR (le prote protec emory i Brown- enable disable	ection b tion off is code out Re d	protec set En	ted, bu able bi	ut 00h - 3 _t (1)	Fh is w	vritable						
bit 3:		PWR 1 = P' 0 = P'	TE: WR1 WR1	Power- Γ disab Γ enab	up Tim led led	er Ena	ble bit	(1)								
bit 2:		WDTI 1 = W 0 = W	E: W /DT /DT	/atchdo enable disable	og Time d ed	er Enab	le bit									
bit 1-C):	FOSC 11 = 10 = 01 = 2 00 =	C1:F RC o HS o XT o LP o	OSCO oscillat oscillat oscillato	: Oscilla or or or or or	ator Se	lection	bits								
Note	1:	Enabl Ensur	ling l re th	Brown∙ e Powe	out Re er-up T	set aut imer is	omatic enable	ally enated anytim	oles Po ne Brov	wer-up vn-out f	Timer (F Reset is	WRT) enabled	regardle d.	ess of the	e value of bit \overline{F}	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13- 5-	 13-8 CP1:CP0: Code Protection bits ⁽²⁾ 5-4: 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected 														
bit 7:	 7: MPEEN: Memory Parity Error Enable 1 = Memory Parity Checking is enabled 0 = Memory Parity Checking is disabled 														
bit 6:	B (1 0	BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:	P 1 0	WRTE: = PWR = PWR	Powe T disa T enal	r-up Ti bled bled	mer Ei	nable bit	(1)								
bit 2:	W 1 0	DTE: V = WDT = WDT	Vatchd enabl disabl	log Tin ed led	ner En	able bit									
bit 1-(D: F(11 10 01 00	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator													
Note	1: Er Er 2: Al	nabling nsure th I of the	Browr he Pov CP1:0	n-out R ver-up CP0 pa	teset a Timer airs har	utomatio is enable ve to be	cally enal ed anytin given the	oles Po ne Brov e same	wer-up wn-out value	o Timer (f Reset is to enable	PWRT) enable the co	regardle d. de prote	ess of the	value of bit l eme listed.	PWRTE.

PIC16C71X

Inclusive OR W with f										
[label]	IORWF	f,d								
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$										
(W) .OR.	$(f) \rightarrow (de)$	est)								
Z										
00	0100	dfff	ffff							
Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.										
1										
1										
Q1	Q2	Q3	Q4							
Decode	Read register 'f'	Process data	Write to dest							
IORWF		RESULT,	0							
Before In	struction	1								
	RESULT	= 0x13	3							
After Instruction										
	RESULT	3								
	W Z	= 0x93 = 1	3							
	Inclusive [label] $0 \le f \le 12$ $d \in [0,1]$ (W) .OR. \overline{Z} Inclusive C ter 'f'. If 'd' the W reginst placed base 1 1 Q1 Decode IORWF Before In After Inst	Inclusive OR Wy $[label]$ IORWF $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (de)$ \overline{Z} 00 0100Inclusive OR the Wter 'f'. If 'd' is 0 the rethe W register. If 'd'placed back in regist1Q1Q2DecodeReadregister'f'IORWFBefore InstructionRESULTWAfter InstructionRESULTW7	Inclusive OR W with f[label]IORWFf,d $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (dest)$ \overline{Z} 00 0100dfffInclusive OR the W register witter 'f'. If 'd' is 0 the result is platthe W register. If 'd' is 1 the result placed back in register 'f'.11Q1Q2Q3DecodeRead register 'f'IORWFRESULT ,Before Instruction RESULT = 0x13 W = 0x91After Instruction RESULT = 0x13 W = 0x93 Z = 1							

MOVLW	Move Literal to W									
Syntax:	[label]	MOVLW	/ k							
Operands:	$0 \le k \le 28$	55								
Operation:	$k \rightarrow (W)$									
Status Affected:	None									
Encoding:	11	00xx	kkkk	kkkk						
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal 'k'	Process data	Write to W						
Example	MOVLW After Inst	0x5A								
		VV =	0x5A							

MOVF	Move f								
Syntax:	[label] MOVF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
Operation:	$(f) \rightarrow (dest)$								
Status Affected:	Z								
Encoding:	00 1000 dfff ffff								
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1 Q2 Q3 Q4								
	Decode Read register 'f' Vrite to data dest								
Example	MOVF FSR, 0								
	After Instruction W = value in FSR register Z = 1								

MOVWF	Move W to f									
Syntax:	[label]	MOVWI	F f							
Operands:	$0 \le f \le 12$	27								
Operation:	$(W) \rightarrow (f)$	$(W) \rightarrow (f)$								
Status Affected:	None									
Encoding:	00	0000	lfff	ffff						
Description:	Move data 'f'.	from W r	egister to	register						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write register 'f'						
Example	MOVWF	OPTIC	ON_REG							
	Before In	struction	1							
			= 0xFI	=						
	After Inst	ruction	- 0,41							
		OPTION	= 0x4F	=						
		W	= 0x4F	=						

NOP	No Operation									
Syntax:	[label]	NOP								
Operands:	None									
Operation:	No operation									
Status Affected:	None									
Encoding:	00	0000	0xx0	0000						
Description:	No operati	ion.								
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	NOP	NOP	NOP						
Example	NOP									

RETFIE	Return from Interrupt								
Syntax:	[label]	RETFIE							
Operands:	None								
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,							
Status Affected:	None								
Encoding:	00	0000	0000	1001					
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.								
Words:	1								
Cycles:	2								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack					
2nd Cycle	NOP	NOP	NOP	NOP					
Example	RETFIE								

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	Load Option Register							
Syntax:	[label]	OPTION	٧						
Operands:	None								
Operation:	$(W) \rightarrow OF$	PTION							
Status Affected:	None								
Encoding:	00	0000	0110	0010					
Description: Words: Cycles: Example	The conter loaded in ti instruction patibility wi Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TON is a e user ca	W register DN registe rted for coo C5X produ readable/w n directly a	r are r. This de com- ucts. vritable address					
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.								

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width No Prescaler		0.5Tcy + 20*	—	_	ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
41	Tt0L	T0CKI Low Pulse Width No Prescaler		0.5Tcy + 20*	—	_	ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typt \	Max	Units	Conditions
No.							
130	TAD	A/D clock period	1.6	$\langle // / \rangle$	× _	μs	$VREF \ge 3.0V$
			2.0			μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source		$\langle \rangle$			(RC oscillator source)
		$\langle \rangle$	3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time		9.5TAD	—	—	
		(not including S/H	\sim				
		time). Note [*] 1	12				
132	TACQ	Acquisition time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

PIC16C71X

Applicable Devices 710 71 711 715

15.5 <u>Timing Diagrams and Specifications</u>

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	1,000	ns	HS osc mode (-04)
			50	—	1,000	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10		—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15		—	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

FIGURE 15-6: A/D CONVERSION TIMING

TABLE 15-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 71	2.0	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 71	2.0	_		μs	TOSC based, VREF full range
			PIC16 C 71	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 71	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time)	(Note 1)	_	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20		μs	
				5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2§	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert -	\rightarrow sample time	1.5§	—		TAD	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ These specifications ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

Package Group: Plastic SOIC (SO)									
		Millimeters		Inches					
Symbol	Min	Мах	Notes	Min	Мах	Notes			
α	0°	8°		0°	8°				
A	2.362	2.642		0.093	0.104				
A1	0.101	0.300		0.004	0.012				
В	0.355	0.483		0.014	0.019				
С	0.241	0.318		0.009	0.013				
D	11.353	11.735		0.447	0.462				
E	7.416	7.595		0.292	0.299				
е	1.270	1.270	Reference	0.050	0.050	Reference			
Н	10.007	10.643		0.394	0.419				
h	0.381	0.762		0.015	0.030				
L	0.406	1.143		0.016	0.045				
N	18	18		18	18				
CP	_	0.102		_	0.004				

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.