

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc71t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1		•								-	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	xxxx xxxx	uuuu uuuu						
85h	TRISA	— PORTA Data Direction Register									11 1111
86h	TRISB	PORTB Da	ta Direction F		1111 1111	1111 1111					
87h	—	Unimpleme	nted							—	—
88h	—	Unimplemented									_
89h	—	Unimpleme	nimplemented								—
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							—	_
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	_	Unimpleme	nted							-	—
90h	_	Unimpleme	nted							_	—
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	_	Unimpleme	nted							_	—
95h		Unimpleme	nted								
96h		Unimpleme	nted								_
97h		Unimpleme	nted								
98h		Unimpleme	nted								
99h		Unimpleme	nted								_
9Ah		Unimpleme	nted								
9Bh	_	Unimpleme	nted							_	—
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted								_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	—	-	—	—	—	-	PCFG1	PCFG0	00	00

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

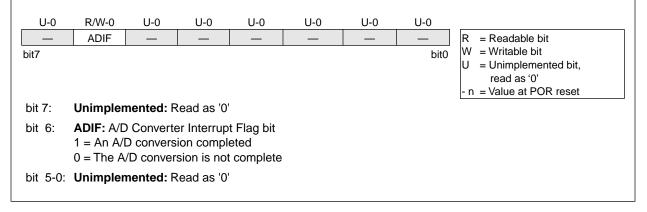
4.2.2.3 INTCON REGISTER

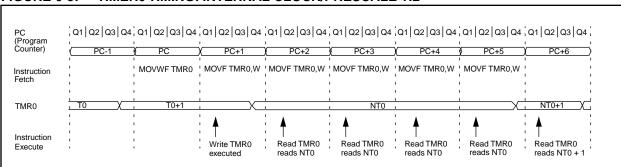
Applicable Devices 710 71 711 715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7				-			bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:⁽¹⁾ GI 1 = Enabl 0 = Disab	es all un-r	nasked in					
bit 6:	ADIE: A/E 1 = Enabl 0 = Disab	es A/D int	errupt	t Enable b	bit			
bit 5:		es the TM	R0 interru		bit			
bit 4:	1 = Enabl	es the RB	0/INT exte	rupt Enab ernal interi ernal inter	rupt			
bit 3:	1 = Enabl	es the RB	port char	upt Enable nge interru nge interru	pt			
bit 2:	TOIF: TMF 1 = TMR0 0 = TMR0) register h	nas overflo	wed (mus	t be cleare	d in softwa	ire)	
bit 1:	1 = The R	B0/INT ex	cternal inte	rupt Flag b errupt occu errupt did i	urred (must	be cleare	d in softwar	e)
bit 0:	1 = At lea	st one of	the RB7:R		it nanged stat anged state		e cleared in	software)
Note 1:		-enabled l	oy the RET					ed, the GIE bit may be uninten- ce Routine. Refer to Section 8.5
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to


4.2.2.5 PIR1 REGISTER


Applicable Devices 710 71 711 715

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

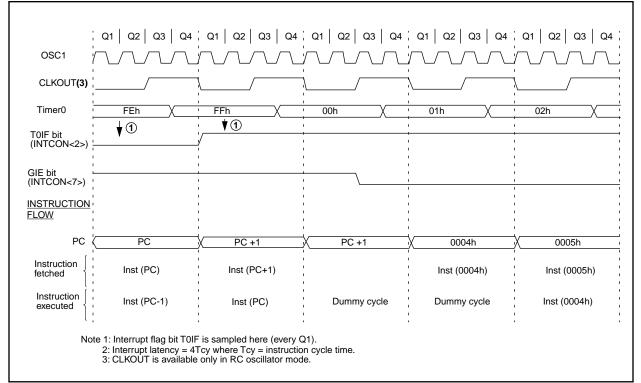

FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

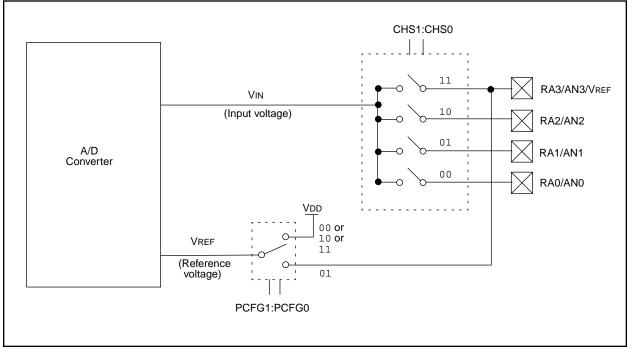
FIGURE 6-4: TIMER0 INTERRUPT TIMING

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.


2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

7.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 µs for all other PIC16C71X devices

Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD VS. DEVICE OPERATING FREQUENCIES, PIC16C71

AD Cloc	k Source (TAD)	Device Frequency									
Operation	ADCS1:ADCS0	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 µs					
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 µs	32.0 μs ⁽³⁾	96 μs ⁽³⁾					
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715

AD Clock	Source (TAD)	Device Frequency									
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz						
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs						
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾						
32Tosc	10	1.6 μs	6.4 μs	25.6 μs (3)	96 μs (3)						
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾						

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

2: These values violate the minimum required TAD time.

- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-3: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
89h	ADRES	A/D Res	sult Regist	ter		xxxx xxxx	uuuu uuuu				
08h	ADCON0	ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
88h	ADCON1	—	—	_	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	PORTA	Data Dire	ction Registe		1 1111	1 1111	

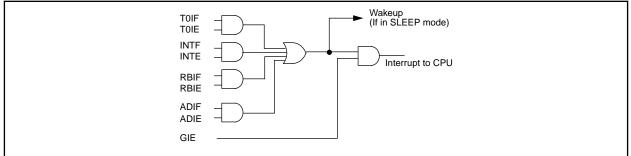
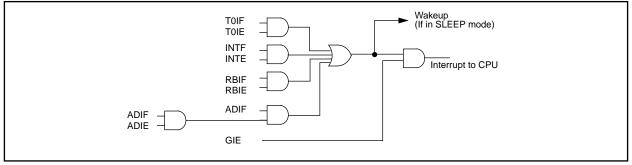

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—		—		—	—	-0	-0
8Ch	PIE1	—	ADIE	—	_	—	—	—	—	-0	-0
1Eh	ADRES	A/D Re	sult Regis	ster				•	•	xxxx xxxx	uuuu uuuu
1Fh	ADCON 0	ADCS 1	ADCS 0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON 1	_		_	—	—	—	PCFG1	PCFG0	00	00
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA4	TRISA 3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

FIGURE 8-17: INTERRUPT LOGIC, PIC16C710, 71, 711

FIGURE 8-18: INTERRUPT LOGIC, PIC16C715

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W
SWAPP	•	L
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

CLRF	Clear f							
Syntax:	[<i>label</i>] C	LRF f						
Operands:	$0 \le f \le 12$	7						
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	I						
Status Affected:	Z							
Encoding:	00	0001	lfff	ffff				
Description:	The contents of register 'f' are cleared and the Z bit is set.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register ˈfˈ	Process data	Write register 'f'				
Example	CLRF	FLAG	G_REG					
	Before Instruction FLAG_REG = 0x5A After Instruction							
	$FLAG_REG = 0x00$ Z = 1							

CLRW	Clear W										
Syntax:	[label]	CLRW									
Operands:	None										
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)									
Status Affected:	Z										
Encoding:	00	0001	0xxx	xxxx							
Description:	W register set.	is cleare	d. Zero bit	(Z) is							
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	NOP	Process data	Write to W							
Example	CLRW										
	Before In	struction	1								
		W =	0x5A								
	After Inst										
		W = Z =	0x00 1								
		-	•								
CLRWDT	Clear Wa	tchdog	Timer								
Syntax:	[label]	CLRWD	Т								
Operands:	None										
Operation:	$00h \rightarrow W$										
	$0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}$	r presca	ler,								
	$1 \rightarrow \overline{PD}$										
				$1 \rightarrow \overline{PD}$							
Status Affected:	TO, PD										
Status Affected: Encoding:	TO , PD	0000	0110	0100							
Encoding:	00 CLRWDT in	struction	resets the	Watch-							
	00	struction It also re	resets the sets the pi	Watch- rescaler							
Encoding:	00 CLRWDT in dog Timer of the WD	struction It also re	resets the sets the pi	Watch- rescaler							
Encoding: Description:	00 CLRWDT in dog Timer of the WD are set.	struction It also re	resets the sets the pi	Watch- rescaler							
Encoding: Description: Words:	00 CLRWDT in dog Timer of the WD are set. 1	struction It also re	resets the sets the pi	Watch- rescaler							
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer of the WD are set. 1 1	Instruction It also re T. Status I	resets the set <u>s</u> the pr bits TO and	Watch- re <u>sca</u> ler d PD							
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1	Istruction It also re T. Status I	resets the sets the pl pits TO and Q3 Process	Watch- rescaler d PD Q4 Clear WDT							
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 Q1 Decode	Q2	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT							
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 4 2 1 2 2 2 2 CLRWDT Before In	Q2 NOP Struction WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT							
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2	Q2 NOP Struction WDT cou	Q3 Process data	Watch- re <u>sc</u> aler d PD Q4 Clear WDT Counter							
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	Q2 NOP Struction WDT cou WDT cou WDT pres	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00 0							
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00							

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

Applicable Devices 710 71 711 715

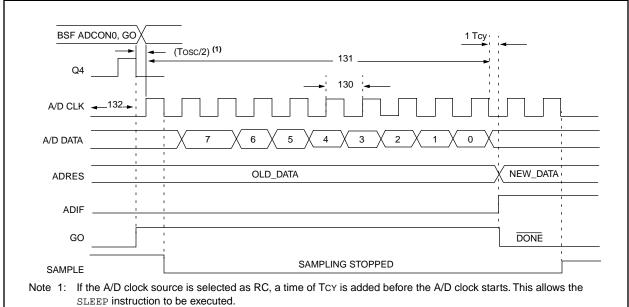
11.2 PIC16LC710-04 (Commercial, Industrial, Extended) DC Characteristics: PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHAF	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled			
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V			
D020 D021 D021A D021B D022	Power-down Current (Note 3) Brown-out Reset		- - -	7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, 0°C to +70°C VDD = 3.0V, WDT disabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +125°C ROB enabled VDD = 5.0V			
D023	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V			

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

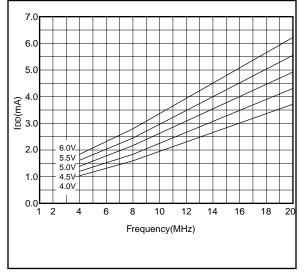
FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

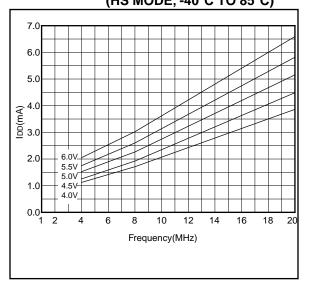
Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF $\ge 3.0V$
			PIC16LC710/711	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16LC710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H	_	9.5	_	TAD		
132	32 TACQ Acquisition time			Note 2	20	-	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock sta		Tosc/2§		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_		TAD	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.


This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.


2: See Section 7.1 for min conditions.

Applicable Devices 710 71 711 715

FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

Applicable Devices 710 71 711 715

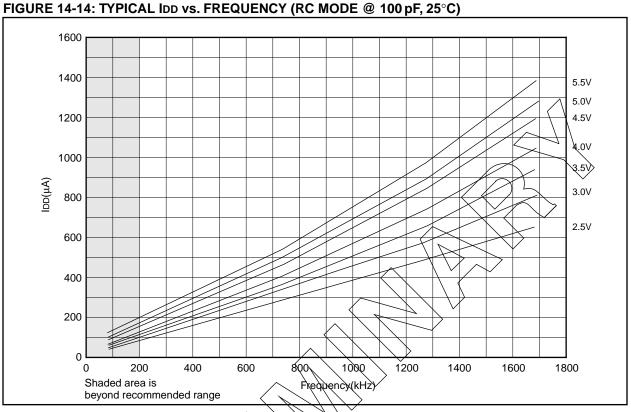
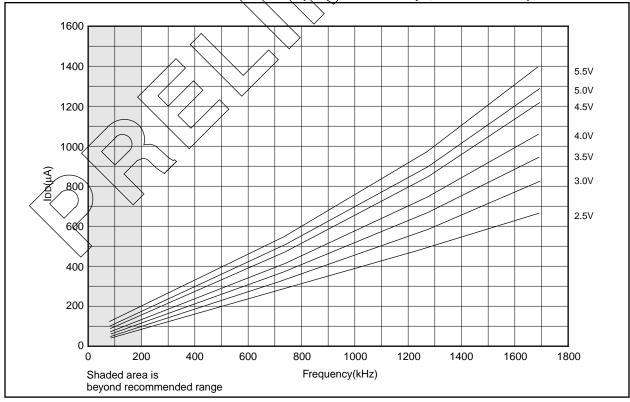



FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D020 D021 D021A	Power-down Current (Note 3)	IPD		7 1.0 1.0	28 14 16	μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C VDD = 4.0V, WDT disabled, -40° C to $+85^{\circ}$ C		

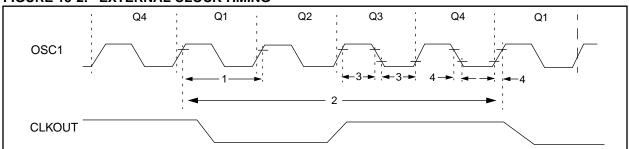
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

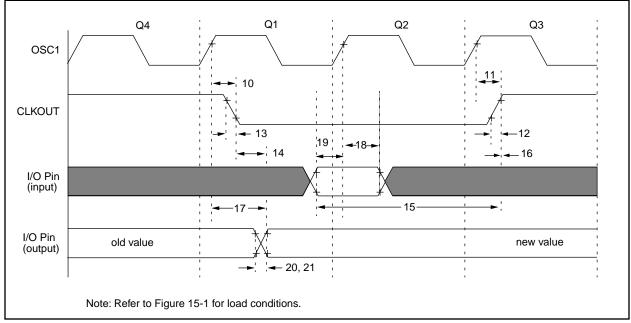
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 710 71 711 715

15.5 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			50	_	—	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	—	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15	_	_	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

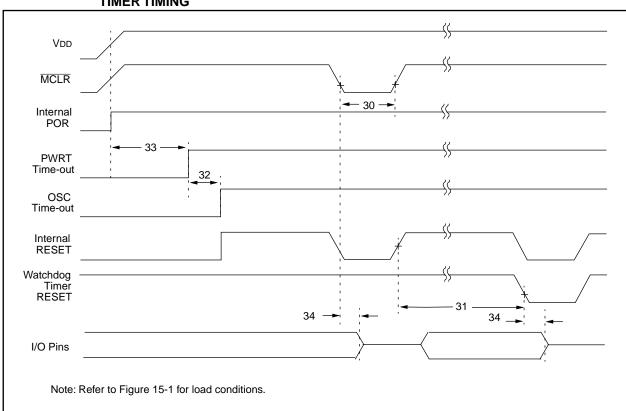
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

Applicable Devices 710 71 711 715

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	—		ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 71	100	—		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	-	ns	
20*	TioR	Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high or low time		20	—	_	ns	


* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 710 71 711 715

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	—	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	-	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Figure 7-3:	ADCON1 Register, PIC16C710/71/711
0	(Address 88h),
	PIC16C715 (Address 9Fh)
Figure 7 4	
Figure 7-4:	A/D Block Diagram
Figure 7-5:	Analog Input Model 40
Figure 7-6:	A/D Transfer Function 45
Figure 7-7:	Flowchart of A/D Operation 45
Figure 8-1:	Configuration Word for PIC16C71 47
Figure 8-2:	Configuration Word, PIC16C710/711 48
Figure 8-3:	Configuration Word, PIC16C71548
Figure 8-4:	Crystal/Ceramic Resonator Operation
Figure 0-4.	
	(HS, XT or LP OSC Configuration)
Figure 8-5:	External Clock Input Operation
	(HS, XT or LP OSC Configuration)
Figure 8-6:	External Parallel Resonant Crystal
-	Oscillator Circuit
Figure 8-7:	External Series Resonant Crystal
rigaro o r.	Oscillator Circuit
Figure 8-8:	RC Oscillator Mode
Figure 8-9:	Simplified Block Diagram of On-chip
	Reset Circuit52
Figure 8-10:	Brown-out Situations53
Figure 8-11:	Time-out Sequence on Power-up
0	(MCLR not Tied to VDD): Case 1
Figure 8-12:	Time-out Sequence on Power-up
rigule 0-12.	
	(MCLR Not Tied To VDD): Case 259
Figure 8-13:	Time-out Sequence on Power-up
	(MCLR Tied to VDD) 59
Figure 8-14:	External Power-on Reset Circuit
-	(for Slow VDD Power-up)60
Figure 8-15:	External Brown-out Protection Circuit 1 60
Figure 8-16:	External Brown-out Protection Circuit 2 60
Figure 8-17:	Interrupt Logic, PIC16C710, 71, 711
Figure 8-18:	Interrupt Logic, PIC16C71562
Figure 8-19:	INT Pin Interrupt Timing63
Figure 8-20:	Watchdog Timer Block Diagram65
Figure 8-21:	Summary of Watchdog Timer Registers 65
Figure 8-22:	Wake-up from Sleep Through Interrupt 67
Figure 8-23:	Typical In-Circuit Serial Programming
r igure e 20.	Connection
Figure 9-1:	General Format for Instructions
Figure 11-1:	Load Conditions94
Figure 11-2:	External Clock Timing95
Figure 11-3:	CLKOUT and I/O Timing
Figure 11-4:	Reset, Watchdog Timer, Oscillator
0.	Start-up Timer and Power-up Timer
	Timing
Figure 11 Fr	
Figure 11-5:	Brown-out Reset Timing
Figure 11-6:	Timer0 External Clock Timings
Figure 11-7:	A/D Conversion Timing 100
Figure 12-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode) 101
Figure 12-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode) 101
Figure 12-3:	
Figure 12-5.	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 102
Figure 12-4:	Maximum IPD vs. VDD
	(WDT Enabled, RC Mode) 102
Figure 12-5:	Typical RC Oscillator Frequency
-	vs. VDD
Figure 12-6:	Typical RC Oscillator Frequency
	vs. VDD
Figure 12-7:	Typical RC Oscillator Frequency
	vs. VDD
Figure 12-8:	Typical IPD vs. VDD Brown-out Detect
	Enabled (RC Mode) 103

Figure 12-9:	Maximum IPD vs. VDD Brown-out Detect
Figure 10 10	Enabled (85°C to -40°C, RC Mode) 103
Figure 12-10:	Typical IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
	(32 kHz, KC0/RC1 = 33 pr/33 pr, RC Mode)
Figure 12-11:	Maximum IPD vs. Timer1 Enabled
ga.o	(32 kHz, RC0/RC1 = 33 pF/33 pF,)
	85°C to -40°C, RC Mode) 103
Figure 12-12:	Typical IDD vs. Frequency
	(RC Mode @ 22 pF, 25°C) 104
Figure 12-13:	Maximum IDD vs. Frequency
	(RC Mode @ 22 pF, -40°C to 85°C) 104
Figure 12-14:	Typical IDD vs. Frequency
Figure 12 15	(RC Mode @ 100 pF, 25°C) 105 Maximum IDD vs. Frequency
Figure 12-15:	(RC Mode @ 100 pF, -40°C to 85°C) 105
Figure 12-16:	Typical IDD vs. Frequency
· · g · · · · · · · · ·	(RC Mode @ 300 pF, 25°C) 106
Figure 12-17:	Maximum IDD vs. Frequency
-	(RC Mode @ 300 pF, -40°C to 85°C) 106
Figure 12-18:	Typical IDD vs. Capacitance
	@ 500 kHz (RC Mode) 107
Figure 12-19:	Transconductance(gm) of
Figure 40.00	HS Oscillator vs. VDD 107
Figure 12-20:	Transconductance(gm) of LP Oscillator vs. VDD
Figure 12-21:	Transconductance(gm) of
	XT Oscillator vs. VDD 107
Figure 12-22:	Typical XTAL Startup Time vs.
0	VDD (LP Mode, 25°C) 108
Figure 12-23:	Typical XTAL Startup Time vs.
	VDD (HS Mode, 25°C) 108
Figure 12-24:	Typical XTAL Startup Time vs.
E	VDD (XT Mode, 25°C) 108
Figure 12-25:	Typical IDD vs. Frequency (LP Mode, 25°C)
Figure 12-26:	Maximum IDD vs. Frequency
1 iguro 12 20.	(LP Mode, 85°C to -40°C) 109
Figure 12-27:	Typical IDD vs. Frequency
0	(XT Mode, 25°C) 109
Figure 12-28:	Maximum IDD vs. Frequency
	(XT Mode, -40°C to 85°C) 109
Figure 12-29:	Typical IDD vs. Frequency
F ilment 10 ,000	(HS Mode, 25°C) 110
Figure 12-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C) 110
Figure 13-1:	Load Conditions
Figure 13-2:	External Clock Timing
Figure 13-3:	CLKOUT and I/O Timing 119
Figure 13-4:	Reset, Watchdog Timer, Oscillator
	Start-Up Timer, and Power-Up Timer
F : 10 F	Timing
Figure 13-5:	Brown-out Reset Timing
Figure 13-6: Figure 13-7:	Timer0 Clock Timings
Figure 14-1:	Typical IPD vs. VDD
. iguic 14-1.	(WDT Disabled, RC Mode)
Figure 14-2:	Maximum IPD vs. VDD
č	(WDT Disabled, RC Mode) 125
Figure 14-3:	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 126
Figure 14-4:	Maximum IPD vs. VDD
Figure 14 5	(WDT Enabled, RC Mode) 126
Figure 14-5:	Typical RC Oscillator Frequency vs. VDD
	120