
NXP USA Inc. - PNX1301EH,557 Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application
Specific: Tailored Solutions for Precision and
Performance

Embedded - Microcontrollers - Application Specific
represents a category of microcontrollers designed with
unique features and capabilities tailored to specific
application needs. Unlike general-purpose
microcontrollers, application-specific microcontrollers are
optimized for particular tasks, offering enhanced
performance, efficiency, and functionality to meet the
demands of specialized applications.

What Are Embedded - Microcontrollers -
Application Specific?

Application-specific microcontrollers are engineered to
excel in particular roles or environments, making them
ideal for applications where general-purpose
microcontrollers might fall short. These microcontrollers
integrate custom features and peripherals that align with
the specific requirements of an application, such as
specialized communication protocols, real-time processing
capabilities, or unique power management needs. By
focusing on particular use cases, they provide solutions
that are both efficient and effective, reducing the need for
additional components and simplifying system design.

Applications of Embedded - Microcontrollers
- Application Specific

The versatility of application-specific microcontrollers
enables their use across a wide range of industries and
applications. In automotive systems, these
microcontrollers are used for tasks like engine control,
advanced driver assistance systems (ADAS), and in-vehicle
communication. In industrial automation, they control
machinery, manage data acquisition, and handle complex
sensor interfacing. Consumer electronics benefit from
these microcontrollers in applications such as smart home
devices, wearable technology, and advanced audio
equipment. Additionally, in medical devices, they provide
precise control for diagnostic and therapeutic equipment,
ensuring reliability and accuracy in critical situations.

Common Subcategories

Within the Embedded - Microcontrollers - Application
Specific category, several subcategories address different
application needs. Automotive Microcontrollers are
designed to meet stringent automotive standards and
provide robust performance in harsh conditions.
Industrial Microcontrollers offer features tailored for
automation, including real-time processing and robust I/O
capabilities. Consumer Electronics Microcontrollers
are optimized for low power consumption and integration
with various sensors and communication modules.
Medical Microcontrollers emphasize reliability,
precision, and compliance with medical device standards.

Details

Product Status Obsolete

Applications Multimedia

Core Processor TriMedia™

Program Memory Type -

Controller Series Nexperia

RAM Size 48K x 8

Interface I²C, 2-Wire Serial

Number of I/O 169

Voltage - Supply 2.375V ~ 2.625V

Operating Temperature 0°C ~ 85°C

Mounting Type Surface Mount

Package / Case 292-HBGA

Supplier Device Package 292-BGA

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/pnx1301eh-557

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pnx1301eh-557-4512732
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific

PNX1300/01/02/11 Data Book Philips Semiconductors
15.4 VLD Input . 15-2

15.5 VLD Output . 15-3

15.5.1 Macroblock Header Output Data . 15-3

15.5.2 Run-Level Output Data . 15-4

15.6 VLD Time Sharing . 15-4

15.7 MMIO Registers . 15-4

15.7.1 VLD Status (VLD_STATUS) . 15-4

15.7.2 VLD Interrupt Enable (VLD_IMASK) . 15-4

15.7.3 VLD Control (VLD_CTL) . 15-5

15.8 VLD DMA Registers . 15-5

15.8.1 DMA Input . 15-5

15.8.2 Macroblock Header Output DMA . 15-5

15.8.3 Run-Level Output DMA . 15-5

15.9 VLD Operational Registers . 15-7

15.9.1 VLD Command (VLD_COMMAND) . 15-7

15.9.2 VLD Shift Register (VLD_SR) . 15-7

15.9.3 VLD Quantizer Scale (VLD_QS) . 15-7

15.9.4 VLD Picture Info (VLD_PI) . 15-8

15.10 Error Handling . 15-8

15.11 Interrupt . 15-8

15.12 RESET . 15-8

15.13 Endian-ness . 15-8

15.14 Power Down . 15-8

15.15 References . 15-8

16 I2C Interface
16.1 I2C Overview . 16-1

16.2 Compared TO TM-1000 . 16-1

16.3 External Interface . 16-1

16.4 I2C Register Set . 16-1

16.4.1 IIC_AR Register . 16-1

16.4.2 IIC_DR Register . 16-2

16.4.3 IIC_SR Register . 16-3

16.4.4 IIC_CR Register . 16-4

16.5 I2C Software Operation Mode . 16-5

16.6 I2C Hardware Operation Mode . 16-5

16.6.1 Slave NAK . 16-6

16.7 I2C Clock Rate Generation . 16-7

17 Synchronous Serial Interface
17.1 Synchronous Serial Interface Overview . 17-1
14 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7 PNX1300 Series Power Consumption

The power consumption of PNX1300 Series is depen-
dent on the activity of the DSPCPU, the amount of pe-
ripherals being used, the frequency at which the system
is running as well as the loads on the pins.

The first section presents the power consumption for
known applications. The other power related sections
present the maximum power consumption. These maxi-
mum values are obtained with a ‘fake’ application that
turns on all the peripherals and runs intensive compute
on the CPU.

1.9.7.1 Power Consumption for
Applications on PNX1300 Series

The Table 1-1 and Table 1-2 present the power con-
sumption for two typical applications:

• The DVD playback includes video display using the
VO peripheral and audio streaming using AO periph-
eral. The bitstream is brought into the TM-1300 sys-
tem over the PCI peripheral. The VLD co-processor
is used to perform the bitstream parsing. The bit-
stream is not scrambled therefore the DVDD co-pro-
cessor is not used and it is turned off.

• The MPEG4 application includes video and audio
playback of an enocded CIF stream. The bit stream
is brought into the PNX1300 system over the PCI
peripheral. The Video and Audio subsystems of the
PNX1300 were used to render the video and sound
from the decoded stream into the video monitor and
speakers.

• The H263 video conferencing application includes
the following steps. It captures a CCIR656 video
stream at 30 frames/second using the VI peripheral.
The incoming video stream is downscaled, on the fly,
to SIF resolution by VI. The captured frames are then
downscaled to a QSIF resolution using the ICP co-
processor. The resulting QSIF image is sent over the
PCI bus via the ICP co-processor to a SVGA card
(PC monitor display) and encoded by the DSPCPU.
The resulting bitstream is then decoded by the
DSPCPU and displayed as a SIF image on the same
PC monitor (also using the ICP co-processor). All the
encoding/decoding part is done in the YUV color
space. The display is in the RGB16 color space.
Software is not optimized.

Three main technics may be applied to reduce the ‘Out
of the Box’ power consumption.

• Turn off the unused peripherals. Refer to Section
21.6 on pag e21-2.

• Run the system at the required speed, i.e. some
application may not require to run at the full speed
grade of the chip.

• Powerdown the system or the DSPCPU each time
the DSPCPU reached the Idle task.

A more detailed description can be found in the applica-
tion note ‘TM-1300 Power Saving Features’ available at
the following website:

http://www.semiconductors.philips.com/trimedia/

As previously mentioned the Table 1-1 and Table 1-2
show that the final power consumption for a realistic ap-
plication may be lower than the values reported in the
next section.

Based on these results and the following section, the
power consumption of PNX1300 Series, using an artifi-

cial scenario depicting an extremely demanding applica-
tion, for commonly used speeds, is as follows:

• PNX1300/01/02 is < 3.4 W @ 166:133 MHz
• PNX1311 is < 2.9 W @ 166:133 MHz
• PNX1302 is < 4.0 W @ 200:133 MHz

Table 1-1. Power Consumption of Example Applications for PNX1300/01/02 (Vdd = 2.5V)

APPLICATIONS
AFTER
POWER

OPTIMIZATIONS

WITHOUT
POWER

OPTIMIZATIONS

Optimizations

Unused
Peripherals
Turned Off

System Speed
Adjustment

Idle task power
management

DVD Playback 2.2 W 3.0 W @ 180 MHz 2.6 W @ 180 MHz 2.6 W @ 180 MHz 2.2 W @ 180 MHz

H.263 Vconf 1.7 W 2.9 W @ 166 MHz 2.7 W @ 166 MHz 1.9 W @ 111 MHz 1.7 W @ 111 MHz

Table 1-2. Power Consumption of Example Applications for PNX1311(Vdd = 2.2V)

APPLICATIONS
AFTER
POWER

OPTIMIZATIONS

WITHOUT
POWER

OPTIMIZATIONS

Optimizations

Unused
Peripherals
Turned Off

System Speed
Adjustment

Idle task power
management

MPEG4 (CIF) A/V
Playback 1.2 W

2.5 W @ 166 MHz 2.1 W @ 166 MHz 1.3 W @ 70 MHz 1.2 W @ 70 MHz

H.263 Vconf 1.5 W 2.4 W @ 166 MHz 2.2 W @ 166 MHz 1.7 W @ 111 MHz 1.5 W @ 111 MHz
PRELIMINARY SPECIFICATION 1-13

PNX1300/01/02/11 Data Book Philips Semiconductors
3-16 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors
8.7 AUDIO IN OPERATION

Figure 8-5, Table 8-8 and Table 8-9 describe the func-
tion of the control and status fields of the AI unit. To en-
sure compatibility with future devices, undefined bits in
MMIO registers should be ignored when read, and writ-
ten as ’0’s.

The AI unit is reset by a PNX1300 hardware reset, or by
writing 0x80000000 to the AI_CTL register. Upon RE-
SET, capture is disabled (CAP_ENABLE = 0), and
buffer1 is the active buffer (BUF1_ACTIVE=1). A mini-
mum of 5 valid AI_SCK clock cycles is required to allow
internal AI circuitry to stabilize before enabling capture.
This can be accomplished by programming AI_FREQ
and AI_SERIAL and then delaying for the appropriate
time interval.

Programing of the AI_SERIAL MMIO register needs to
follow the following sequence order:

• set AI_FREQ to ensure that a valid clock is gener-
ated (Only when AI is the master of the audio clock
system)

• MMIO(AI_CTL) = 1 << 31; /* Software Reset */
• MMIO(AI_SERIAL) = 1 << 31; /* sets serial-master

mode, starts AI_SCK */
• MMIO(AI_SERIAL) = (1 << 31) | (SCKDIV value); /*

then set DIVIDER values */

The DSPCPU initiates capture by providing two equal
size empty buffers and putting their base address and
size in the BASEn and SIZE registers. Once two valid (lo-
cal memory) buffers are assigned, capture can be en-
abled by writing a ‘1’ to CAP_ENABLE. The AI unit hard-
ware now proceeds to fill buffer 1 with input samples.
Once buffer 1 fills up, BUF1_FULL is asserted, and cap-
ture continues without interruption in buffer 2. If
BUF1_INTEN is enabled, a SOURCE 11 interrupt re-
quest is generated.

Table 8-8. AI MMIO control fields

Field Name Description

RESET The AI logic is reset by writing a 0x80000000
to AI_CTL. This bit always reads as a ‘0’.
See Section 8.7, “Audio In Operation” for
details on software reset.

DIAGMODE 0 ⇒ normal operation (RESET default)
1 ⇒ diagnostic mode (see Section 8.11,
“Diagnostic Mode”)

SLEEPLESS 0 ⇒ participate in global power down
(RESET default)
1 ⇒ refrain from participating in power down

CAP_ENABLE Capture Enable flag. If 1, AI unit captures
samples and acts as DMA master to write
samples to local SDRAM. If ’0’ (RESET
default), AI unit is inactive.

BUF1_INTEN Buffer 1 full Interrupt Enable. Default 0.
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if buffer 1 full

BUF2_INTEN Buffer 2 full interrupt enable. Default 0
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if buffer 2 full

HBE_INTEN HBE Interrupt Enable. Default 0.
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if a highway
bandwidth error occurs.

OVR_INTEN Overrun Interrupt Enable. Default 0
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if an overrun
error occurs

ACK1 Write a ’1’ to clear the BUF1_FULL flag and
remove any pending BUF1_FULL interrupt
request. This bit always reads as 0.

ACK2 Write a ’1’ to clear the BUF2_FULL flag and
remove any pending BUF2_FULL interrupt
request. This bit always reads as 0.

ACK_HBE Write a ’1’ to clear the HBE flag and
remove any pending HBE interrupt request.
This bit always reads as 0.

ACK_OVR Write a ’1’ to clear the OVERRUN flag and
remove any pending OVERRUN interrupt
request. This bit always reads as 0.

Table 8-9. AI MMIO status fields (read only)

Field Name Description

BUF1_ACTIVE • If ‘1’, buffer 1 will be used for the next
incoming sample. If ‘0’, buffer 2 will receive
the next sample.

• 1 after RESET.

BUF1_FULL • If ‘1’, buffer 1 is full. If BUF1_INTEN is also
‘1’, an interrupt request (source 11) is
pending. BUF1_FULL is cleared by writing
a ‘1’ to ACK1, at which point the AI hard-
ware will assume that BASE1 and SIZE
describe a new empty buffer.

• 0 after RESET.

BUF2_FULL • If ‘1’, buffer 2 is full. If BUF2_INTEN is also
‘1’, an interrupt request (source 11) is
pending. BUF2_FULL is cleared by writing
a ‘1’ to ACK2, at which point the AI hard-
ware will assume that BASE2 and SIZE
describe a new empty buffer.

• 0 after RESET.

HBE • Highway Bandwidth Error. Condition raised
when the 64-byte internal AI buffer is not
yet written to SDRAM when a new input
sample arrives. Indicates insufficient allo-
cation of PNX1300 highway bandwidth for
the audio sampling rate/mode. Refer to
Chapter 20, “Arbiter.”

• 0 after RESET.

OVERRUN • OVERRUN error occurred, i.e. the CPU did
not provide an empty buffer in time, and 1
or more samples were lost. If OVR_INTEN
is also 1, an interrupt request (source 11)
is pending. The OVERRUN flag can ONLY
be cleared by writing a ‘1’ to ACK_OVR.

• 0 after RESET.

Table 8-9. AI MMIO status fields (read only)

Field Name Description
8-6 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors
11.2 PCI INTERFACE AS AN INITIATOR

The following classes of operations invoked by PNX1300
cause the PCI interface to act as a PCI initiator:

• Transparent, single-word (or smaller) transactions
caused by DSPCPU loads and stores to the PCI
address aperture

• Explicitly programmed single-word I/O or configura-
tion read or write transactions

• Explicitly programmed multi-word DMA transactions.
• ICP DMA

11.2.1 DSPCPU Single-Word Loads/Stores

From the point of view of programs executed by
PNX1300’s DSPCPU, there are three apertures into
PNX1300’s 4-GB memory address space:

• SDRAM space (0.5 to 64 MB; programmable)
• MMIO space (2 MB)
• PCI space

MMIO registers control the positions of the address-
space apertures (see Chapter 3, “DSPCPU Architec-
ture”). The SDRAM aperture begins at the address spec-
ified in the MMIO register DRAM_BASE and extends up-
ward to the address in the DRAM_LIMIT register. The 2-
MB MMIO aperture begins at the address in
MMIO_BASE (defaults to 0xEFE00000 after power-up).
All addresses that fall outside these two apertures are
assumed to be part of the PCI address aperture. Refer-
ences by DSPCPU loads and stores to the PCI aperture
are reflected to external PCI devices by the coordinated
action of the data cache and PCI interface.

When a DSPCPU load or store targets the PCI aperture
(i.e., neither of the other two apertures), the DSPCPU’s
data cache automatically carries out a special sequence
of events. The data cache writes to the PCI_ADR and (if
the DSPCPU operation was a store) PCI_DATA regis-
ters in the PCI interface and asserts (load) or de-asserts
(store) the internal signal pci_read_operation (a direct
connection from the data cache to the PCI interface).

While the PCI interface executes the PCI bus transac-
tion, the DSPCPU is held in the stall state by the data
cache. When the PCI interface has completed the trans-
action, it asserts the internal signal pci_ready (a direct
connection from the PCI interface to the data cache).

When pci_ready is asserted, the data cache finishes the
original DSPCPU operation by reading data from the
PCI_DATA register (if the DSPCPU operation was a
load) and releasing the DSPCPU from the stall state.

Explicit Writes to PCI_ADR, PCI_DATA

The PCI_ADR and PCI_DATA registers are intended to
be used only by the data cache. Explicit writes are not al-
lowed and may cause undetermined results and/or data
corruption.

11.2.2 I/O Operations

Explicit programming by DSPCPU software is the only
way to perform transactions to PCI I/O space. DSPCPU
software writes three MMIO registers in the following se-
quence:

1. The IO_ADR register.
2. The IO_DATA register (if PCI operation is a write).
3. The IO_CTL register (controls direction of data move-

ment and which bytes participate).

The PCI interface starts the PCI-bus I/O transaction
when software writes to IO_CTL. The interface can raise
a DSPCPU interrupt at the completion of the I/O transac-
tion (see BIU_CTL register definition in Section 11.6.5,
“BIU_CTL Register”) or the DSPCPU can poll the appro-
priate status bit (see BIU_STATUS register definition in
Section 11.6.4, “BIU_STATUS Register”). Note that PCI
I/O transactions should NOT be initiated if a PCI config-
uration transaction described below is pending. This is a
strict implementation limitation.

The fully detailed description of the steps needed can be
found in Section 11.6.13, “IO_CTL Register.”

11.2.3 Configuration Operations

As with I/O operations, explicit programming by
DSPCPU software is the only way to perform transac-
tions to PCI configuration space. DSPCPU software
writes three MMIO registers in the following sequence:

1. The CONFIG_ADR register.
2. The CONFIG_DATA register (if PCI operation is a

write).
3. The CONFIG_CTL register (controls direction of data

movement and which bytes participate).

The PCI interface starts the PCI-bus configuration trans-
action when software writes to CONFIG_CTL. As with
the I/O operations, the biu_status and BIU_CTL registers
monitor the status of the operation and control interrupt
signaling. Note that PCI configuration space transactions
should NOT be initiated if a PCI I/O transaction de-
scribed above is pending. This is a strict implementation
limitation.

The fully detailed description of the steps needed can be
found in Section 11.6.10, “CONFIG_CTL Register.”

11.2.4 DMA Operations

The PCI interface can operate as an autonomous DMA
engine, executing block-transfer operations at maximum
PCI bandwidth. As with I/O and configuration operations,
DSPCPU software explicitly programs DMA operations.

General-purpose DMA
For DMA between SDRAM and PCI, DSPCPU software
writes three MMIO registers in the following sequence:

1. The SRC_ADR and DEST_ADR registers.
2. The DMA_CTL register (controls direction of data

movement and amount of data transferred).
11-2 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors
The ICP block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that ICP is in an idle state before
block level power down is activated.

14.6.3 ICP Operation

The DSPCPU commands the ICP to perform an opera-
tion by loading the DP with a pointer to a parameter
block, loading the MPC with a microprogram start ad-
dress and setting Busy in the SR. For example to cause
the ICP to scale and filter an image, set up a block of
SDRAM with the image and filter parameters, load the
MPC with the starting address of the appropriate micro-
program entry point in SDRAM, load the DP with the ad-
dress of the parameter block, and set Busy in the SR by
writing a ‘1’ to it. When the filter operation is complete,
the ICP will set Done and issue an interrupt. The
DSPCPU clears the interrupt by writing a ‘1’ to
ACK_DONE. Note: The interrupt should be set up as a
‘level triggered.’

When the DSPCPU sets Busy, the MCU begins reading
the microprogram from SDRAM. The microinstructions
are read in from SDRAM as required by the ICP, and in-
ternal pre-fetching is used to eliminate delays. Setting
Busy enables the MCU clock, the first block of microin-
structions is automatically read in, and the MCU begins
instruction execution at the current address in the MPC.
Clearing Busy stops the MCU clock. Busy can be cleared
by hardware reset, by the MCU, or by the DSPCPU.
Hardware reset clears the Status register, including Busy
and Done, and internal registers, such as the TCR.
When the MCU completes a microprogram operation,
the microprogram typically clears Busy and sets Done,
causing an interrupt if IE is enabled.

The DSPCPU performs a software reset by clearing
(writing a ‘0’ to) Busy and by writing a ‘1’ to Reset. The
DSPCPU can also set Done to force a hardware inter-
rupt, if desired.

14.6.4 ICP Microprogram Set

The ICP comes with a factory-generated microprogram
set which implements the functions of the ICP. The mi-
croprogram set includes the following functions:

1. Loading the filter coefficient RAMs.
2. Horizontal scaling and filtering from SDRAM to

SDRAM of an input image to an output image. The in-
put and output images can be of any size and position
that fits in SDRAM. The scaling factors are, in gener-
al, limited only by input and output image sizes.

3. Vertical scaling and filtering from SDRAM to SDRAM
of an input image to an output image. The input and
output images can be of any size and position that fits
in SDRAM. The scaling factors are, in general, limited
only by input and output image sizes.

4. Horizontal scaling, filtering and YUV to RGB conver-
sion of an input image from SDRAM to an output im-
age to PCI or SDRAM, with an alpha-blended and

chroma-keyed RGB overlay and a bit mask. The input
and output images can be of any size and position
that fit in SDRAM and can be output to the PCI bus or
SDRAM. In general, scaling factors are limited only by
input and output image sizes.

The microprogram is supplied with the ICP as part of the
device driver. The entry point in the microprogram de-
fines which ICP operation is to be done. The entry points
are given below in terms of word offsets from the begin-
ning of the microprogram:

Offset Function

 0 Load coefficients

 1 Horizontal scaling and filtering

 2 Vertical scaling and filtering

 3 Horizontal scaling, filtering, YUV to RGB
conversion, bit masking (PCI) and over-
lay (PCI) with alpha blending and
chroma keying

14.6.5 ICP Processing Time

The processing time for typical operations on typical pic-
ture sizes has been measured.

Measurements were performed with the following config-
uration:

• CPU clock and SDRAM clock set to 100 MHz
• PCI clock set to 33MHz
• All measurement with PCI as pixel destination were

done with an Imagine 128 Series II graphics card,
which never caused a slowdown of the ICP opera-
tion.

• TRITON2 mother-board with SB82437UX and
SB82371SB based Intel Pentium chipset.

• PNX1300 arbiter set to default settings
• PNX1300 latency timer set to maximum value = 0xf8.
• Overlay sizes were the same as picture sizes.

Results are tabulated below for three different cases of
available memory bandwidth:

1. No other load to SDRAM, i.e. full SDRAM bandwidth
available for ICP. See Table 14-5.

2. SDRAM memory loaded to 95% of its bandwidth by
DCACHE traffic from DSPCPU. Priority delay = 1, i.e.
ICP did wait one block time before competing for memo-
ry. See Table 14-6.

3. SDRAM memory loaded to 95% of its bandwidth by
DCACHE traffic from DSPCPU. Priority delay = 16, i.e.
ICP did wait 16 block times before competing for memo-
ry. See Table 14-7.

Note: A load of 95% of the memory bandwidth is very
rarely found in a real system. So the results in these ta-
bles may be useful to estimate upper bounds for the
computation time in a loaded system.

The priority delays were set to the minimum and maxi-
mum possible values, so the computation time for other
priority delay values should be somewhere in between.
14-18 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.10.1 SSI Control Register (SSI_CTL)

SSI_CTL is a 32-bit read/write control register used to direct the operation of the SSI. The value of this register after a
hardware reset is 0x00F00000.

Table 17-5. SSI control register (SSI_CTL) fields.

Field Description

TXR Transmitter Software Reset (Bit 31). Setting TXR performs the same functions as a hardware reset. Resets all
transmitter functions. A transmission in progress is interrupted and the data remaining in the TxSR is lost. The
TxFIFO pointers are reset and the data contained will not be transmitted, but the data in the SSI_TxDR and/or
TxFIFO are not explicitly deleted. The transmitter status and interrupts are all cleared. This is an action bit. This bit
always reads ‘0’. Writing a ‘1’ in combination with writing a ‘1‘ in the RXR field will initiate a reset for the SSI module.
Note: this bit is always set together with RXR because a separate transmitter or receiver reset is not implemented.

RXR Receiver Software Reset (Bit 30). Setting RXR performs the same functions as a hardware reset. Resets all
receiver functions. A reception in progress is interrupted and the data collected in the RxSR is lost. The RxFIFO
pointers are reset, and the SSI will not generate an interrupt to DSPCPU to retrieve data in the SSI_RxDR and/or
RxFIFO. The data in the SSI_RxDR and/or RxFIFO is not explicitly deleted. The receiver status and interrupts are
all cleared.This is an action bit.This bit always reads ‘0’. Writing a ‘1’ in combination with writing a ‘1‘ in the TXR field
will initiate a reset for the SSI module. Note: this bit is always set together with TXR, because a separate transmitter
or receiver reset is not implemented.

TXE Transmitter Enable (Bit 29). TXE enables the operation of the transmit shift register state machine. When TXE is set
and a frame sync is detected, the transmit state machine of the SSI is begins transmission of the frame. When TXE
is cleared, the transmitter will be disabled after completing transmission of data currently in the TxSR. The serial out-
put (SSI_TxDATA) is three-stated, and any data present in SSI_TxDR and/or TxFIFO will not be transmitted (i.e., data
can be written to SSI_TxDR with TXE cleared; TDE can be cleared, but data will not be transferred to the TxSR).

Status fields updated by the Transmit state machine are not updated or reset when an active transmitter is disabled.

RXE Receive Enable (Bit 28). When RXE is set, the receive state machine of the SSI is enabled. When this bit is cleared,
the receiver will be disabled by inhibiting data transfer into SSI_RxDR and/or RxFIFO. If data is being received while
this bit is cleared, the remainder of that 16-bit word will be shifted in and transferred to the SSI RxFIFO and/or
SSI_RxDR.

Status fields updated by the Receive state machine are not updated or reset when an active receiver is disabled.

TCP Transmit Clock Polarity (Bit 27). The TCP bit value should only be changed when the transmitter is disabled. TCP
controls on which edge of TxCLK data is output. TCP=0 causes data to be output at rising edge of TxCLK, TCP=1
causes data to be output at falling edge of TxCLK.

RCP Receive Clock Polarity (Bit 26). RCP controls which edge of RxCLK samples data. The data is sampled at rising edge
when RCP = ‘1’ or falling edge when RCP = ‘0’.

TSD Transmit Shift Direction (Bit 25). TSD controls the shift direction of transmit shift register (TxSR). Transmit data is
transmitted MSB first when TSD = ‘0’ or LSB first otherwise. The operation of this bit is explained in more detail in
section 17.8.

RSD Receive Shift Direction (Bit 24). The RSD bit value should only be changed when the receiver is disabled. RSD con-
trols the shift direction of receive shift register (RxSR). Receive data is received MSB first when RSD = ‘0’, LSB first
otherwise. The operation of this bit is explained in more detail in section 17.8.

IO1 Mode Select SSI_IO1 pin (Bit 23-22). The IO1 field value should only be changed when the transmitter and receiver
are disabled. The IO1[1:0] bits are used to select the function of SSI_IO1 pin. The function may be selected as listed
in table Table 17-6.

IO2 Mode Select SSI_IO2 pin (Bit 21-20). The IO2 field value should only be changed when the transmitter and receiver
are disabled. The IO2[1:0] bits are used to select the function of SSI_IO2 pin. The function may be selected according
to Table 17-7

WIO1 Write IO1 (Bit 19). Value written here appears on the SSI_IO1 pin when the pin is configured to be a general purpose
output.

WIO2 Write IO2 (Bit 18). Value written here appears on the SSI_IO2 pin when this pin is configured to be a general purpose
output.

TIE Transmit Interrupt Enable (Bit 17). Enables interrupt by the TDE flag in the SSI status register (transmit needs refill)
Also enables interrupt of the TUE (transmitter underrun error) and TXFES (transmit framing error)

RIE Receive Interrupt Enable (Bit 16). When RIE is set, the DSPCPU will be interrupted when RDF in the SSI status reg-
ister is set (receive complete). It will also be interrupted on ROE (receiver overrun error) and on RXFES (receive fram-
ing error).

FSS Frame Size Select (Bits 15-12). The FSS[3:0] bits control the divide ratio for the programmable frame rate divider
used to generate the frame sync pulses. The valid setup value ranges from 1 to 16 slot(s). The value ‘16’ is accom-
plished by storing a 0 in this field.
PRELIMINARY SPECIFICATION 17-9

Philips Semiconductors PCI-XIO External I/O Bus
PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Figure 22-15. PCI-XIO Bus timing: DMA burst read, 2 bytes, 1 or more wait states

PCI_AD[23:0]: ADDR XIO Addrs 1PCI Addr

PCI_AD[31:24]: DATA PCI Addr

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Com

PCI_C/BE1#/IOWR# PCI Com

PCI_C/BE0#/IORD# PCI Com

Read Sample Points

Read Data 1

wait(k) data 1 wait(k) data 2

XIO Addrs 2

Read Data 2

Frame Turn

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Figure 22-16. PCI-XIO Bus timing: DMA burst write, 2 bytes, 1 or more wait states

PCI_AD[23:0]: ADDR PCI Addr

PCI_AD[31:24]: DATA PCI Addr

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Com

PCI_C/BE1#/IOWR# PCI Com

PCI_C/BE0#/IORD# PCI Com

wait(k) hold data2 wait(k)

XIO Addrs 1

Frame data1

XIO Addrs 2

hold idle

XIO Data1 XIO Data 2
PRELIMINARY SPECIFICATION 22-11

PNX1300/01/02/11 Data Book Philips Semiconductors

A-11 PRELIMINARY SPECIFICATION

asri Arithmetic shift right by immediate amount

SYNTAX
[IF rguard] asri(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:31–n> ← rsrc1<31>
rdest<30–n:0> ← rsrc1<31:n>

}

ATTRIBUTES
Function unit shifter
Operation code 10
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the asri operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest that is equal to rsrc1 arithmetically shifted right by n bits. The value of n must be between 0 and 31,
inclusive. The MSB (sign bit) of rsrc1 is replicated as needed to fill vacated bits from the left.

The asri operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x7008000f asri(1) r30 → r50 r50 ← 0x38040007

r30 = 0x7008000f asri(2) r30 → r60 r60 ← 0x1c020003

r10 = 0, r30 = 0x7008000f IF r10 asri(4) r30 → r70 no change, since guard is false

r20 = 1, r30 = 0x7008000f IF r20 asri(4) r30 → r80 r80 ← 0x07008000

r40 = 0x80030007 asri(4) r40 → r90 r90 ← 0xf8003000

r30 = 0x7008000f asri(31) r30 → r100 r100 ← 0x00000000

r40 = 0x80030007 asri(31) r40 → r110 r110 ← 0xffffffff

SSS

Right shifter

32 bits from rsrc1

031

rdest
28

SSS

Intermediate result
(example: n = 3) S

S

031

rsrc1

Shift amount n
from operation modifier

S

SEE ALSO
asl asli asr lsl lsli lsr

lsri rol roli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-16

Bitwise logical exclusive-OR

SYNTAX
[IF rguard] bitxor rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 ⊕ rsrc2

ATTRIBUTES
Function unit alu
Operation code 48
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitxor operation computes the bitwise, logical exclusive-OR of the first and second arguments, rsrc1 and

rsrc2. The result is stored in the destination register, rdest.
The bitxor operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff, r40 = 0xffff0000 bitxor r30 r40 → r90 r90 ← 0x0cefffff

r10 = 0, r50 = 0x88888888 IF r10 bitxor r30 r50 → r80 no change, since guard is false

r20 = 1, r30 = 0xf310ffff,
r50 = 0x88888888

IF r20 bitxor r30 r50 → r100 r100 ← 0x7b987777

r60 = 0x11119999, r50 = 0x88888888 bitxor r60 r50 → r110 r110 ← 0x99991111

r70 = 0x55555555, r30 = 0xf310ffff bitxor r70 r30 → r120 r120 ← 0xa645aaaa

SEE ALSO
bitand bitandinv bitinv

bitor

bitxor

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-38

Floating-point absolute value

SYNTAX
[IF rguard] fabsval rsrc1 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 < 0 then
rdest ← –(float)rsrc1

else
rdest ← (float)rsrc1

}

ATTRIBUTES
Function unit falu
Operation code 115
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fabsval operation computes the absolute value of the argument rsrc1 and stores the result into rdest. All

values are in IEEE single-precision floating-point format. If an argument is denormalized, zero is substituted for the
argument before computing the absolute value, and the IFZ flag in the PCSW is set. If fabsval causes an IEEE
exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can
be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The
update of the PCSW exception flags occurs at the same time as r dest is written. If any other floating-point compute
operations update the PCSW at the same time, the net result in each exception flag is the logical OR of all
simultaneous updates ORed with the existing PCSW value for that exception flag.

The fabsvalflags operation computes the exception flags that would result from an individual fabsval.
The fabsval operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fabsval r30 → r90 r90 ← 0x40400000 (3.0)

r35 = 0xbf800000 (-1.0) fabsval r35 → r95 r95 ← 0x3f800000 (1.0)

r40 = 0x00400000 (5.877471754e-39) fabsval r40 → r100 r100 ← 0x0 (+0.0), IFZ set

r45 = 0xffffffff (QNaN) fabsval r45 → r105 r105 ← 0xffffffff (QNaN)

r50 = 0xffbfffff (SNaN) fabsval r50 → r110 r110 ← 0xffffffff (QNaN), INV set

r10 = 0,
r55 = 0xff7fffff (–3.402823466e+38)

IF r10 fabsval r55 → r115 no change, since guard is false

r20 = 1,
r55 = 0xff7fffff (–3.402823466e+38)

IF r20 fabsval r55 → r120 r120 ← 0x7f7fffff (3.402823466e+38)

SEE ALSO
iabs dspiabs dspidualabs
fabsvalflags readpcsw

writepcsw

fabsval

PNX1300/01/02/11 Data Book Philips Semiconductors

A-59 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point sign

SYNTAX
[IF rguard] fsignflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags(sign((float)rsrc1))

ATTRIBUTES
Function unit fcomp
Operation code 153
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fsignflags operation computes the IEEE exceptions that would result from computing the sign of rsrc1 and

stores a bit vector representing the exception flags into rdest. The argument value is in IEEE single-precision floating-
point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as the IEEE
exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If the argument is
denormalized, zero is substituted before computing the sign, and the IFZ bit in the result is set.

The fsignflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fsignflags r30 → r100 r100 ← 0

r40 = 0xbf800000 (-1.0) fsignflags r40 → r105 r105 ← 0

r50 = 0x80800000 (-1.175494351e-38) fsignflags r50 → r110 r110 ← 0

r60 = 0x80400000 (-5.877471754e-39) fsignflags r60 → r115 r115 ← 0x20 (IFZ)

r10 = 0, r70 = 0xffffffff (QNaN) IF r10 fsignflags r70 → r116 no change, since guard is false

r20 = 1, r70 = 0xffffffff (QNaN) IF r20 fsignflags r70 → r117 r117 ← 0x10 (INV)

r80 = 0xff800000 (-INF) fsignflags r80 → r120 r120 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fsign readpcsw

fsignflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-111 PRELIMINARY SPECIFICATION

Signed compare less or equal
pseudo-op for igeq

SYNTAX
[IF rguard] ileq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 <= rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 14
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ileq operation is a pseudo operation transformed by the scheduler into an igeq with the arguments

exchanged (ileq’s rsrc1 is igeq’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The ileq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the
second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.

The ileq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ileq r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ileq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, 0x100 IF r20 ileq r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 ileq r70 r40 → r100 r100 ← 1

r70 = 0x80000000 ileq r70 r70 → r110 r110 ← 1

SEE ALSO
igeq ileqi

ileq

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-148

prefetch with index

SYNTAX
[IF rguard] prefr rsrc1 rsrc2

FUNCTION
i f rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + rscr2) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 210
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The prefr operation loads the one full cache block size of memory value from the address computed by

((rsrc1+rscr2) & cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be
executed. The prefetch unit will not execute this operation when the data to be prefetched is already in the data cache.
A prefr operation will not be executed when the cache is already occupied with 2 cache misses, when the operation is
issued.

The prefr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
execution of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not
executed..

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd, r12 = 0xd
cache_block_size = 0x40

prefr r10 r12 Loads a cache line for the address space from
0xabc0 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0, r12=0xd,
cache_block_size = 0x40

IF r11 prefr r10 r12 since guard is false, prefr operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x1,
cache_block_size = 0x40

IF r11 prefr r10 r12 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref16x pref32x prefd
allocd allocr allocx

prefr

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-166

8-bit store
pseudo-op for h_st8d(0)

SYNTAX
[IF rguard] st8 rsrc1 rsrc2

FUNCTION
if rguard then

mem[rsrc1] ← rsrc2<7:0>

ATTRIBUTES
Function unit dmem
Operation code 29
Number of operands 2
Modifier No
Modifier range —
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st8 operation is a pseudo operation transformed by the scheduler into an h_st8d(0) with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st8 operation stores the least-significant 8-bit byte of rsrc2 into the memory location pointed to by the address

in rsrc1. This operation does not depend on the bytesex bit in the PCSW since only a single byte is stored.
The result of an access by st8 to the MMIO address aperture is undefined; access to the MMIO aperture is defined

only for 32-bit loads and stores.
The st8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the addressed memory location (and the modification of cache if the location is cacheable). If the LSB
of rguard is 1, the store takes effect. If the LSB of rguard is 0, st8 has no side effects whatever; in particular, the LRU
and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st8 r10 r80 [0xd00] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st8 r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 st8 r30 r70 [0xd02] ← 0xdd

SEE ALSO
h_st8d st8d st16 st16d

st32 st32d

st8

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-172

Unsigned compare equal with immediate

SYNTAX
[IF rguard] ueqli(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 = n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 38
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ueqli operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ueqli operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ueqli(2) r30 → r80 r80 ← 0

r30 = 3 ueqli(3) r30 → r90 r90 ← 1

r30 = 3 ueqli(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ueqli(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ueqli(63) r40 → r100 r100 ← 0

r60 = 0x07f ueqli(127) r60 → r120 r120 ← 1

SEE ALSO
ieqli ueql igeqi uneqi

ueqli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-184

Unsigned compare greater or equal with
immediate

SYNTAX
[IF rguard] ugeqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 >= (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 36
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ugeqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the opcode modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ugeqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ugeqi(2) r30 → r80 r80 ← 1

r30 = 3 ugeqi(3) r30 → r90 r90 ← 1

r30 = 3 ugeqi(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ugeqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ugeqi(63) r40 → r100 r100 ← 1

r60 = 0x80000000 ugeqi(127) r60 → r120 r120 ← 1

SEE ALSO
ugeq igeqi

ugeqi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-200

Sum of absolute values of unsigned 8-bit
differences

SYNTAX
[IF rguard] ume8uu rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← abs_val(zero_ext8to32(rsrc1<31:24>) – zero_ext8to32(rsrc2<31:24>)) +
abs_val(zero_ext8to32(rsrc1<23:16>) – zero_ext8to32(rsrc2<23:16>)) +
abs_val(zero_ext8to32(rsrc1<15:8>) – zero_ext8to32(rsrc2<15:8>)) +
abs_val(zero_ext8to32(rsrc1<7:0>) – zero_ext8to32(rsrc2<7:0>))

ATTRIBUTES
Function unit dspalu
Operation code 26
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the ume8uu operation computes four separate differences of the four pairs of corresponding

unsigned 8-bit bytes of rsrc1 and rsrc2. The absolute values of the four differences are summed and the result is
written to rdest. All computations are performed without loss of precision.

The ume8uu operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r80 = 0x0a14f6f6, r30 = 0x1414ecf6 ume8uu r80 r30 → r100 r100 ← 0x14

r10 = 0, r80 = 0x0a14f6f6, r30 = 0x1414ecf6 IF r10 ume8uu r80 r30 → r70 no change, since guard is false

r20 = 1, r90 = 0x64649c9c, r40 = 0x649c649c IF r20 ume8uu r90 r40 → r110 r110 ← 0x70

r40 = 0x649c649c, r90 = 0x64649c9c ume8uu r40 r90 → r120 r120 ← 0x70

r50 = 0x80808080, r60 = 0x7f7f7f7f ume8uu r50 r60 → r125 r125 ← 0x4

01531

rsrc1
01531

rsrc2

031

rdest

−
−

+

−
−

| |

| |

| |

| |

23 7 23 7

unsigned unsigned unsigned unsigned unsigned unsigned unsigned unsigned

unsigned

SEE ALSO
ume8ii

ume8uu

Philips Semiconductors MMIO Register Summary
IC_LOCK_SIZE 10 0218 R/W R/W Size of address range that will be locked into the instruction
cache

PLL_RATIOS 10 0300 R/— R/— Sets ratios of external and internal clock frequencies

BLOCK_POWER_DOWN 10 3428 R/W R/W Powers up and down individual blocks

Video In

VI_STATUS 10 1400 R/— R/— Status of video-in unit

VI_CTL 10 1404 R/W R/W Sets operation and interrupt modes for video in

VI_CLOCK 10 1408 R/W R/W Sets clock source (internal/external), frequency

VI_CAP_START 10 140c R/W R/W Sets capture start x and y offsets

VI_CAP_SIZE 10 1410 R/W R/W Sets capture size width and height

VI_BASE1
VI_Y_BASE_ADR

10 1414 R/W R/W Capture modes: sets base address of Y-value array
Message/raw modes: sets base address of buffer 1

VI_BASE2
VI_U_BASE_ADR

10 1418 R/W R/W Capture modes: sets base address of U-value array
Message/raw modes: sets base address of buffer 2

VI_SIZE
VI_V_BASE_ADR

10 141c R/W R/W Capture modes: sets base address of V-value array
Message/raw modes: sets size of buffers

VI_UV_DELTA 10 1420 R/W R/W Capture modes: address delta for adjacent U, V lines

VI_Y_DELTA 10 1424 R/W R/W Capture modes: address delta for adjacent Y lines

Video Out

VO_STATUS 10 1800 R/— R/— Status of video-out unit

VO_CTL 10 1804 R/W R/W Sets operation and interrupt modes for video out

VO_CLOCK 10 1808 R/W R/W Sets video-out clock frequency

VO_FRAME 10 180c R/W R/W Sets frame parameters (preset, start, length)

VO_FIELD 10 1810 R/W R/W Sets field parameters (overlap, field-1 line, field-2 line)

VO_LINE 10 1814 R/W R/W Sets field parameters (starting pixel, frame width)

VO_IMAGE 10 1818 R/W R/W Sets image parameters (height, width)

VO_YTHR 10 181c R/W R/W Sets threshold for YTR interrupt, image v/h offsets

VO_OLSTART 10 1820 R/W R/W Sets overlay image parameters (start line/pixel, alpha)

VO_OLHW 10 1824 R/W R/W Sets overlay image parameters (height, width)

VO_YADD 10 1828 R/W R/W Sets Y-component/buffer-1 starting address

VO_UADD 10 182c R/W R/W Sets U-component/buffer-2 starting address

VO_VADD 10 1830 R/W R/W Sets V-component address/buffer-1 length

VO_OLADD 10 1834 R/W R/W Sets overlay image address/buffer-2 length

VO_VUF 10 1838 R/W R/W Sets start-of-line-to-start-of-line address offsets (U, V)

VO_YOLF 10 183c R/W R/W Sets start-of-line-to-start-of-line addr. offsets (Y, overlay)

EVO_CTL 10 1840 R/W R/W Sets operations for enhance video out

EVO_MASK 10 1844 R/W R/W Sets YUV mask values foe the chroma-key process

EVO_CLIP 10 1848 R/W R/W Sets output clip values

EVO_KEY 10 184c R/W R/W Sets YUV chroma-key values

EVO_SLVDLY 10 1850 R/W R/W Sets delay cycles for genlock mode

Audio In

AI_STATUS 10 1c00 R/— R/— Status of audio-in unit

AI_CTL 10 1c04 R/W R/W Sets operation and interrupt modes for audio in

AI_SERIAL 10 1c08 R/W R/W Sets clock ratios and internal/external clock generation

AI_FRAMING 10 1c0c R/W R/W Sets format of serial data stream

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators
PRELIMINARY SPECIFICATION B-3

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
igeq A-96
igeqi A-97
igtr A-98
igtri A-99
iimm A-100
iis 8-1
ijmpf A-101
ijmpi A-102
ijmpt A-103
ild16 A-104
ild16d A-105
ild16r A-106
ild16x A-107
ild8 A-108
ild8d A-109
ild8r A-110
ileq A-111
ileqi A-112
iles A-113
ilesi A-114
image

ICP input format 14-3
processing algorithm s14-6
resizing 14-6
scaling 14-6
scaling factor rang e14-3
size range 14-3

Image co-processor
block diagram 14-1

image co-processor 14-1
block diagram 14-2
image formats 14-3

image overlay 14-1, 14-5, 14-9
image overlay formats

of ICP,table 14-5
image processing

bandwidth 14-1
IMASK

picture 3-11
imax A-115
imin A-116
imul A-117
imulm A-118
ineg A-119
ineq A-120
ineqi A-121
initialization

DRAM memory syste m12-6
instruction cache 5-10

initialization,cache 5-8
inonzero A-122
input format

ICP 14-3

input grid
relating to output grid 14-7

instruction breakpoint 3-13
instruction cache 5-8

address mapping 5-8
picture 5-9

coherency 5-11
initialization and boot 5-10
LRU replacement 5-11
performance evaluation support 5-12

instruction cache parameters 5-8
instruction cache set 5-8
instruction cache tag 5-8
instruction cache,summary 5-8
INT_CTL

PCI interface MMIO register 11-15
picture 3-12, 11-10

integer representatio n3-4
interleaving

of SDRAM 12-6
interrupt line

PCI interface register 11-9
interrupt mask 3-10
interrupt mode 3-10
interrupt pin

PCI interface register 11-9
interrupt priority 3-10
interrupt vectors 3-9
interrupts 3-9

definition 3-9
DSPCPU enable bit 3-2

interspersed sampling 6-5
intervals

refresh 12-6
INTVEC[31:0]

picture 3-9
IO_ADR

PCI interface MMIO register 11-13
picture 11-10

IO_CTL
PCI interface MMIO register 11-13
picture 11-10

IO_DATA
PCI interface MMIO register 11-13
picture 11-10

IPENDING
picture 3-11

IS 11172-2 references 15-3
IS 13818-2 references

table 15-3
ISETTING0

picture 3-10
ISETTING1
Index-8 PRELIMINARY SPECIFICATION

