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A straightforward coding of the reconstruction algorithm
might look as shown in Figure 4-4. This implementation
shares many of the undesirable properties of the first ex-
ample of byte-matrix transposition. The code accesses
memory a byte at a time instead of a word at a time,
which wastes 75% of the available bandwidth. Also, in
light of the many quad-byte-parallel operations intro-
duced in Section 4.1.2, “Introduction to Custom Opera-
tions,”  it seems inefficient to spend three separate addi-
tions and one shift to process a single eight-bit pixel.
Perhaps even more unfortunate for a VLIW processor
like PNX1300 is the branch-intensive code that performs
the saturation testing; eliminating these branches could
reap a significant performance gain.

Since MPEG decoding is the kind of task for which
PNX1300 was created, there are two custom opera-
tions—quadavg and dspuquadaddui—that exactly fit this
important MPEG kernel (and other kernels). These cus-
tom operations process four pairs of 8-bit pixel values in
parallel. In addition, dspuquadaddui performs saturation
tests in hardware, which eliminates any need to execute
explicit tests and branches.

For readers familiar with the details of MPEG algorithms,
the use of eight-bit IDCT values later in this example may
be confusing. The standard MPEG implementation calls
for nine-bit IDCT values, but extensive analysis has
shown that values outside the range [–128..127] occur
so rarely that they can be considered unimportant. Pur-
suant to this observation, the IDCT values are clipped
into the eight-bit range [–128..127] with saturating arith-
metic before the frame reconstruction code runs. The as-
sumption that this saturation occurs permits some of
PNX1300’s custom operations to have clean, simple def-
initions.

The first step in seeing how custom operations can be of
value in this case, is to unroll the loop by a factor of four.
The unrolled code is shown in Figure 4-5. This creates
code that is parallel with respect to the four pixel compu-
tations. As it is easily seen in the code, the four groups of
computations (one group per pixel) do not depend on
each other.

After some experience is gained with custom operations,
it is not necessary to unroll loops to discover situations
where custom operations are useful. Often, a good pro-
grammer with knowledge of the function of the custom
operations can see by simple inspection opportunities to
exploit custom operations.

To understand how quadavg and dspuquadaddui can be
used in this code, we examine the function of these cus-
tom operations. 

The quadavg custom operation performs pixel averaging
on four pairs of pixels in parallel. Formally, the operation
of quadavg is as follows:

quadavg rscr1 rsrc2 -> rdest

takes arguments in registers rsrc1 and rsrc2, and it com-
putes a result into register rdest. rsrc1 = [abcd], rsrc2 =
[wxyz], and rdest = [pqrs] where a, b, c, d, w, x, y, z, p, q,
r, and s are all unsigned eight-bit values. Then, quadavg
computes the output vector [pqrs] as follows:

p = (a + w + 1) >> 1
q = (b + x + 1) >> 1
r = (c + y + 1) >> 1
s = (d + z + 1) >> 1

The pixel averaging in Figure 4-5 is evident in the first
statement of each of the four groups of statements. The
rest of the code—adding idct[i] value and performing the
saturation test—can be performed by the dspuquadad-
dui operation. Formally, its function is as follows:

dspuquadaddui rsrc1 rsrc2 -> rdest

takes arguments in registers rsrc1 and rsrc2, and it com-
putes a result into register rdest. rsrc1 = [efgh], rsrc2 =
[stuv], and rdest = [ijkl] where e, f, g, h, i, j, k, and l are
unsigned 8-bit values; s, t, u, and v are signed 8-bit val-
ues. Then, dspuquadaddui computes the output vector
[ijkl] as follows:

i = uclipi(e + s, 255)
j = uclipi(f + t, 255)
k = uclipi(g + u, 255)
l = uclipi(h + v, 255)

The uclipi operation is defined in this case as it is for the
separate PNX1300 operation of the same name de-
scribed in Appendix A, “PNX1300/01/02/11 DSPCPU
Operations,”. Its definition is as follows:

void reconstruct (unsigned char *back,
                  unsigned char *forward,
                           char *idct,
                  unsigned char *destination)
{
    int i, temp;

    for (i = 0; i < 64; i += 1)
    {
        temp = ((back[i] + forward[i] + 1) >> 1) + idct[i];

        if (temp > 255)
            temp = 255;
        else if (temp < 0)
            temp = 0;

        destination[i] = temp;
    }
}

Figure 4-4. Straightforward code for MPEG frame reconstruction.
PRELIMINARY SPECIFICATION 4-5
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and SIZE (in number of samples), it is safe to enable cap-
ture by setting CAPTURE_ENABLE. Note that SIZE is in
samples and must be a multiple of 64, hence setting a
minimum buffer size of 64 bytes for raw8 mode and 128
bytes for raw10 modes. At this point, buffer1 is the active
capture buffer. Data is captured in buffer1 until capture is
disabled or until SIZE samples have been captured. After
every sample, a running address pointer is incremented
by the sample size (one or two bytes). If SIZE samples
have been captured, capture continues (without missing
a sample) in buffer2. At the same time, BUF1FULL is as-
serted. This causes an interrupt on the DSPCPU, if en-
abled by BUF1FULL INTERRUPT ENABLE.

Buffer2 is now the active capture buffer and behaves as
described above. In normal operation, the DSPCPU will
respond to the BUF1FULL event by assigning a new
BASE1 and (optionally) SIZE and performing an ACK1.
If the DSPCPU fails to assign a new buffer1 and per-
forms an ACK1 before buffer2 also fills up, the OVER-
RUN condition is raised and capture stops. Capture con-
tinues upon receipt of an ACK1, ACK2, or both,
regardless of the OVERRUN state. The buffer in which
capture resumes is as indicated in Figure 6-16. The
OVERRUN condition is ‘sticky’ and can only be cleared
by software, by writing a ‘1’ to the ACK_OVR bit in the
VI_CTL register. 

If insufficient bandwidth is allocated from the internal
data highway, the VI internal buffers may overflow. This

leads to assertion of the HIGHWAY BANDWIDTH ER-
ROR condition. One or more data samples are lost. Cap-
ture resumes at the correct memory address as soon as
the internal buffer is written to memory. The HBE error
condition is sticky. It remains asserted until it is cleared
by writing a ‘1’ to HIGHWAY BANDWIDTH ERROR
ACK. Refer to Section 6.7, “Highway Latency and HBE.” 

Note that VI hardware uses copies of the BASE and SIZE
registers once capture has started. Modifications of
BASE or SIZE, therefore, have no effect until the start of
the next use of the corresponding buffer.

Note also that the VI_BASE1 and VI_BASE2 addresses
must be 64-byte aligned (the six LSBs are always ‘0’).

6.6 MESSAGE-PASSING MODE

In this mode, VI receives 8-bit message data over the
VI_DATA[7:0] pins. The message data is written in
packed form (four 8-bit message bytes per 32-bit word)
to SDRAM. Message data capture starts on receipt of a
START event on VI_DATA[8]. Message data is received
until EndOfMessage (EOM) is received on VI_DATA[9]
or the receive buffer is full. Note that the VI_SIZE MMIO
register determines the buffer size, and hence maximum
message length. It should not be changed without a VI
(soft) reset.

Figure 6-17 illustrates an example of an 8-byte message
transfer. The first byte (D0) is sampled on the rising edge
of the VI_CLK clock after a valid START was sampled on
the preceding rising clock edge. The last byte (D7) is1. SDRAM buffers must start on a 64-byte boundary.

ACTIVE = BUF2
BUF1FULL

ACTIVE = BUF1

ACTIVE = BUF2

ACTIVE = BUF1
BUF2FULL

BUF1FULL
BUF2FULL

raise OVERRUN*

* OVERRUN is a sticky flag. It is set but does not af-
fect operation. It can only be cleared by software, by 
writing a ‘1’ to ACK_OVR. 
(See text in Section 6.5)

ACK1 & ~ACK2

ACK1 & ACK2

~ACK1 & ACK2

Buffer2 Full

Buf
fe

r1
 F

ul
l

Buffer1
Full

ACK1

Buffer2
Full

ACK2

RESET

Figure 6-16. VI raw mode major states.
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the first byte of the first line just after the VO_IO2 active
signal. 

7.11 DATA TRANSFER TIMING

In data-streaming and message-passing modes, the
EVO supplies a stream of 8-bit data. No data selection or
data interpretation is done, and data is transferred at the
rate of one byte per VO_CLK. Data is clocked out on the
positive edge of VO_CLK. 

When data-streaming mode is enabled and
EVO_ENABLE = 1 and SYNC_STREAMING = 1, the
VO_IO2 signal indicates a data-valid condition. This sig-
nal is asserted when the EVO starts outputting valid data
(that is, data-streaming mode is enabled and video out is
running), and is de-asserted when data-streaming mode
is disabled. As shown in Figure 7-17, the data-valid sig-
nal on VO_IO2 is asserted just before the first valid byte
is present on VO_DATA[7:0], and is de-asserted just af-
ter the last valid byte was sent, or if an HBE error is sig-
naled. All transitions of VO_IO2 occur on the rising edge
of VO_CLK. The VO_IO1 signal generates a pulse one
VO_CLK cycle before the first valid data is sent. The

transitions of VO_IO1 occur on the rising edge of
VO_CLK and last for one VO_CLK cycle. 

In message-passing mode, the EVO issues signals on
VO_IO1 and VO_IO2 to indicate the start and end of
messages. 

When message passing is started by setting VO_CTL.
VO_ENABLE, the EVO sends a Start condition on
VO_IO1. When the EVO has transferred the contents of
the buffer, it sends an End condition on VO_IO2, sets
BFR1_EMPTY, and interrupts the DSPCPU. The EVO
stops, and no further operation takes place until the
DSPCPU sets VO_ENABLE again to start another mes-
sage, or until the DSCPU initiates other EVO operation.
The timing for these signals is shown in Figure 7-18. 

7.12 IMAGE DATA MEMORY FORMATS

7.12.1 Video Image Formats

The EVO accepts memory-resident video image data in
three formats: YUV 4:2:2 co-sited, YUV 4:2:2 inter-
spersed, and YUV 4:2:0. These formats are shown in
Figure 7-19 through Figure 7-21. 

EAV

Image Data

EAV

Line 525/625

One Frame

VO_IO2

Delay SLAVE_DLY in VO_CLK cycles

Line 1 Line 2 Line FRAME_PRESET Line 525/625 Line 1

EAV

Line counter loaded by FRAME_PRESET

Figure 7-16. Genlock mode. 

VO_DATA[7:0]

VO_IO2

VO_IO1

VO_CLK

XX XX D0 D1 D2 D3 D4 D5 Dk XX XX

DATA_VALID

Figure 7-17. Data-streaming valid data signals. 

VO_DATA[7:0]

VO_IO1

VO_IO2

VO_CLK

XX D0 D1 D2 D3 D4 D5 D6 D7 XX XX

Start of
message

End of
message

Figure 7-18. Message-passing START and END signals. 
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7.16.3 VO-Related Registers

The VO-related registers and their fields are shown in
Table 7-8. Their fields are unchanged from the TM-1000,

however their function may vary depending upon the
PNX1300 features that are selectively enabled by
EVO_CTL (see Section 7.16.4).

YTR_ACK Acknowledge Y threshold.
Writing a ’1’ to this bit clears the YTR flag and resets its interrupt condition. YTR signals the CPU to set new point-
ers for the next field. If YTR_ACK is not received by the time the active image area for the next field starts, the 
URUN flag is set. Data transfer continues with the old pointer values.

BFR1_INTEN 
BFR2_INTEN
HBE_INTEN
URUN_INTEN
YTR_INTEN

Enable interrupt conditions.
Enable corresponding interrupts to be generated when the BFR1_EMPTY, BFR2_EMPTY, HBE, URUN (under-
run/end of transfer), and YTR (end of field/buffer) flags are set, respectively.
Note: BFR2_INTEN, URUN_INTEN, YTR_INTEN must be 0 in message passing mode.

LTL_END Little-endian.
Specifies that data in SDRAM is stored in little-endian format. This only affects the overlay packed-image format 
interpretation in video-refresh modes. Refer to Appendix C, “Endian-ness,” for details on byte ordering.

VO_ENABLE Enable the EVO to send image data or message data to its output. 
Note: This bit should not be simultaneously asserted with the RESET bit. The correct sequence to reset and 
enable the EVO is as follows. 
• Set all VO_CTL control fields as desired, writing VO_CTL with RESET = 1, VO_ENABLE = 0. 
• Retain all desired values of control fields, but rewrite VO_CTL with RESE T =0, VO_ENABL E =0. 
• Finally, still retaining all desired control fields, rewrite VO_CTL with RESET = 0, VO_ENABLE = 1. 
Setting VO_ENABLE in video-refresh modes starts the EVO sending image data beginning with the first pixel in 
the image. Setting VO_ENABLE in data-streaming and message-passing modes starts the EVO sending data 
beginning with the first byte in Buffer 1. In video-refresh and data-streaming modes, VO_ENABLE remains set until 
cleared by the CPU. In message-passing mode, VO_ENABLE is cleared when BFR1_EMPTY is set, indicating the 
end of message transfer. 
Note: De-asserting VO_ENABLE in video-refresh modes causes SDRAM reads to stop, but sync framing and 
BFR1_EMPTY generation and interrupts remain fully operational. The transmitted active image data is undefined 
in this case. To fully halt video output, a software reset is required. 

Table 7-7. VO_CTL register fields

Field Description

Table 7-8. VO register fIelds

Register Field Description

VO_CLOCK FREQUENCY VO_CLK frequency. See DDS equation in Figure 7-6, and PLL description in Section 7.19.

VO_FRAME FRAME_LENGTH Total number of lines per frame; the ending value of the Frame Line Counter; typically 525 
or 625. Note: the Frame Line Counter counts from 1 to 525 or 625, consistent with 
CCIR 656 line numbering. 

FIELD_2_START Start line number in the Frame Line Counter; where the second field of the frame begins .
If non-interlaced pictures are desired, then the same value is programmed for Field 1 and 
Field 2. Field 1 becomes Fram e1 and Field2 becomes Fr ame2 . 

FRAME_PRESET Value loaded into the Frame Line Counter when frame timing edge is received on VO_IO2.

VO_FIELD F1_VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Field1 of the frame .

F2_VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Fiel d2 of the frame. 
If non-interlaced pictures are desired, this is programmed to the same value as 
F1_VIDEO_LINE

F1_OLAP Overlap of the SAV and EAV codes from Field 1 to Field 2. Overlap is defined as the delay 
in lines from start of blanking for Field 2 until SAV and EAV codes for Fiel d2 are emitted. 
Typical values are +2 for 525/60 and +2 for 625/50. 

F2_OLAP Overlap in lines of the SAV and EAV code from Fiel d2 to Fiel d1. Overlap is defined as the 
delay in lines from start of blanking for Field 1 until the SAV and EAV codes for Field 1 are 
emitted. Typical values are +3 for 525/60 and –2 for 625/50. The negative value means 
Field 1 blanking actually starts two lines before end of Fi eld2 of previous frame . This over-
lap is described in Table 7-4 on page7-6 , and illustrated in Figure 7-31. 

VO_LINE FRAME_WIDTH Total line length in pixels including blanking. Also the ending value for the Frame Pixel 
Counter. Lines always begin with a horizontal blanking interval, and the image starts after 
the blanking interval and runs to the end of the line. 

VIDEO_PIXEL_START Pixel number in Frame Pixel Counter of starting pixel of active video area within the line.
Note: Must be even.
7-18 PRELIMINARY SPECIFICATION
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Note that the buffers must be 64-byte aligned, and a mul-
tiple of 64 samples in size (the six LSBs of AI_BASE1,
AI_BASE2 and AI_SIZE are always ’0’).

The DSPCPU is required to assign a new, empty buffer
to BASE1 and perform an ACK1, before buffer 2 fills up.
Capture continues in buffer 2, until it fills up. At that time,
BUF2_FULL is asserted, and capture continues in the
new buffer 1, etc.

Upon receipt of an ACK, the AI hardware removes the re-
lated interrupt request line assertion at the next DSPCPU
clock edge. Refer to Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),”  for the rules
regarding ACK and interrupt re-enabling. The AI interrupt
should always be operated in level-sensitive mode, since
AI can signal multiple conditions that each need indepen-
dent ACKs over the single internal SOURCE 11 request
line.

In normal operation, the DSPCPU and AI hardware con-
tinuously exchange buffers without ever loosing a sam-
ple. If the DSPCPU fails to provide a new buffer in time,
the OVERRUN error flag is raised. This flag is not affect-
ed by ACK1 or ACK2; it can only be cleared by an explicit
ACK_OVR.

8.8 POWER DOWN AND SLEEPLESS

The AI unit enters power down state whenever PNX1300
is put in global power down mode, except if the SLEEP-
LESS bit in AI_CTL is set. In the latter case, the unit con-
tinues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

The AI unit can be separately powered down by setting a
bit in the BLOCK_POWER_DOWN register. Refer to
Chapter 21, “Power Management.”

It is recommended that AI be stopped (by negating
AI_CTL.CAP_ENABLE) before block level power down
is started, or that SLEEPLESS mode is used when global
power down is activated.

8.9 HIGHWAY LATENCY AND HBE

The AI unit uses internal buffering before writing data to
SDRAM. The internal buffer consists of one stereo sam-
ple input holding register and 64 bytes of internal buffer
memory. Under normal operation, the 64-byte buffer is
written to SDRAM while the input register receives an-
other sample. This normal operation is guaranteed to be
maintained as long as the highway arbiter is set to guar-
antee a latency for the AI unit that matches the sampling
interval. Given a sample rate fs, and an associated sam-
ple interval T (in nsec), the arbiter should be set to have
a latency of at most T-20 nsec. Refer to Chapter 20, “Ar-
biter,” for information on arbiter programming. If the re-
quested latency is not adequate, the HBE (Highway
Bandwidth Error) condition may result. This error flag
gets set when the input register is full, the 64-byte buffer

has not yet been written to memory, and a new sample
arrives. 

Table 8-10 shows the required arbiter latency settings for
a number of common operating modes. The rightmost
column illustrates the nature of the resulting 64-byte
highway requests. Is not necessary to compute arbiter
settings, but they may be used to compute bus availabil-
ity in a given interval.

8.10 ERROR BEHAVIOR

If either an OVERRUN or HBE error occurs, input sam-
pling is temporarily halted, and samples will be lost. In
case of OVERRUN, sampling resumes as soon as the
DSPCPU makes one or more new buffers available
through an ACK1 or ACK2 operation. In the case of HBE,
sampling will resume as soon as the internal buffer is
written to SDRAM.

HBE and OVERRUN are ‘sticky’ error flags. They will re-
main set until an explicit ACK_HBE or ACK_OVR.

8.11 DIAGNOSTIC MODE

Diagnostic mode is entered by setting the DIAGMODE
bit in the AI_CTL register. In diagnostic mode, the
AI_SCK, AI_WS and AI_SD inputs of the serial-parallel
converter are taken from the output pins of the PNX1300
AO unit. This mode can be used during the diagnostic
phase of system boot to verify correct operation of most
of the AI unit and AO unit logic circuitry.

Note that the inputs are truly taken from the PNX1300
AO external pins, i.e. if an external (board level) source
is driving AO_SCK or AO_WS, diagnostic mode is not
capable of testing Audio Out.

Special care must be taken to enable diagnostic mode.
The recommended way of entering diagnostic mode is:

• setup the AO unit such that an AO_SCK is generated 
• set DIAGMODE bit followed by a 5 (AI_SCK) cycle

delay
• perform a software reset of the AI unit and immedi-

ately set the DIAGMODE bit back to ‘1’.

Table 8-10. AI highway arbiter latency requirement 
examples

CapMode
fs

(kHz)
T

(nS)

max 
arbiter 
latency 
(nsec)

access pattern

stereo
16 bits/sample

44.1 22,676 22,656
1 request every
362,812 nsec

stereo
16 bits/sample

48.0 20,833 20,813 1 request every
333,333 nsec

stereo
16 bits/sample

96.0 10,417 10,397 1 request every 
166,667 nsec
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table. The simplest way to generate these values in com-
mon computer languages such as C is as follows:

1. Generate the Increment Value as a floating point 
number = Input Width / Output Width

2. Multiply the Increment Value by 65536
3. Convert the result to a Long Integer (32 bits). The up-

per 16 bits of the Long integer will be the Integer in-
crement value, and the lower 16 bits will be the Frac-
tional value

4. Store the 32-bit Long integer in the parameter table as 
the combined Integer and Fractional increment values 

For YUV 4:2:2 or YUV 4:2:0 input data and RGB output
data, the scaling factor for U and V must be twice the
scaling factor for Y, unless YUV4:2:2 sequencing is used
for speed. In YUV 4:2:2 or YUV 4:2:0 data, the horizontal
components of U and V are half those of Y. The U and V
must be upscaled by 2 to generate a YUV 4:4:4 format
internally for YUV to RGB conversion. For YUV 4:1:1 in-
put data, the U and V components must be upscaled by
a factor of 4 to generate the required internal YUV 4:4:4
format. 

The Start Fraction defines the starting value in the scal-
ing counter for each line. It is a 16-bit, two’s complement
fractional value between -0.500 and 0.49999+. The Start
Fraction allows the input data to be offset by up to half a
pixel, referred to the input pixel grid. It is ‘0’ for Y and for
UV co-sited data, and is set to ‘-0.25’ (C000) for inter-
spersed to co-sited conversion of U and V data. The ‘-
0.25’ value effectively shifts the U and V data toward the
start of the line by 1/4 pixel, the amount required for con-
version. 

The Alpha 1 and Alpha 0 values are 8-bit fields within the
16-bit Alpha field. These values are loaded into the Alpha
1 and Alpha 0 registers, resp., for use by RGB 15+α and
YUV 4:2:2+α overlay formats in alpha blending. 

The Overlay start and end pixels and lines define the
start and end pixels and lines within the output image for
the overlay. The first pixel of the overlay image will be
blended with the pixel at the Overlay Start Pixel and
Overlay Start Line in the output image. 

14.6.11.3 Control word format

The Control word provides bit fields which affect the hor-
izontal filtering operation. The format of the Control word
is as follows. 

Bits Name Function

15 Bypass Normally set to 0 to enable filtering. 
Can be set to 1 to accomplish data 
move without filtering.

14 422SEQ 4:2:2 Sequence bit. Used with YUV 
4:2:2 output

13 YUV420 YUV 4:2:0 input format

12 OEN Overlay enable. Valid only for PCI out-
put

11 PCI PCI output enable. Otherwise SDRAM 
output

10 BEN Bit mask enable. Valid only for PCI 

output

  9 GETB Large down scaling bit. Picks five 
input pixels nearest 5 output pixels 
and passes to filter. 

Equivalent to filter bypass + 5-tap filter 
of output pixels. LSB value = 0 for fil-
tering. 

  8 OLLE Overlay little endian enable

7-6 OFRM Overlay format

0 = RGB 24+α
1 = RGB 15+α
2 = YUV 4:2:2+α

 5 CHK Chroma keying enable

 4 LE RGB output little endian enable

3-0 RGB RGB Output Code

0 = YUV 4:2:2+α
1 = YUV 4:2:2

2 = RGB 24+α
3 = RGB 24 packed

4 = RGB 8A (RGB 233)

5 = RGB 8R (RGB 332)

6 = RGB15+α
7 = RGB 16

The 422SEQ bit controls the internal sequencing of the
YUV to RGB operation. It is set to ‘1’ when YUV 4:2:2
output is selected. When 422SEQ is ‘0’, normal RGB out-
put is assumed. In this mode, the input is YUV 4:2:2 or
YUV 4:2:0, and the output is RGB. To generate the RGB
output, the YUV 4:2:2 or YUV 4:2:0 input must be up-
scaled to YUV 4:4:4 before conversion to RGB. This
means the scaling factor for U and V must be twice the
scaling factor for Y. The internal sequencing of the filter
in this case is UVY, UVY, UVY to generate RGB, RGB,
RGB. For YUV 4:2:2 output formats, no upscaling of U
and V is required. In this case, the 422SEQ bit is set to
one, and the filter sequence is UVYY, UVYY, UVYY. 

The 422SEQ bit can be set in RGB output mode to de-
crease the processing time for the image at the expense
of color bandwidth and some corresponding decrease in
picture quality. If the 422SEQ bit is set for RGB output,
the filter will perform the UVYY sequence. In this case,
the U and V components are not upscaled by 2, and the
YUV to RGB converter updates its U and V components
every other pixel. In the normal case (422SEQ=0), it
takes 6 clock cycles to generate two RGB pixels. In the
422SEQ=1 case, it takes 4 clock cycles to generate two
RGB pixels, reducing processing time by 33%. 

The YUV420 bit indicates that the input data is in YUV
4:2:0 format. In YUV 4:2:0 format, the U and V compo-
nents are half the width and half the height of the Y data.
YUV 4:2:0 data is normally converted to YUV 4:2:2 data
by a separate vertical upscaling by a factor of 2.0 for best
quality. The YUV420 bit allows using YUV 4:2:0 data di-
rectly but with some quality degradation. When YUV420
is set, the ICP up scales the data vertically by line dupli-
cation. Each U and V input line is used twice. The sepa-
PRELIMINARY SPECIFICATION 14-27
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PCI transfer and is incremented for each PCI word trans-
ferred.

The XIO Bus does not generate parity during XIO Bus
write transfers or check parity during XIO Bus read trans-
fers. This allows the XIO Bus to interface to standard 8-
bit devices without having to add parity-generation and
check logic. While the XIO Bus is active, the XIO Bus log-
ic inhibits parity checking and drives the PCI Parity and
Parity Error pins so that they do not float.

Word transfer is used to transfer the bytes to and from
the PCI bus for hardware simplicity. The primary intend-
ed use of the PCI-XIO Bus is for slow devices, ROMs,
flash EPROMs and I/O. Because the PCI-XIO bus is so

much slower than the PNX1300, there is time available
for the PNX1300 to pack and unpack the words. In the
case of ROMs and flash EPROMs, the data is typically
compressed, requiring the PNX1300 CPU to both un-
pack and decompress the data.

The PCI-XIO Bus Controller logic reconfigures the byte
enables as control signals for the attached XIO Bus chips
during XIO Bus transfers. It also drives the PCI_TRDY#
signal to the PCI Bus for each transfer. The PCI Bus byte
enables are reconfigured to generate XIO Bus timing sig-
nals: Read (IORD), Write (IOWR) and Data Strobe (DS).
These signals allow ROM, flash EPROM, 68K and x86
devices to be gluelessly interfaced to the XIO Bus. For a
single device, the PCI_INTB# line is used as the global

Audio In

Audio Out

DSPCPU

400 MIPS

2.5 GOPS

I$

D$

I2C Interface

Image
Co Processor

PNX1300
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PCI and External I/O (PCI-XIO) Bus Interface
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Video Out
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DMSD
or Raw
Video
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Figure 22-1. Partial PNX1300 chip block diagram
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PRELIMINARY SPECIFICATION A-18

Compute carry bit from unsigned add

SYNTAX
[ IF rguard ] carry rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (rsrc1+rsrc2) < 232 then
rdest ← 0

else
rdest ← 1

}

ATTRIBUTES
Function unit alu
Operation code 45
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The carry operation computes the unsigned sum of the first and second arguments, rsrc1+rsrc2. If the sum

generates a carry (if the sum is greater than 232-1), 1 is stored in the destination register, rdest; otherwise, rdest is set
to 0.

The carry operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed. 

EXAMPLES

Initial Values Operation Result

r70 = 2, r30 = 0xfffffffc carry r70 r30 → r80 r80 ← 0

r10 = 0, r70 = 2, r30 = 0xfffffffc IF r10 carry r70 r30 → r90 no change, since guard is false

r20 = 1, r70 = 2, r30 = 0xfffffffc IF r20 carry r70 r30 → r100 r100 ← 0

r60 = 4, r30 = 0xfffffffc carry r60 r30 → r110 r110 ← 1

r30 = 0xfffffffc carry r30 r30 → r120 r120 ← 1

SEE ALSO
borrow

carry
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PRELIMINARY SPECIFICATION A-20

Read clock cycle counter, least-significant word

SYNTAX
[ IF rguard ] cycles → rdest

FUNCTION
if rguard then

rdest ← CCCOUNT<31:0>

ATTRIBUTES
Function unit fcomp
Operation code 154
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
Refer to Section 3.1.5, “CCCOUNT—Clock Cycle Counter” for a description of the CCCOUNT operation. The

cycles operation copies the low 32 bits of the slave register of Clock Cycle Counter (CCCOUNT) to the destination
register, rdest. The contents of the master counter are transferred to the slave CCCOUNT register only on a
successful interruptible jump and on processor reset. Thus, if cycles and hicycles are executed without
intervening interruptible jumps, the operation pair is guaranteed to be a coherent sample of the master clock-cycle
counter. The master counter increments on all cycles (processor-stall and non-stall) if PCSW.CS = 1; otherwise, the
counter increments only on non-stall cycles.

The cycles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

CCCOUNT_HR = 0xabcdefff12345678 cycles → r60 r30 ← 0x12345678

r10 = 0, CCCOUNT_HR = 0xabcdefff12345678 IF r10 cycles → r70 no change, since guard is false

r20 = 1, CCCOUNT_HR = 0xabcdefff12345678 IF r20 cycles → r100 r100 ← 0x12345678

SEE ALSO
hicycles curcycles 

writepcsw

cycles
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A-67 PRELIMINARY SPECIFICATION

Clipped signed absolute value

SYNTAX
[ IF rguard ] h_dspiabs r0 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc2 >= 0 then
rdest ← rsrc2

else if rsrc2 = 0x80000000 then
rdest ← 0x7fffffff

else
rdest ← –rsrc2

}

ATTRIBUTES
Function unit dspalu
Operation code 65
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The h_dspiabs operation computes the absolute value of rsrc2, clips the result into the range [0x0..0x7fffffff], and

stores the clipped value into rdest. All values are signed integers. This operation requires a zero as first argument. The
programmer is advised to use the unary pseudo operation dspiabs instead.

The h_dspiabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed. 

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff h_dspiabs r0 r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0x80000001 IF r10 h_dspiabs r0 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0x80000001 IF r20 h_dspiabs r0 r40 → r100 r100 ← 0x7fffffff

r50 = 0x80000000 h_dspiabs r0 r50 → r80 r80 ← 0x7fffffff

r90 = 0x7fffffff h_dspiabs r0 r90 → r110 r110 ← 0x7fffffff

SEE ALSO
h_dspiabs dspidualabs 

dspiadd dspimul dspisub 
dspuadd dspumul dspusub

h_dspiabs
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A-87 PRELIMINARY SPECIFICATION

Convert floating-point to integer using PCSW
rounding mode

SYNTAX
[ IF rguard ] ifixieee rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (long) ((float)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 121
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifixieee operation converts the single-precision IEEE floating-point value in rsrc1 to a signed integer and

writes the result into rdest. Rounding is according to the IEEE rounding mode bits in PCSW. If r src1 is denormalized,
zero is substituted before conversion, and the IFZ flag in the PCSW is set. If ifixieee causes an IEEE exception,
such as overflow or underflow, the corresponding exception flags in the PCSW are set. The PCSW exception flags are
sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit
writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any
other floating-point compute operations update the PCSW at the same time, the net result in each exception flag is the
logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The ifixieeeflags operation computes the exception flags that would result from an individual ifixieee.
The ifixieee operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ifixieee r30 → r100 r100 ← 3

r35 = 0x40247ae1 (2.57) ifixieee r35 → r102 r102 ← 3, INX flag set

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ifixieee r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ifixieee r40 → r110 r110 ← 0x80000000 (-231), INV flag set

r45 = 0x7f800000 (+INF)) ifixieee r45 → r112 r112 ← 0x7fffffff (231-1), INV flag set

r50 = 0xbfc147ae (-1.51) ifixieee r50 → r115 r115 ← -2, INX flag set

r60 = 0x00400000 (5.877471754e-39) ifixieee r60 → r117 r117 ← 0, IFZ set

r70 = 0xffffffff (QNaN) ifixieee r70 → r120 r120 ← 0, INV flag set

r80 = 0xffbfffff (SNaN) ifixieee r80 → r122 r122 ← 0, INV flag set

SEE ALSO
ufixieee ifixrz ufixrz

ifixieee
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A-139 PRELIMINARY SPECIFICATION

Merge most-significant byte

SYNTAX
[ IF rguard ] mergemsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← rsrc2<23:15>
rdest<15:8> ← rsrc1<23:15>
rdest<23:16> ← rsrc2<31:24>
rdest<31:24> ← rsrc1<31:24>

}

ATTRIBUTES
Function unit alu
Operation code 58
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the mergemsb operation interleaves the two pairs of most-significant bytes from the arguments

rsrc1 and rsrc2 into rdest. The second-most-significant byte from rsrc2 is packed into the least-significant byte of
rdest; the second-most-significant byte from rsrc1 is packed into the second-least-significant byte of rdest; the most-
significant byte from rsrc2 is packed into the second-most-significant byte of rdest; and the most-significant byte from
rsrc1 is packed into the most-significant byte of rdest.

The mergemsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd mergemsb r30 r40 → r50 r50 ← 0x12aa34bb

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 mergemsb r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 mergemsb r40 r30 → r70 r70 ← 0xaa12bb34

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
pack16lsb pack16msb 
packbytes mergelsb

mergemsb
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A-147 PRELIMINARY SPECIFICATION

prefd prefetch with displacement

SYNTAX
[ IF rguard ] prefd(d) rsrc1

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + d) & cache_block_mask] 

}

ATTRIBUTES
Function unit dmemspec
Operation code 209
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency -
Issue slots 5

DESCRIPTION
The prefd operation loads the one full cache block size of memory value from the address computed by ((rsrc1+d) &

cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be executed. The
prefetch unit will not execute this operation when the data to be prefetched is already in the data cache. A prefd
operation will not be executed when the cache is already occupied with 2 cache misses, when the operation is issued.

The prefd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the execution
of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not executed..

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd,
cache_block_size = 0x40

prefd(0xd) r10 Loads a cache line for the address space from 
0xabc0 to 0x0xabff from the main memory. If the data 
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0,
cache_block_size = 0x40

IF r11 prefd(0xd) r10 since guard is false, prefd operation is not executed

r10 = 0xabff, r11 = 1, 
cache_block_size = 0x40

IF r11 prefd(ox1) r10 Loads a cache line for the address space from 
0xac00 to 0x0xac3f from the main memory. If the data 
is already in the cache, the operation is not executed.

SEE ALSO
pref16x pref32x prefr 
allocd allocr allocx
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PRELIMINARY SPECIFICATION A-162

16-bit store
pseudo-op for h_st16d(0)

SYNTAX
[ IF rguard ] st16 rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then 
bs ← 1 

else 
bs ← 0

mem[rsrc1 + (1 ⊕ bs)] ← rsrc2<7:0>
mem[rsrc1 + (0 ⊕ bs)] ← rsrc2<15:8>

}

ATTRIBUTES
Function unit dmem
Operation code 30
Number of operands 2
Modifier No
Modifier range —
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st16 operation is a pseudo operation transformed by the scheduler into an h_st16d(0) with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st16 operation stores the least-significant 16-bit halfword of rsrc2 into the memory locations pointed to by the

address in rsrc1. This store operation is performed as little-endian or big-endian depending on the current setting of
the bytesex bit in the PCSW. 

If st16 is misaligned (the memory address in rsrc1 is not a multiple of 2), the result of st16 is undefined, and the
MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if the TRPMSE (TRaP on
Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the next interruptible jump.

The result of an access by st16 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores. 

The st16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, st16 has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected. 

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st16 r10 r80 [0xd00] ← 0x22, [0xd01] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st16 r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 st16 r30 r70 [0xd02] ← 0xcc, [0xd03] ← 0xdd

SEE ALSO
st16d h_st16d st8 st8d 

st32 st32d

st16
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A-187 PRELIMINARY SPECIFICATION

Unsigned immediate

SYNTAX
uimm(n) → rdest

FUNCTION
rdest ← n

ATTRIBUTES
Function unit const
Operation code 191
Number of operands 0
Modifier 32 bits
Modifier range 0..0xffffffff
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uimm operation writes the unsigned 32-bit opcode modifier n into rdest. Note: this operation is not guarded.

EXAMPLES

Initial Values Operation Result

uimm(2) → r10 r10 ← 2

uimm(0x100) → r20 r20 ← 0x100

uimm(0xfffc0000) → r30 r30 ← 0xfffc0000

SEE ALSO
iimm

uimm
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A-199 PRELIMINARY SPECIFICATION

Unsigned sum of absolute values
of signed 8-bit differences

SYNTAX
[ IF rguard ] ume8ii rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← abs_val(sign_ext8to32(rsrc1<31:24>) – sign_ext8to32(rsrc2<31:24>)) +
abs_val(sign_ext8to32(rsrc1<23:16>) – sign_ext8to32(rsrc2<23:16>)) +
abs_val(sign_ext8to32(rsrc1<15:8>) – sign_ext8to32(rsrc2<15:8>)) +
abs_val(sign_ext8to32(rsrc1<7:0>) – sign_ext8to32(rsrc2<7:0>))

ATTRIBUTES
Function unit dspalu
Operation code 64
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the ume8ii operation computes four separate differences of the four pairs of corresponding

signed 8-bit bytes of rsrc1 and rsrc2; the absolute values of the four differences are summed, and the sum is written to
rdest. All computations are performed without loss of precision.

The ume8ii operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed. 

EXAMPLES

Initial Values Operation Result

r80 = 0x0a14f6f6, r30 = 0x1414ecf6 ume8ii r80 r30 → r100 r100 ← 0x14

r10 = 0, r80 = 0x0a14f6f6, r30 = 0x1414ecf6 IF r10 ume8ii r80 r30 → r70 no change, since guard is false

r20 = 1, r90 = 0x64649c9c, r40 = 0x649c649c IF r20 ume8ii r90 r40 → r110 r110 ← 0x190

r40 = 0x649c649c, r90 = 0x64649c9c ume8ii r40 r90 → r120 r120 ← 0x190

r50 = 0x80808080, r60 = 0x7f7f7f7f ume8ii r50 r60 → r125 r125 ← 0x3fc

01531

rsrc1
01531

rsrc2

031

rdest

−
−

+

−
−

|  |

|  |

|  |

|  |

23 7 23 7

signed signed signed signed signed signed signed signed

unsigned

SEE ALSO
ume8uu

ume8ii



A B C HED F G I J K L M N O P Q R S T U V W X Y Z
Index

Numerics

12nc 1-10

A

A/D converter 8-1
Absolute maximum ratings 1-11
AC characteristics 1-11
address fields,instruction cache 5-8
address lines

driving capacity 12-7
address mapping

based on rank siz e12-5, 12-6
DRAM memory syste m12-5
instruction cache 5-8

picture 5-9
addressing modes 3-4
AI_BASE1

picture 8-5
AI_BASE2

picture 8-5
AI_CONTROL

field description tabl e8-6
AI_CTL

picture 8-5
AI_FRAMING

picture 8-5
AI_FREQ

picture 8-5
AI_OSCLK

description table 8-1
AI_SCK

description table 8-1
AI_SD

description table 8-1
AI_SERIAL

picture 8-5
AI_SIZE

picture 8-5
AI_STATUS

field description tabl e8-6
picture 8-5

AI_WS
description table 8-1

algorithms
image processing 14-6
of Enhanced Video Out Unit 7-10

algorithms, ICP 14-6

alignment 5-4
alloc A-4
allocate on write 5-4
allocd A-5
allocr A-6
allocx A-7
alpha

blending codes 14-5
byte for alpha blending 14-5
keying 14-9
registers 14-5

alpha blendin g7-13, 14-1, 14-9
alpha blending code s14-5

table 14-5
alpha value

for overlay pixel 14-9
AO_BASE1

picture 9-8
AO_BASE2

picture 9-8
AO_CC

picture 9-8
AO_CFC

picture 9-8
AO_CONTROL

field description table 9-9, 9-10
AO_CTL

picture 9-8
AO_FRAMING

picture 9-8
AO_FREQ

picture 9-8
AO_OSCLK

description table 9-2
AO_SCK

description table 9-2
AO_SERIAL

picture 9-8
AO_SIZE

picture 9-8
AO_STATUS

field description table 9-9
picture 9-8, 16-2

aperture
DRAM 5-2
memory 12-1
PCI 11-2

aperture,PCI 5-5
APERTURE_CONTROL field 5-5
asi A-8
PRELIMINARY SPECIFICATION Index-1


