
Microchip Technology - ATMEGA8HVD-4MX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 4MHz

Connectivity -

Peripherals POR, WDT

Number of I/O 5

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 2.4V

Data Converters A/D 1x10b

Oscillator Type Internal

Operating Temperature -20°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 18-WFDFN Exposed Pad (Staggered Leads)

Supplier Device Package 18-MLF (3.5x6.5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega8hvd-4mx

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8hvd-4mx-4431662
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega4HVD/8HVD
tains a high-voltage tolerant, open-drain IO pin that supports serial communication.
Programming can be done in-system using the 4 General Purpose IO ports that support SPI
programming

The MCU includes 4K/8K bytes of In-System Programmable Flash with Self-programming
capabilities, 256 bytes EEPROM, 512 bytes SRAM, 32 general purpose working registers, 4
general purpose I/O lines, debugWIRE for On-chip debugging and SPI for In-system Program-
ming, two flexible Timer/Counters with Input Capture, internal and external interrupts, a 10-bit
ADC for measuring the cell voltage and on-chip temperature, a programmable Watchdog
Timer with wake-up capabilities, and software selectable power saving modes.

The AVR core combines a rich instruction set with 32 general purpose working registers. All
the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two inde-
pendent registers to be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.

The device is manufactured using Atmel’s high voltage high density non-volatile memory tech-
nology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System,
by a conventional non-volatile memory programmer or by an On-chip Boot program running
on the AVR core.

The ATmega4HVD/8HVD AVR is supported with a full suite of program and system develop-
ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and
On-chip Debugger.

The ATmega4HVD/8HVD is a low-power CMOS 8-bit microcontroller based on the AVR archi-
tecture. It is part of the AVR Smart Battery family that provides secure authentication, highly
accurate monitoring and autonomous protection for Lithium-ion battery cells.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

Note: 1.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts
of the device. These code examples assume that the part specific header file is included
before compilation. Be aware that not all C compiler vendors include bit definitions in the
header files and interrupt handling in C is compiler dependent. Please confirm with the C com-
piler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"
instru0ctions must be replaced with instructions that allow access to extended I/O. Typically
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".
5
8052B–AVR–09/08

ATmega4HVD/8HVD
tions. Refer to the instruction set section for more details. When using the I/O specific
commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these
addresses. The ATmega4HVD/8HVD is a complex microcontroller with more peripheral units
than can be supported within the 64 location reserved in Opcode for the IN and OUT instruc-
tions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can there-
fore be used on registers containing such status flags. The CBI and SBI instructions work with
registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

The ATmega4HVD/8HVD contains three General Purpose I/O Registers. These registers can
be used for storing any information, and they are particularly useful for storing global variables
and Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are
directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

7.6 Register Description

7.6.1 EEARL – The EEPROM Address Register

• Bits 7:0 – EEAR7:0: EEPROM Address
The EEPROM Address Registers – EEARL specify the EEPROM address in the 256 bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 255. The
initial value of EEARL is undefined. A proper value must be written before the EEPROM may
be accessed.

7.6.2 EEDR – The EEPROM Data Register

• Bits 7:0 – EEDR7:0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEARL Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEARL.

Bit 7 6 5 4 3 2 1 0

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
17
8052B–AVR–09/08

ATmega4HVD/8HVD
8.13 Register Description

8.13.1 FOSCCAL – Fast RC Oscillator Calibration Register

• Bits 7:0 – FCAL7:0: Fast RC Oscillator Calibration Value
The Fast RC Oscillator Calibration Register is used to trim the Fast RC Oscillator to remove
process variations from the oscillator frequency. The factory-calibrated value is automatically
written to this register during chip reset, giving an oscillator frequency of 8.0 MHz at 85°C. The
application software can write this register to change the oscillator frequency. The oscillator
can be run-time calibrated to any frequency in the range 7.3-8.1 MHz. Calibration outside that
range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to
more than 8.1 MHz. Otherwise, the EEPROM or Flash write may fail.

The FCAL[7:5] bits determine the range of operation for the oscillator. Setting these bits to
0b000 gives the lowest frequency range, setting this bit to 0b111 gives the highest frequency
range. The frequency ranges are overlapping. A setting of for instance FOSCCAL = 0x1F
gives a higher frequency than FOSCCAL = 0x20.

The FCAL[4:0] bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x1F gives the highest frequency in
the range. Incrementing FCAL[4:0] by 1 will give a frequency increment of less than 1.5 % in
the frequency range 7.3-8.1 MHz. With an accurate time reference, an oscillator accuracy of
±1% can be achieved after calibration. The frequency will drift with temperature, so run-time
calibration will be required to maintain the accuracy. Refer to ”OSI – Oscillator Sampling Inter-
face” on page 27 for details.

8.13.2 MCUCR – MCU Control Register

• Bit 5 – CKOE: Clock Output
When this bit is written to one, the CPU clock divided by 2 is output on the PB2 pin.

8.13.3 CLKPR – Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

FCAL7 FCAL6 FCAL5 FCAL4 FCAL3 FCAL2 FCAL1 FCAL0 FOSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

-– – CKOE PUD – – – – MCUCR

Read/Write R R R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – – – CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 1 1
29
8052B–AVR–09/08

10. System Control and Reset

10.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. The circuit diagram in Figure 10-1 on page 39 shows the reset logic. ”System and
Reset Characteristics” on page 144 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the voltage regulator to reach a stable level before normal operation starts.
The timeout period of the delay counter is defined by the user through the SUT Fuses. The dif-
ferent selections for the delay period are presented in ”Clock Sources” on page 23.

10.2 Reset Sources

The ATmega4HVD/8HVD has these reset sources:

• The Power-on Reset module generates a Power-on Reset when the Voltage Regulator starts
up.

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

• Black-out Reset. The MCU is reset when VREG is below the Black-out Reset Threshold,
VBLOT. See “Black-out Detection” on page 40.

• debugWIRE. In On-chip Debug mode, the debugWIRE resets the MCU when giving the
Reset command.
38
8052B–AVR–09/08

ATmega4HVD/8HVD

ATmega4HVD/8HVD
guaranteed and the chip should be forced into Power-off mode. The algorithm used for switch-
ing between the two VBLOT levels is illustrated Figure 10-4 on page 41. As long as BLOD is set,
the VBLOT, START-UP level will always be selected.

Figure 10-4. BLOD levels switching

Notice that during the Power-On Reset start-up sequence, a Black-out detection will only gen-
erate a normal reset. The chip will not enter Power-off in this case. This is illustrated in Figure
10-5 on page 41. See TBD for details on Power-on Reset and start-up sequence.

Figure 10-5. BLOD detection with POR

In normal operation, when VREG decreases to a value below the trigger level, the Black-out
Reset is immediately activated. After a fixed delay of TBLODTOUT the chip will enter Power-off
mode, see Figure 10-6 on page 41 and ”System and Reset Characteristics” on page 144. Any
ongoing operations, including EEPROM write sequences that were started while VREG was
above VBLOD, will be aborted. The result of an ongoing EEPROM write operation will be invalid.
A charger must be connected to start up the chip from Power-off.

The BLOD circuit will only detect a drop in VREG if the voltage stays below the trigger level for
longer than tBLOD given in ”System and Reset Characteristics” on page 144.

Figure 10-6. Black-out Reset During Operation

BLOD
0

1

VBLOT, NORMAL

VBLOT,STARTUP

BLOD
DETECTIONBLOD LEVEL

VREG

BLOD_PWROFF

S

R

BLOD

POR

reset

VCC

Power-on

Internal Reset

VBLOT

TBLODTOUT
41
8052B–AVR–09/08

Address Labels Code Comments

0x0000 rjmp RESET ; Reset Handler

0x0001 rjmp BPINT ; Battery Protection Interrupt Handler

0x0002 rjmp VREGMON_INT ; Voltage Regulator Monitor Interrupt Handler

0x0003 rjmp EXT_INT0 ; External Interrupt Request 0 Handler

0x0004 rjmp EXT_INT1 ; External Interrupt Request 1 Handler

0x0005 rjmp WDT ; Watchdog Time-out Interrupt

0x0006 rjmp TIM1_IC ; Timer1 Input Capture Handler

0x0007 rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x0008 rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x0009 rjmp TIM1_OVF ; Timer1 Overflow Handler

0x000A rjmp TIM0_IC ; Timer0 Input Capture Handler

0x000B rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x000C rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x000D rjmp TIM0_OVF ; Timer0 Overflow Handler

0x000E rjmp ADC ; ADC Conversion Complete Handler

0x000F rjmp EE_READY ; EEPROM Ready

;

0x000F RESET: ldi r16, high(RAMEND) ; Main program start

0x0010 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0010 ldi r16, low(RAMEND)

0x0012 out SPL,r16

0x0013 sei ; Enable interrupts

0x0014 <instr> xxx

0x0015

;

52
8052B–AVR–09/08

ATmega4HVD/8HVD

ATmega4HVD/8HVD
14.3.1 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 14-3.

The alternate pin configuration is as follows:

• MISO/CKOUT/T1 - Port B, Bit 2
MISO : Slave Data Output pin for SPI programming

When not operating in programming mode, this pin can serve as Clock Output, CPU clock
divided by 2. When not operating in programming mode or as clock output, the pin can be
used as clock input for Time/Counter1

• SCK/SGND/T0 - Port B, Bit 1
SCK : Clock Input pin for SPI programming

When not operating in programming mode, this pin can serve as ground reference for ADC0
channel by configuring the pin as output low. When not used as SGND, the pin can be used as
clock input for Time/Counter0.

• ADC0 - Port B, Bit 0
Analog to Digital Converter, channel 0.

.

Table 14-3. Port B Pins Alternate Functions

Port Pin Alternate Function

PB2
MISO/CKOUT/T1 (SPI Bus Serial DataOutput, Clock Output,
Timer/Counter Clock Input)

PB1
SCK/SGND/T0 (SPI Bus Master Clock input, GND for ADC0
measurements, Timer/Counter 0 Clock Input)

PB0 ADC0 (ADC Input Channel 0)

Table 14-4. Overriding Signals for Alternate Functions in PB2:0

Signal Name PB2/MISO/CKOUT/T1 PB1/SCK/SGND/T0 PB0/ADC0
69
8052B–AVR–09/08

16.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing
the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register n B (TCCRnB). When enabled the noise canceler introduces
additional four system clock cycles of delay from a change applied to the input, to the update
of the ICRn Register. The noise canceler uses the system clock and is therefore not affected
by the prescaler.

The noise canceller should only be used for ICP01 (Port PC0).

16.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will
be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. The maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.

Measurement of an external signal duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency
only, the trigger edge change is not required.

Notes: 1. See ”OSI – Oscillator Sampling Interface” on page 27 for details.
2. The noise canceller cannot be used with this setting.

Note: 1. The noise canceller cannot be used with this setting.

16.7 Output Compare Unit

The comparator continuously compares the Timer/Counter (TCNTn) with the Output Compare
Registers (OCRnA and OCRnB), and whenever the Timer/Counter equals to the Output Com-
pare Regisers, the comparator signals a match. A match will set the Output Compare Flag at
the next timer clock cycle. In 8-bit mode the match can set either the Output Compare Flag
OCFnA or OCFnB, but in 16-bit mode the match can set only the Output Compare Flag

Table 16-3. Timer/Counter0 Input Capture Source (ICS)

ICS0 Source

0 ICP00: osi_posedge pin from OSI module(1) (2)

1 ICP01: Port PC0

Table 16-4. Timer/Counter1 Input Capture Source (ICS)

ICS1 Source

0 ICP10: Battery Protection Interrupt(1)

1 ICP11: Voltage Regulator Interrupt(1)
80
8052B–AVR–09/08

ATmega4HVD/8HVD

20. Battery Protection

20.1 Features

• Short-circuit Protection
• Discharge Over-current Protection
• Charge Over-current Protection
• External Protection Input
• Programmable and Lockable Detection Levels and Reaction Times
• Autonomous Operation Independent of CPU

20.2 Overview

The Current Battery Protection circuitry (CBP) monitors the charge and discharge current and
disables C-FET and D-FET if a Short-circuit, Over-current or High-current condition is
detected. There are three different programmable detection levels: Short-circuit Detection
Level, Discharge Over-current Detection Level, and Charge Over-current Detection Level.
There are two different programmable delays for activating Current Battery Protection: Short-
circuit Reaction Time and Over-current Reaction Time. After Current Battery Protection has
been activated, the application software must re-enable the FETs. The Battery Protection
hardware provides a hold-off time of 1 second nominally before software can re-enable the
discharge FET. This provides safety in case the application software should unintentionally re-
enable the discharge FET too early.

The activation of a protection also issues an interrupt to the CPU. The battery protection inter-
rupts can be individually enabled and disabled by the CPU.

In addition, the module offers an External Protection Input. The activation of the External Pro-
tection Input operates independently of the rest of the battery protection mechanisms. The
activation/deactivation of this protection is instantaneously controlled from the External Protec-
tion Input port, and will not deactivate or affect the other battery protection mechanisms.

The effect of the various battery protection types is given in Table 20-1.

In order to reduce power consumption, Short-circuit and Discharge Over-current Protection
are automatically deactivated when the D-FET is disabled. The Charge Over-current is dis-
abled when the C-FET is disabled. Note that Charge Over-current Protection is never
automatically disabled when the chip is operated in DUVR mode. Also note that none of the
current protections are deactivated by External Protection Input. To save power during an
External Protection event, DFE and CFE should be cleared in the FCSR register. Make also
sure that the chip is not operated in DUVR mode.

Table 20-1. Effect of Battery Protection Types

Battery Protection Type Interrupt Requests C-FET D-FET MCU

Short-circuit Protection Entry Disabled Disabled Operational

Discharge Over-current
Protection

Entry Disabled Disabled Operational

Charge Over-current
Protection

Entry Disabled Disabled Operational

External Protection Input Entry and/or Exit Disabled Disabled Operational
104
8052B–AVR–09/08

ATmega4HVD/8HVD

ATmega4HVD/8HVD
The Current Battery Protection (CBP) monitors the cell current by sampling the shunt resistor
voltage (RSENSE) connected between the NI and GND pins. A differential operational amplifier
amplifies the voltage with a suitable gain. The output from the operational amplifier is com-
pared to an accurate, programmable On-chip voltage reference by an Analog Comparator. If
the shunt resistor voltage is above the Detection level for a time longer than the corresponding
Protection Reaction Time, the chip activates Current Protection. A sampled system clocked by
the internal ULP Oscillator is used for Short-circuit and Over-current. This ensures a reliable
clock source, offset cancellation and low power consumption.

20.3 Short-circuit Protection

The Short-circuit detection is provided to enable a fast response time to very large discharge
currents. If the voltage over RSENSE is above the Short-circuit Detection Level for a period lon-
ger than Short-circuit Reaction Time, the Short-circuit Protection is activated.

When the Short-circuit Protection is activated, the external D-FET and C-FET are disabled
and a Current Protection Timer is started. This timer ensures that the D-FET and C-FET are
disabled for at least one second. The application software must then set the DFE and CFE bits
in the FET Control and Status Register to re-enable normal operation. If the D-FET is re-
enabled before the cause of the short-circuit condition is removed, the Short-circuit Protection
will be activated again.

20.4 Discharge Over-current Protection

If the voltage over RSENSE is above the Discharge Over-current Detection level for a time lon-
ger than Over-current Protection Reaction Time, the chip activates Discharge Over-current
Protection.

When the Discharge Over-current Protection is activated, the external D-FET and C-FET are
disabled and a Current Protection Timer is started. This timer ensures that the FETs are dis-
abled for at least one second. The application software must then set the DFE and CFE bits in
the FET Control and Status Register to re-enable normal operation. If the D-FET is re-enabled
while the loading of the battery still is too large, the Discharge Over-current Protection will be
activated again.

20.5 Charge Over-current Protection

If the voltage at the GND/NI pins is above the Charge Over-current Detection level for a time
longer than Over-current Protection Reaction Time, the chip activates Charge Over-current
Protection.

When the Charge Over-current Protection is activated, the external D-FET and C-FET are dis-
abled and a Current Protection Timer is started. This timer ensures that the FETs are disabled
for at least one second. The application software must then set the DFE and CFE bits in the
FET Control and Status Register to re-enable normal operation. If the C-FET is re-enabled
and the charger continues to supply too high currents, the Charge Over-current Protection will
be activated again.

The Short-circuit and Over-current parameters are programmable to adapt to different types of
batteries. The parameters are set by writing to I/O Registers. The Parameter Registers can be
locked after the initial configuration, prohibiting any further updates until the next Hardware
Reset.

Refer to ”Register Description” on page 108 for register descriptions.
105
8052B–AVR–09/08

20.7 Battery Protection CPU Interface

The Battery Protection CPU Interface is illustrated in Figure 20-2.

Figure 20-2. Battery Protection CPU Interface

Each protection originating from the Current Battery Protection module has an Interrupt Flag.
All enabled flags are combined into a single battery protection interrupt request to the CPU.
This interrupt can wake up the CPU from any operation mode, except Power-off. The interrupt
flags are cleared by writing a logic ‘1’ to their bit locations from the CPU. An interrupt event for
the External Protection Input can be generated by enabling the external interrupt for the input
port.

Note that there are neither flags nor status bits indicating that the chip has entered the Power
Off mode. This is because the CPU is powered down in this mode. The CPU will, however be
able to detect that it came from a Power-off situation by monitoring CPU reset flags when it
resumes operation.

20.8 Register Description

20.8.1 BPPLR – Battery Protection Parameter Lock Register

• Bit 7:2 – Res: Reserved Bits
These bits are reserved and will always read as zero.

3
/

3
/

3
/

Interrupt
Request

Interrupt
Acknowledge

FET
Control

Current
Battery

Protection

Battery Protection
Control Register

Battery Protection
Timing Register

Battery Protection
Level Register

Battery Protection
Parameter Lock

Register

GND

NI

LOCK? LOCK? LOCK?

8-BIT DATA BUS

Power-off

Battery
Protection
Interrupt
Register

Battery
Protection

EXTPROT

Bit 7 6 5 4 3 2 1 0

– – – – – – BPPLE BPPL BPPLR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
108
8052B–AVR–09/08

ATmega4HVD/8HVD

20.8.6 BPDOCD – Battery Protection Discharge-Over-current Detection Level Register

• Bits 7:0 – DOCDL7:0: Discharge Over-current Detection Level
These bits sets the RSENSE voltage level for detection of Discharge Over-current, as defined in
Table 20-4 on page 112. This register should always be written as one-hot.

Note: Due to synchronization of parameters between clock domains, a guard time of 3 ULP oscillator
cycles + 3 CPU clock cycles is required between each time the BPDOCD register is written. Any
writing to the BPDOCD register during this period will be ignored.

20.8.7 BPCOCD – Battery Protection Charge-Over-current Detection Level Register

• Bits 7:0 –COCDL7:0: Charge Over-current Detection Level
These bits sets the RSENSE voltage level for detection of Charge Over-current, as defined in
Table 20-4 on page 112. This register should always be written as one-hot.

Note: Due to synchronization of parameters between clock domains, a guard time of 3 ULP oscillator
cycles + 3 CPU clock cycles is required between each time the BPCOCD register is written. Any
writing to the BPCOCD register during this period will be ignored.

Bit 7 6 5 4 3 2 1 0

DOCDL[7:0] BPDOCD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 1

Bit 7 6 5 4 3 2 1 0

COCDL[7:0] BPCOCD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 1

Table 20-4. DL[7:0] with corresponding RSENSE Current for all Current Detection Levels
(RSENSE = 10 mΩ, VREF = 1.100 ± 0.005V)

Current Protection Detection Level

DL[7:0] Min. Typ. Max.

0x01 0.5A 2.0A 3.5A

0x02 1.0A 2.5A 4.0A

0x04 1.5A 3.0A 4.5A

0x08 2.0A 3.5A 5.0A

0x10 2.5A 4.0A 5.5A

0x20 3.0A 4.5A 6.0A

0x40 3.5A 5.0A 6.5A

0x80 4.5A 6.0A 7.5A

All other values Reserved
112
8052B–AVR–09/08

ATmega4HVD/8HVD

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

22.4 Software Break Points

debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The
instruction replaced by the BREAK instruction will be stored. When program execution is con-
tinued, the stored instruction will be executed before continuing from the Program memory. A
break can be inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will there-
fore reduce the Flash Data retention. Devices used for debugging purposes should not be
shipped to end customers.

22.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse
should be disabled when debugWire is not used.

22.6 Register Description

22.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
120
8052B–AVR–09/08

ATmega4HVD/8HVD

ATmega4HVD/8HVD
23.5.1 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading
the Fuses and Lock bits from software will also be prevented during the EEPROM write opera-
tion. It is recommended that the user checks the status bit (EEWE) in the EECR Register and
verifies that the bit is cleared before writing to the SPMCSR Register.

23.5.2 Setting the Lock Bits from Software

To set the Lock Bits, write the desired data to R0. If bits 1..0 in R0 are cleared (zero), the cor-
responding Lock bit will be programmed if an SPM instruction is executed within four cycles
after RFLB and SPMEN are set in SPMCSR. The Z-pointer is don’t care during this operation,
but for future compatibility it is recommended to load the Z-pointer with 0x0001 (same as used
for reading the lOck bits). For future compatibility it is also recommended to set bit 7..2 in R0 to
“1” when writing the Lock bits. When programming the Lock bits the entire Flash can be read
during the operation.

See Table 24-1 on page 129 and Table 24-2 on page 129 for how the different settings of the
Lock bits affect the Flash access.

23.5.3 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the RFLB and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the RFLB and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The RFLB and SPMEN bits
will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When
RFLB and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the RFLB
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after
the RFLB and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will
be loaded in the destination register as shown below. Refer to Table 24-4 on page 130 for a
detailed description and mapping of the Fuse Low byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

23.5.4 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the Flash requires a minimum voltage to operate correctly. Sec-

Bit 7 6 5 4 3 2 1 0

R0 1 1 1 1 1 1 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0
123
8052B–AVR–09/08

ATmega4HVD/8HVD
24.8.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits
are not reset until the Program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are re-
programmed.

Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

1. Load command “Chip Erase” (see Table 24-14).

2. Wait after Instr. 3 until SDO goes high for the “Chip Erase” cycle to finish.

3. Load Command “No Operation”.

24.8.4 Programming the Flash

The Flash is organized in pages, see Table 24-10 on page 133. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be
programmed simultaneously. The following procedure describes how to program the entire
Flash memory:

1. Load Command “Write Flash” (see Table 24-14).

2. Load Flash Page Buffer.

3. Load Flash High Address and Program Page. Wait after Instr. 3 until SDO goes high
for the “Page Programming” cycle to finish.

4. Repeat 2 through 3 until the entire Flash is programmed or until all data has been
programmed.

5. End Page Programming by Loading Command “No Operation”.

When writing or reading serial data to the ATmega4HVD/8HVD, data is clocked on the rising
edge of the serial clock, see Figure 24-4, Figure 26-3 and Table 26-9 for details.

Figure 24-3. Addressing the Flash which is Organized in Pages

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
137
8052B–AVR–09/08

ATmega4HVD/8HVD
Table 24-14. High-voltage Serial Programming Instruction Set for ATmega4HVD/8HVD

Instruction

Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4

Chip Erase

SDI

SII

SDO

0_1000_0000_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Load
“Write Flash”
Command

SDI

SII

SDO

0_0001_0000_00

0_0100_1100_00

x_xxxx_xxxx_xx

Load Flash
Page Buffer

SDI

SII

SDO

0_ bbbb_bbbb _00(1)

0_0000_1100_00

x_xxxx_xxxx_xx

0_eeee_eeee_00

0_0010_1100_00

x_xxxx_xxxx_xx

0_dddd_dddd_00

0_0011_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1101_00

x_xxxx_xxxx_xx

SDI

SII

SDO

0_0000_0000_00

0_0111_1100_00

x_xxxx_xxxx_xx

Load Flash High
Address and
Program Page

SDI

SII

SDO

0_000a_aaaa_00

0_0001_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Load
“Read Flash”
Command

SDI

SII

SDO

0_0000_0010_00

0_0100_1100_00

x_xxxx_xxxx_xx

Read Flash Low
and High Bytes

SDI

SII

SDO

0_bbbb_bbbb_00(1)

0_0000_1100_00

x_xxxx_xxxx_xx

0_000a_aaaa_00

0_0001_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

q_qqqq_qqqx_xx

SDI

SII

SDO

0_0000_0000_00

0_0111_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1100_00

p_pppp_pppx_xx

Load “Write
EEPROM”
Command

SDI

SII

SDO

0_0001_0001_00

0_0100_1100_00

x_xxxx_xxxx_xx

Load EEPROM
Page Buffer

SDI

SII

SDO

0_0bbb_bbbb_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_eeee_eeee_00

0_0010_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1101_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Program
EEPROM Page

SDI

SII

SDO

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Write
EEPROM
Byte(2)

SDI

SII

SDO

0_0bbb_bbbb_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_eeee_eeee_00

0_0010_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1101_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

SDI

SII

SDO

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Load “Read
EEPROM”
Command

SDI

SII

SDO

0_0000_0011_00

0_0100_1100_00

x_xxxx_xxxx_xx
139
8052B–AVR–09/08

Note: a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits, q = data out low bits,
x = don’t care, 1 = Lock Bit1, 2 = Lock Bit2, 3 = CKSEL Fuse, 4 = SUT0 Fuse, 5 = SUT1 Fuse, Fuse, A = WDTON Fuse, 9 =
EESAVE Fuse, 8 = SPIEN Fuse, 7 = DWEN Fuse, 6 = SELFPRGEN Fuse

Notes: 1. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address.
2. The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the EEPROM.

Page-wise EEPROM access is more efficient when multiple bytes are to be written to the same page. Note that auto-erase
of EEPROM is not available in High-voltage Serial Programming, only in SPI Programming.

Read
EEPROM Byte

SDI

SII

SDO

0_bbbb_bbbb_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_aaaa_aaaa_00

0_0001_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

q_qqqq_qqq0_00

Write Fuse
Low Bits

SDI

SII

SDO

0_0100_0100_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_A987_6543_00

0_0010_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write A - 3 = “0”
to program the Fuse bit.

Write Lock Bits

SDI

SII

SDO

0_0010_0000_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0021_00

0_0010_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_0100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

x_xxxx_xxxx_xx

Wait after Instr. 4 until SDO
goes high. Write 2 - 1 = “0” to
program the Lock Bit.

Read Fuse
Low Bits

SDI

SII

SDO

0_0000_0100_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

A_9876_543x_xx

Reading A - 3 = “0” means
the Fuse bit is programmed.

Read Lock Bits

SDI

SII

SDO

0_0000_0100_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1100_00

x_xxxx_x21x_xx

Reading 2, 1 = “0” means the
Lock bit is programmed.

Read
Signature Bytes

SDI

SII

SDO

0_0000_1000_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_00bb_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

q_qqqq_qqqx_xx

Repeats Instr 2 4 for each
signature byte address.

Read
Calibration Byte

SDI

SII

SDO

0_0000_1000_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1100_00

p_pppp_pppx_xx

Load “No
Operation”
Command

SDI

SII

SDO

0_0000_0000_00

0_0100_1100_00

x_xxxx_xxxx_xx

Table 24-14. High-voltage Serial Programming Instruction Set for ATmega4HVD/8HVD (Continued)

Instruction

Instruction Format

Operation RemarksInstr.1/5 Instr.2/6 Instr.3 Instr.4
140
8052B–AVR–09/08

ATmega4HVD/8HVD

ATmega4HVD/8HVD
26.6.2 High-voltage Serial Programming

Figure 26-3. High-voltage Serial Programming Timing

Table 26-9. High-voltage Serial Programming Characteristics TA = 25°C ± 10%, VCC = 3.5V
± 10% (Unless otherwise noted)

Symbol Parameter Min Typ Max Units

tSHSL SCI Pulse Width High 1/fck ns

tSLSH SCI Pulse Width Low 1/fck ns

tIVSH SDI, SII Valid to SCI High 50 ns

tSHIX SDI, SII Hold after SCI High 50 ns

tSHOV SCI High to SDO Valid 16 ns

tWLWH_PFB Wait after Instr. 3 for Write Fuse Bits 2.5 ms

SDI , SII

SDO

SCI

tIVSH

tSHSL

tSLSHtSHIX

tSHOV
149
8052B–AVR–09/08

ATmega4HVD/8HVD
28. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xFF) Reserved – – – – – – – –

(0xFE) BPPLR – – – – – – BPPLE BPPL

(0xFD) BPCR – – EPID SCD DOCD COCD – –

(0xFC) Reserved – – – – – – – –

(0xFB) BPOCTR – – OCTR[5:0]

(0xFA) BPSCTR – SCTR[6:0]

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) BPCOCD COCDL[7:0]

(0xF6) BPDOCD DOCDL[7:0]

(0xF5) BPSCD SCDL[7:0]

(0xF4) Reserved – – – – – – – –

(0xF3) BPIFR – – – SCIF DOCIF COCIF – –

(0xF2) BPIMSK – – – SCIE DOCIE COCIE – –

(0xF1) Reserved – – – – – – – –

(0xF0) FCSR – – – – DUVRD CPS DFE CFE

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) ROCR ROCS – – – – RSCDEN RSCWIF RSCWIE

(0xC7) Reserved – – – – – – – –

(0xC6) Reserved – – – – – – – –

(0xC5) Reserved – – – – – – – –

(0xC4) Reserved – – – – – – – –

(0xC3) Reserved – – – – – – – –

(0xC2) Reserved – – – – – – – –

(0xC1) Reserved – – – – – – – –

(0xC0) Reserved – – – – – – – –
151
8052B–AVR–09/08

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

Mnemonics Operands Description Operation Flags #Clocks
156
8052B–AVR–09/08

ATmega4HVD/8HVD

