# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | S12Z                                                                    |
| Core Size                  | 16-Bit                                                                  |
| Speed                      | 32MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, SCI, SPI                                      |
| Peripherals                | DMA, POR, PWM, WDT                                                      |
| Number of I/O              | 42                                                                      |
| Program Memory Size        | 64KB (64K x 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 1K x 8                                                                  |
| RAM Size                   | 4K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 3.5V ~ 40V                                                              |
| Data Converters            | A/D 16x10b; D/A 1x8b                                                    |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 64-LQFP Exposed Pad                                                     |
| Supplier Device Package    | 64-LQFP (10x10)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/s912zvc64f0mkhr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| LQ | )FP |       | Function     |              |              |              |              | Power            | Intern<br>Resi    | al Pull<br>stor |
|----|-----|-------|--------------|--------------|--------------|--------------|--------------|------------------|-------------------|-----------------|
| 64 | 48  | Pin   | 1st<br>Func. | 2nd<br>Func. | 3rd<br>Func. | 4th<br>Func. | 5th<br>Func. | Supply           | CTRL              | Reset<br>State  |
| 1  | 1   | VSUP  | —            | _            | —            | —            | —            | V <sub>SUP</sub> | —                 |                 |
| 2  | 2   | PL1   | HVI1         | KWL1         | —            | —            | —            | V <sub>DDX</sub> | —                 | _               |
| 3  | 3   | PL0   | HVI0         | KWL0         | —            | —            | _            | V <sub>DDX</sub> | —                 | _               |
| 4  | 4   | BCTL  |              |              |              | _            | _            | V <sub>DDX</sub> |                   |                 |
| 5  | 5   | BCTLC |              |              |              | _            | _            | V <sub>DDX</sub> |                   |                 |
| 6  | 6   | PE0   | EXTAL        |              | —            | —            | —            | V <sub>DDX</sub> | PERE/<br>PPSE     | Down            |
| 7  | 7   | PE1   | XTAL         |              | _            | _            | _            | V <sub>DDX</sub> | PERE/<br>PPSE     | Down            |
| 8  |     | PJ1   | SCL0         | TXD0         | —            | —            | —            | V <sub>DDX</sub> | PERJ/<br>PPSJ     | Up              |
| 9  |     | PJ0   | SDA0         | RXD0         | —            | —            | —            | V <sub>DDX</sub> | PERJ/<br>PPSJ     | Up              |
| 10 | _   | PAD11 | KWAD11       | AN11         | —            | —            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 11 | _   | PAD10 | KWAD10       | AN10         | _            | _            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 12 | 8   | PAD9  | KWAD9        | AN9          | AMP          | —            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 13 | 9   | PAD8  | KWAD8        | AN8          | AMPM         | _            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 14 | 10  | PAD7  | KWAD7        | AN7          | AMPP         | _            | —            | V <sub>DDA</sub> | PERADH/<br>PPSADH | Off             |
| 15 | 11  | PAD6  | KWAD6        | AN6          | DACU         | —            | —            | V <sub>DDA</sub> | PERADH/<br>PPSADH | Off             |
| 16 | 12  | PAD5  | KWAD5        | AN5          | ACMPO1       | —            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 17 | 13  | PAD4  | KWAD4        | AN4          | ACMP1_1      | —            | —            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 18 | 14  | VSSA  |              |              |              |              | —            | V <sub>DDA</sub> |                   |                 |
| 19 | 15  | VDDA  |              |              |              |              |              | V <sub>DDA</sub> |                   |                 |
| 20 | 16  | PAD3  | KWAD3        | AN3          | VRH_0        | ACMP1_0      | _            | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |
| 21 | 17  | PAD2  | KWAD2        | AN2          | ACMPO0       |              |              | V <sub>DDA</sub> | PERADL/<br>PPSADL | Off             |

| Table 1-6 | . MC9S12ZV | C-Family | Pin | Summary |
|-----------|------------|----------|-----|---------|
|-----------|------------|----------|-----|---------|

MC9S12ZVC Family Reference Manual, Rev. 2.0

#### **1.9.3.3** ADC Internal Channels

The ADC internal channel mapping is shown in Table 1-8.

|     | ADO | CCMD_ | L[CH_S | EL] |     |                         |                                                                                                                                                                                                                                 |
|-----|-----|-------|--------|-----|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [5] | [4] | [3]   | [2]    | [1] | [0] | Analog Input<br>Channel | Usage                                                                                                                                                                                                                           |
| 0   | 0   | 0     | 0      | 0   | 0   | V <sub>RL</sub>         |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 0      | 0   | 1   | V <sub>RH</sub>         |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 0      | 1   | 0   | $(V_{RH}-V_{RL})/2$     |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 0      | 1   | 1   | Reserved                |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 1      | 0   | 0   | Reserved                |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 1      | 0   | 1   | Reserved                |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 1      | 1   | 0   | Reserved                |                                                                                                                                                                                                                                 |
| 0   | 0   | 0     | 1      | 1   | 1   | Reserved                |                                                                                                                                                                                                                                 |
| 0   | 0   | 1     | 0      | 0   | 0   | Internal_0              | RESERVED                                                                                                                                                                                                                        |
| 0   | 0   | 1     | 0      | 0   | 1   | Internal_1              | $\begin{array}{c} \text{Bandgap Voltage V}_{\text{BG}} \text{ or Chip} \\ \text{temperature sensor V}_{\text{HT}} \\ \text{see Section 8.3.2.14 High} \\ \text{Temperature Control Register} \\ \text{(CPMUHTCTL)} \end{array}$ |
| 0   | 0   | 1     | 0      | 1   | 0   | Internal_2              | Flash Voltage V <sub>DDF</sub>                                                                                                                                                                                                  |
| 0   | 0   | 1     | 0      | 1   | 1   | Internal_3              | RESERVED                                                                                                                                                                                                                        |
| 0   | 0   | 1     | 1      | 0   | 0   | Internal_4              | V <sub>SUP</sub><br>see Section 10.3.2.1 BATS Module<br>Enable Register (BATE)                                                                                                                                                  |
| 0   | 0   | 1     | 1      | 0   | 1   | Internal_5              | High voltage input port L0<br>see Section 2.3.4.10 Port L ADC<br>Connection Enable Register<br>(PTAENL)                                                                                                                         |
| 0   | 0   | 1     | 1      | 1   | 0   | Internal_6              | High voltage input port L1<br>Section 2.3.4.10 Port L ADC<br>Connection Enable Register<br>(PTAENL)                                                                                                                             |
| 0   | 0   | 1     | 1      | 1   | 1   | Internal_7              | RESERVED                                                                                                                                                                                                                        |

Table 1-8. ADC Channel Assignment

## **1.9.4 TIM0 and TIM1 Clock Source Connectivity**

The clock for TIM1 is the device core clock generated in the CPMU module. (maximum core clock is 64MHz)

The clock for TIM0 is the device bus clock generated in the CPMU module. (maximum bus clock 32MHz)

#### Chapter 1 Device Overview MC9S12ZVC-Family

| Vector Address                                       | Interrupt Source              |       | Local Enable    | Wake up<br>from STOP | Wake up<br>from WAIT |
|------------------------------------------------------|-------------------------------|-------|-----------------|----------------------|----------------------|
| Vector base + 0x0F0<br>to<br>Vector base + 0x0C4     |                               | Rese  | erved           |                      |                      |
| Vector base + 0x0C0                                  | Port L interrupt (Key Wakeup) | I bit | PIEL(PIEL[1:0]) | Yes                  | Yes                  |
| Vector base + 0x0BC<br>to<br>Vector base + 0x0B0     |                               | Rese  | prved           |                      |                      |
| Vector base + 0x0AC                                  | TIM1 timer channel 0          | I bit | TIM1TIE (C0I)   | No                   | Yes                  |
| Vector base + 0x0A8                                  | TIM1 timer channel 1          | I bit | TIM1TIE (C1I)   | No                   | Yes                  |
| Vector base + 0x0A4                                  | TIM1 timer channel 2          | I bit | TIM1TIE (C2I)   | No                   | Yes                  |
| Vector base + 0x0A0                                  | TIM1 timer channel 3          | I bit | TIM1TIE (C3I)   | No                   | Yes                  |
| Vector base + 0x09C<br>to<br>Vector base + 0x090     |                               | Rese  | prved           |                      |                      |
| Vector base + 0x08C                                  | TIM1 timer overflow           | I bit | TIM1TSCR2 (TOF) | No                   | Yes                  |
| Vector base $+ 0x088$ to<br>Vector base $+ 0x064$    |                               | Rese  | erved           |                      |                      |
| Vector base + 0x060                                  | IIC0                          | I bit | IBCR(IBIE)      | No                   | Yes                  |
| Vector base + 0x05C                                  | SENTTX                        | I bit | INTEN(xxIE)     | No                   | Yes                  |
| Vector base $+ 0x058$<br>to<br>Vector base $+ 0x000$ |                               | Rese  | erved           |                      |                      |

## 1.12.2 Effects of Reset

When a reset occurs, MCU registers and control bits are initialized. Refer to the respective block sections for register reset states.

On each reset, the Flash module executes a reset sequence to load Flash configuration registers.

#### **1.12.2.1** Flash Configuration Reset Sequence Phase

On each reset, the Flash module will hold CPU activity while loading Flash module registers from the Flash memory. If double faults are detected in the reset phase, Flash module protection and security may be active on leaving reset. This is explained in more detail in the Flash module description.

## 1.12.2.2 Reset While Flash Command Active

If a reset occurs while any Flash command is in progress, that command will be immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed.

## **3.3.2.2** BDC Control Status Register Low (BDCCSRL)

Register Address: This register is not in the device memory map. It is accessible using BDC inherent addressing commands



Figure 3-4. BDC Control Status Register Low (BDCCSRL)

Read: BDC access only.

Write: Bits [7:5], [3:0] BDC access only, restricted to flag clearing by writing a "1" to the bit position. Write: Bit 4 never. It can only be cleared by a SYNC pulse.

If ACK handshaking is enabled then BDC commands with ACK causing a BDCCSRL[3:1] flag setting condition also generate a long ACK pulse. Subsequent commands that are executed correctly generate a normal ACK pulse. Subsequent commands that are not correctly executed generate a long ACK pulse. The first ACK pulse after WAIT or STOP have been set also generates a long ACK. Subsequent ACK pulses are normal, whilst STOP and WAIT remain set.

Long ACK pulses are not immediately generated if an overrun condition is caused by the host driving the BKGD pin low whilst a target ACK is pending, because this would conflict with an attempted host transmission following the BKGD edge. When a whole byte has been received following the offending BKGD edge, the OVRUN bit is still set, forcing subsequent ACK pulses to be long.

Unimplemented BDC opcodes causing the ILLCMD bit to be set do not generate a long ACK because this could conflict with further transmission from the host. If the ILLCMD is set for another reason, then a long ACK is generated for the current command if it is a BDC command with ACK.

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>WAIT  | <ul> <li>WAIT Indicator Flag — Indicates that the device entered wait mode. Writing a "1" to this bit whilst in wait mode has no effect. Writing a "1" after exiting wait mode, clears the bit.</li> <li>0 Device did not enter wait mode</li> <li>1 Device entered wait mode.</li> </ul>                                                                                          |
| 6<br>STOP  | <ul> <li>STOP Indicator Flag — Indicates that the CPU requested stop mode following a STOP instruction. Writing a "1" to this bit whilst not in stop mode clears the bit. Writing a "1" to this bit whilst in stop mode has no effect. This bit can only be set when the BDC is enabled.</li> <li>0 Device did not enter stop mode</li> <li>1 Device entered stop mode.</li> </ul> |
| 5<br>RAMWF | <ul> <li>RAM Write Fault — Indicates an ECC double fault during a BDC write access to RAM.</li> <li>Writing a "1" to this bit, clears the bit.</li> <li>0 No RAM write double fault detected.</li> <li>1 RAM write double fault detected.</li> </ul>                                                                                                                               |

 Table 3-6. BDCCSRL Field Descriptions

#### Chapter 3 Background Debug Controller (S12ZBDCV2)

| Command<br>Mnemonic   | Command<br>Classification | ACK | Command<br>Structure          | Description                                                                                                                                                                                                                                                                                                                      |
|-----------------------|---------------------------|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DUMP_MEM.sz_WS        | Non-Intrusive             | No  | (0x33+4 x sz)/d/ss/rd.sz      | Dump (read) memory based on operand size<br>(sz) and report status. Used with<br>READ_MEM{_WS} to dump large blocks of<br>memory. An initial READ_MEM{_WS} is<br>executed to set up the starting address of the<br>block and to retrieve the first result. Subsequent<br>DUMP_MEM{_WS} commands retrieve<br>sequential operands. |
| FILL_MEM.sz           | Non-Intrusive             | Yes | (0x12+4 x sz)/wd.sz/dack      | Fill (write) memory based on operand size (sz).<br>Used with WRITE_MEM to fill large blocks of<br>memory. An initial WRITE_MEM is executed<br>to set up the starting address of the block and to<br>write the first operand. Subsequent<br>FILL_MEM commands write sequential<br>operands.                                       |
| FILL_MEM.sz_WS        | Non-Intrusive             | No  | (0x13+4 x sz)/wd.sz/d/ss      | Fill (write) memory based on operand size (sz)<br>and report status. Used with<br>WRITE_MEM{_WS} to fill large blocks of<br>memory. An initial WRITE_MEM{_WS} is<br>executed to set up the starting address of the<br>block and to write the first operand. Subsequent<br>FILL_MEM{_WS} commands write<br>sequential operands.   |
| GO                    | Active<br>Background      | Yes | 0x08/dack                     | Resume CPU user code execution                                                                                                                                                                                                                                                                                                   |
| GO_UNTIL <sup>2</sup> | Active<br>Background      | Yes | 0x0C/dack                     | Go to user program. ACK is driven upon<br>returning to active background mode.                                                                                                                                                                                                                                                   |
| NOP                   | Non-Intrusive             | Yes | 0x00/dack                     | No operation                                                                                                                                                                                                                                                                                                                     |
| READ_Rn               | Active<br>Background      | Yes | (0x60+CRN)/dack/rd32          | Read the requested CPU register                                                                                                                                                                                                                                                                                                  |
| READ_MEM.sz           | Non-Intrusive             | Yes | (0x30+4 x sz)/ad24/dack/rd.sz | Read the appropriately-sized (sz) memory<br>value from the location specified by the 24-bit<br>address                                                                                                                                                                                                                           |
| READ_MEM.sz_WS        | Non-Intrusive             | No  | (0x31+4 x sz)/ad24/d/ss/rd.sz | Read the appropriately-sized (sz) memory<br>value from the location specified by the 24-bit<br>address and report status                                                                                                                                                                                                         |
| READ_DBGTB            | Non-Intrusive             | Yes | (0x07)/dack/rd32/dack/rd32    | Read 64-bits of DBG trace buffer                                                                                                                                                                                                                                                                                                 |
| READ_SAME.sz          | Non-Intrusive             | Yes | (0x50+4 x sz)/dack/rd.sz      | Read from location. An initial READ_MEM<br>defines the address, subsequent READ_SAME<br>reads return content of same address                                                                                                                                                                                                     |
| READ_SAME.sz_WS       | Non-Intrusive             | No  | (0x51+4 x sz)/d/ss/rd.sz      | Read from location. An initial READ_MEM<br>defines the address, subsequent READ_SAME<br>reads return content of same address                                                                                                                                                                                                     |
| READ_BDCCSR           | Always<br>Available       | No  | 0x2D/rd16                     | Read the BDCCSR register                                                                                                                                                                                                                                                                                                         |

#### Table 3-8. BDC Command Summary (continued)

## 3.4.5.2.2 READ\_SAME Effects Of Variable Access Size

READ\_SAME uses the unadjusted address given in the previous READ\_MEM command as a base address for subsequent READ\_SAME commands. When the READ\_MEM and READ\_SAME size parameters differ then READ\_SAME uses the original base address buts aligns 32-bit and 16-bit accesses, where those accesses would otherwise cross the aligned 4-byte boundary. Table 3-12 shows some examples of this.

| Row | Command      | Base Address | 00       | 01       | 10       | 11       |
|-----|--------------|--------------|----------|----------|----------|----------|
| 1   | READ_MEM.32  | 0x004003     | Accessed | Accessed | Accessed | Accessed |
| 2   | READ_SAME.32 | —            | Accessed | Accessed | Accessed | Accessed |
| 3   | READ_SAME.16 | —            |          |          | Accessed | Accessed |
| 4   | READ_SAME.08 | —            |          |          |          | Accessed |
| 5   | READ_MEM.08  | 0x004000     | Accessed |          |          |          |
| 6   | READ_SAME.08 | —            | Accessed |          |          |          |
| 7   | READ_SAME.16 | —            | Accessed | Accessed |          |          |
| 8   | READ_SAME.32 |              | Accessed | Accessed | Accessed | Accessed |
| 9   | READ_MEM.08  | 0x004002     |          |          | Accessed |          |
| 10  | READ_SAME.08 | —            |          |          | Accessed |          |
| 11  | READ_SAME.16 | —            |          |          | Accessed | Accessed |
| 12  | READ_SAME.32 |              | Accessed | Accessed | Accessed | Accessed |
| 13  | READ_MEM.08  | 0x004003     |          |          |          | Accessed |
| 14  | READ_SAME.08 | —            |          |          |          | Accessed |
| 15  | READ_SAME.16 | —            |          |          | Accessed | Accessed |
| 16  | READ_SAME.32 |              | Accessed | Accessed | Accessed | Accessed |
| 17  | READ_MEM.16  | 0x004001     |          | Accessed | Accessed |          |
| 18  | READ_SAME.08 | —            |          | Accessed |          |          |
| 19  | READ_SAME.16 | —            |          | Accessed | Accessed |          |
| 20  | READ_SAME.32 |              | Accessed | Accessed | Accessed | Accessed |
| 21  | READ_MEM.16  | 0x004003     |          |          | Accessed | Accessed |
| 22  | READ_SAME.08 | —            |          |          |          | Accessed |
| 23  | READ_SAME.16 | —            |          |          | Accessed | Accessed |
| 24  | READ_SAME.32 |              | Accessed | Accessed | Accessed | Accessed |

Table 3-12. Consecutive READ\_SAME Accesses With Variable Size

## **3.4.6 BDC Serial Interface**

The BDC communicates with external devices serially via the BKGD pin. During reset, this pin is a mode select input which selects between normal and special modes of operation. After reset, this pin becomes the dedicated serial interface pin for the BDC.

The BDC serial interface uses an internal clock source, selected by the CLKSW bit in the BDCCSR register. This clock is referred to as the target clock in the following explanation.

#### Chapter 3 Background Debug Controller (S12ZBDCV2)

The BDC serial interface uses a clocking scheme in which the external host generates a falling edge on the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per bit. The interface times out if during a command 512 clock cycles occur between falling edges from the host. The timeout forces the current command to be discarded.

The BKGD pin is a pseudo open-drain pin and has a weak on-chip active pull-up that is enabled at all times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typically drive the high level. Since R-C rise time could be unacceptably long, the target system and host provide brief drive-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host for transmit cases and the target for receive cases.

The timing for host-to-target is shown in Figure 3-6 and that of target-to-host in Figure 3-7 and Figure 3-8. All cases begin when the host drives the BKGD pin low to generate a falling edge. Since the host and target operate from separate clocks, it can take the target up to one full clock cycle to recognize this edge; this synchronization uncertainty is illustrated in Figure 3-6. The target measures delays from this perceived start of the bit time while the host measures delays from the point it actually drove BKGD low to start the bit up to one target clock cycle earlier. Synchronization between the host and target is established in this manner at the start of every bit time.

Figure 3-6 shows an external host transmitting a logic 1 and transmitting a logic 0 to the BKGD pin of a target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay from the host-generated falling edge to where the target recognizes this edge as the beginning of the bit time. Ten target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect logic requires the pin be driven high no later than eight target clock cycles after the falling edge for a logic 1 transmission.

Since the host drives the high speedup pulses in these two cases, the rising edges look like digitally driven signals.



Figure 3-6. BDC Host-to-Target Serial Bit Timing

Figure 3-7 shows the host receiving a logic 1 from the target system. The host holds the BKGD pin low long enough for the target to recognize it (at least two target clock cycles). The host must release the low

## 6.3.2.15 Debug Comparator D Address Register (DBGDAH, DBGDAM, DBGDAL)

Address: 0x0145, DBGDAH



Read: Anytime.

Write: If DBG not armed.

#### Table 6-26. DBGDAH, DBGDAM, DBGDAL Field Descriptions

| Field                     | Description                                                                                                                                                                                                                                                                                                 |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23–16<br>DBGDA<br>[23:16] | Comparator Address Bits [23:16]— These comparator address bits control whether the comparator compares the address bus bits [23:16] to a logic one or logic zero.<br>0 Compare corresponding address bit to a logic zero<br>1 Compare corresponding address bit to a logic one                              |
| 15–0<br>DBGDA<br>[15:0]   | <ul> <li>Comparator Address Bits[15:0]— These comparator address bits control whether the comparator compares the address bus bits [15:0] to a logic one or logic zero.</li> <li>0 Compare corresponding address bit to a logic zero</li> <li>1 Compare corresponding address bit to a logic one</li> </ul> |

# 6.4 Functional Description

This section provides a complete functional description of the DBG module.

## 6.4.1 DBG Operation

The DBG module operation is enabled by setting ARM in DBGC1. When armed it can be used to generate breakpoints to the CPU. The DBG module is made up of comparators, control logic, and the state sequencer, Figure 6-1.

The comparators monitor the bus activity of the CPU. Comparators can be configured to monitor opcode addresses (effectively the PC address) or data accesses. Comparators can be configured during data

Chapter 8 S12 Clock, Reset and Power Management Unit (S12CPMU\_UHV\_V7)

## 8.3.2.23 S12CPMU\_UHV\_V7 Protection Register (CPMUPROT)

This register protects the clock configuration registers from accidental overwrite:

# CPMUSYNR, CPMUREFDIV, CPMUCLKS, CPMUPLL, CPMUIRCTRIMH/L, CPMUOSC and CPMUOSC2

Module Base + 0x001B



Figure 8-32. S12CPMU\_UHV\_V7 Protection Register (CPMUPROT)

#### Read: Anytime

#### Write: Anytime

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROT  | <ul> <li>Clock Configuration Registers Protection Bit — This bit protects the clock configuration registers from accidental overwrite (see list of protected registers above): Writing 0x26 to the CPMUPROT register clears the PROT bit, other write accesses set the PROT bit.</li> <li>0 Protection of clock configuration registers is disabled.</li> <li>1 Protection of clock configuration registers is enabled. (see list of protected registers above).</li> </ul> |

When COP is enabled, the program must write \$55 and \$AA (in this order) to the CPMUARMCOP register during the selected time-out period. Once this is done, the COP time-out period is restarted. If the program fails to do this and the COP times out, a COP reset is generated. Also, if any value other than \$55 or \$AA is written, a COP reset is generated.

Windowed COP operation is enabled by setting WCOP in the CPMUCOP register. In this mode, writes to the CPMUARMCOP register to clear the COP timer must occur in the last 25% of the selected time-out period. A premature write will immediately reset the part.

In MCU Normal Mode the COP time-out period (CR[2:0]) and COP window (WCOP) setting can be automatically pre-loaded at reset release from NVM memory (if values are defined in the NVM by the application). By default the COP is off and no window COP feature is enabled after reset release via NVM memory. The COP control register CPMUCOP can be written once in an application in MCU Normal Mode to update the COP time-out period (CR[2:0]) and COP window (WCOP) setting loaded from NVM memory at reset release. Any value for the new COP time-out period and COP window setting is allowed except COP off value if the COP was enabled during pre-load via NVM memory.

The COP clock source select bits can not be pre-loaded via NVM memory at reset release. The IRC clock is the default COP clock source out of reset.

The COP clock source select bits (COPOSCSEL0/1) and ACLK clock control bit in Stop Mode (CSAD) can be modified until the CPMUCOP register write once has taken place. Therefore these control bits should be modified before the final COP time-out period and window COP setting is written. The CPMUCOP register access to modify the COP time-out period and window COP setting in MCU Normal Mode after reset release must be done with the WRTMASK bit cleared otherwise the update is ignored and this access does not count as the write once.

# 8.5.6 Power-On Reset (POR)

The on-chip POR circuitry detects when the internal supply VDD drops below an appropriate voltage level. The POR is deasserted, if the internal supply VDD exceeds an appropriate voltage level (voltage levels not specified, because the internal supply can not be monitored externally). The POR circuitry is always active. It acts as LVR in Stop Mode.

# 8.5.7 Low-Voltage Reset (LVR)

The on-chip LVR circuitry detects when one of the supply voltages VDD, VDDX and VDDF drops below an appropriate voltage level. If LVR is deasserted the MCU is fully operational at the specified maximum speed. The LVR assert and deassert levels for the supply voltage VDDX are  $V_{LVRXA}$  and  $V_{LVRXD}$  and are specified in the device Reference Manual. The LVR circuitry is active in Run- and Wait Mode.

## 9.4.2.16 ADC Command Register 1 (ADCCMD\_1)

A command which contains reserved bit settings causes the error flag CMD\_EIF being set and ADC cease operation.

Module Base + 0x0015



Figure 9-19. ADC Command Register 1 (ADCCMD\_1)

Read: Anytime

Write: Only writable if bit SMOD\_ACC is set (see also Section 9.4.2.2, "ADC Control Register 1 (ADCCTL\_1) bit SMOD\_ACC description for more details)

| Table 9-22. ADCCMD_1 Field Descriptions | Table 9-22 | . ADCCMD | 1 Field | Descriptions |
|-----------------------------------------|------------|----------|---------|--------------|
|-----------------------------------------|------------|----------|---------|--------------|

| Field                | Description                                                                                                                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23<br>VRH_SEL        | Reference High Voltage Select Bit — This bit selects the high voltage reference for current conversion.         0       VRH_0 input selected as high voltage reference.         1       VRH_1 input selected as high voltage reference. |
| 22<br>VRL_SEL        | Reference Low Voltage Select Bit — This bit selects the voltage reference for current conversion.         0       VRL_0 input selected as low voltage reference.         1       VRL_1 input selected as low voltage reference.         |
| 21-16<br>CH_SEL[5:0] | ADC Input Channel Select Bits — These bits select the input channel for the current conversion. See Table 9-23 for channel coding information.                                                                                          |

#### NOTE

If bit SMOD\_ACC is set modifying this register must be done carefully only when no conversion and conversion sequence is ongoing.

| CH_SEL[5] | CH_SEL[4] | CH_SEL[3] | CH_SEL[2] | CH_SEL[1] | CH_SEL[0] | Analog Input Channel    |
|-----------|-----------|-----------|-----------|-----------|-----------|-------------------------|
| 0         | 0         | 0         | 0         | 0         | 0         | VRL_0/1                 |
| 0         | 0         | 0         | 0         | 0         | 1         | VRH_0/1                 |
| 0         | 0         | 0         | 0         | 1         | 0         | (VRH_0/1 + VRL_0/1) / 2 |
| 0         | 0         | 0         | 0         | 1         | 1         | Reserved                |
| 0         | 0         | 0         | 1         | 0         | 0         | Reserved                |
| 0         | 0         | 0         | 1         | 0         | 1         | Reserved                |
| 0         | 0         | 0         | 1         | 1         | 0         | Reserved                |

#### Chapter 11 Timer Module (TIM16B8CV3) Block Description

#### Table 11-4. OC7M Field Descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>OC7M[7:0] | <ul> <li>Output Compare 7 Mask — A channel 7 event, which can be a counter overflow when TTOV[7] is set or a successful output compare on channel 7, overrides any channel 6:0 compares. For each OC7M bit that is set, the output compare action reflects the corresponding OC7D bit.</li> <li>0 The corresponding OC7Dx bit in the output compare 7 data register will not be transferred to the timer port on a channel 7 event, even if the corresponding pin is setup for output compare.</li> <li>1 The corresponding OC7Dx bit in the output compare 7 data register will be transferred to the timer port on a channel 7 event.</li> <li>Note: The corresponding channel must also be setup for output compare (IOSx = 1 and OCPDx = 0) for data to be transferred from the output compare 7 data register to the timer port.</li> </ul> |

## 11.3.2.4 Output Compare 7 Data Register (OC7D)

1.

Module Base + 0x0003



Figure 11-9. Output Compare 7 Data Register (OC7D)

Read: Anytime

Write: Anytime

#### Table 11-5. OC7D Field Descriptions

| Field            | Description                                                                                                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>OC7D[7:0] | <b>Output Compare 7 Data</b> — A channel 7 event, which can be a counter overflow when TTOV[7] is set or a successful output compare on channel 7, can cause bits in the output compare 7 data register to transfer to the timer port data register depending on the output compare 7 mask register. |

## 11.3.2.5 Timer Count Register (TCNT)

Module Base + 0x0004



Figure 11-10. Timer Count Register High (TCNTH)

MC9S12ZVC Family Reference Manual, Rev. 2.0

## **15.3.2** Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register diagram with an associated figure number. Details of register bit and field function follow the register diagrams, in bit order.

## 15.3.2.1 SPI Control Register 1 (SPICR1)

Module Base +0x0000



Figure 15-3. SPI Control Register 1 (SPICR1)

#### Read: Anytime

Write: Anytime

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>SPIE  | <ul> <li>SPI Interrupt Enable Bit — This bit enables SPI interrupt requests, if SPIF or MODF status flag is set.</li> <li>0 SPI interrupts disabled.</li> <li>1 SPI interrupts enabled.</li> </ul>                                                                                                                                                                                                                                                   |
| 6<br>SPE   | <ul> <li>SPI System Enable Bit — This bit enables the SPI system and dedicates the SPI port pins to SPI system functions. If SPE is cleared, SPI is disabled and forced into idle state, status bits in SPISR register are reset.</li> <li>SPI disabled (lower power consumption).</li> <li>SPI enabled, port pins are dedicated to SPI functions.</li> </ul>                                                                                        |
| 5<br>SPTIE | <ul> <li>SPI Transmit Interrupt Enable — This bit enables SPI interrupt requests, if SPTEF flag is set.</li> <li>0 SPTEF interrupt disabled.</li> <li>1 SPTEF interrupt enabled.</li> </ul>                                                                                                                                                                                                                                                          |
| 4<br>MSTR  | <ul> <li>SPI Master/Slave Mode Select Bit — This bit selects whether the SPI operates in master or slave mode. Switching the SPI from master to slave or vice versa forces the SPI system into idle state.</li> <li>0 SPI is in slave mode.</li> <li>1 SPI is in master mode.</li> </ul>                                                                                                                                                             |
| 3<br>CPOL  | <ul> <li>SPI Clock Polarity Bit — This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state.</li> <li>0 Active-high clocks selected. In idle state SCK is low.</li> <li>1 Active-low clocks selected. In idle state SCK is high.</li> </ul> |
| 2<br>CPHA  | <ul> <li>SPI Clock Phase Bit — This bit is used to select the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state.</li> <li>0 Sampling of data occurs at odd edges (1,3,5,) of the SCK clock.</li> <li>1 Sampling of data occurs at even edges (2,4,6,) of the SCK clock.</li> </ul>                                                                               |

#### Table 15-1. SPICR1 Field Descriptions



<sup>1</sup> Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

#### NOTE

Reading this register when in any other mode other than sleep or initialization mode may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

#### 18.3.2.16 **MSCAN Transmit Error Counter (CANTXERR)**

This register reflects the status of the MSCAN transmit error counter.



#### Figure 18-19. MSCAN Transmit Error Counter (CANTXERR)

1 Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

#### NOTE

Reading this register when in any other mode other than sleep or initialization mode, may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

## **18.4.4.2** Special System Operating Modes

The MSCAN module behaves as described within this specification in all special system operating modes. Write restrictions which exist on specific registers in normal modes are lifted for test purposes in special modes.

## 18.4.4.3 Emulation Modes

In all emulation modes, the MSCAN module behaves just like in normal system operating modes as described within this specification.

## 18.4.4.4 Listen-Only Mode

In an optional CAN bus monitoring mode (listen-only), the CAN node is able to receive valid data frames and valid remote frames, but it sends only "recessive" bits on the CAN bus. In addition, it cannot start a transmission.

If the MAC sub-layer is required to send a "dominant" bit (ACK bit, overload flag, or active error flag), the bit is rerouted internally so that the MAC sub-layer monitors this "dominant" bit, although the CAN bus may remain in recessive state externally.

## 18.4.4.5 MSCAN Initialization Mode

The MSCAN enters initialization mode when it is enabled (CANE=1).

When entering initialization mode during operation, any on-going transmission or reception is immediately aborted and synchronization to the CAN bus is lost, potentially causing CAN protocol violations. To protect the CAN bus system from fatal consequences of violations, the MSCAN immediately drives TXCAN into a recessive state.

#### NOTE

The user is responsible for ensuring that the MSCAN is not active when initialization mode is entered. The recommended procedure is to bring the MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going message can cause an error condition and can impact other CAN bus devices.

In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the configuration of the CANBTR0, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR, CANIDMR message filters. See Section 18.3.2.1, "MSCAN Control Register 0 (CANCTL0)," for a detailed description of the initialization mode.

#### **ACMP Control Register 1 (ACMPC1)** 20.6.2.2



1 Read: Anytime Write: Only if ACE=0

| Field            | Description                                                                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-4<br>ACPSEL1-0 | ACMP Positive Input Select —<br>These bits select the ACMP non-inverting input connected to ACMPP.<br>11 acmpi_1<br>10 acmpi_0<br>01 ACMP_1<br>00 ACMP_0 |
| 1-0<br>ACNSEL1-0 | ACMP Negative Input Select —<br>These bits select the ACMP inverting input connected to ACMPN.<br>11 acmpi_1<br>10 acmpi_0<br>01 ACMP_1<br>00 ACMP_0     |

#### 20.6.2.3 **ACMP Control Register 2 (ACMPC2)**

Access: User read/write1 Module Base + 0x0002 7 0 6 5 3 2 4 1 0 0 0 0 0 0 R 0 ACIE W Reset 0 0 0 0 0 0 0 0 Figure 20-4. ACMP Control Register (ACMPC2)

1 Read: Anytime Write: Anytime

#### Chapter 22 192 KB Flash Module (S12ZFTMRZ192K2KV2)

| Register | FCCOB Parameters |              |
|----------|------------------|--------------|
| FCCOB0   | 0x0C             | Not required |
| FCCOB1   | Ke               | y 0          |
| FCCOB2   | Ke               | y 1          |
| FCCOB3   | Ke               | y 2          |
| FCCOB4   | Key 3            |              |

Table 22-53. Verify Backdoor Access Key Command FCCOB Requirements

Upon clearing CCIF to launch the Verify Backdoor Access Key command, the Memory Controller will check the FSEC KEYEN bits to verify that this command is enabled. If not enabled, the Memory Controller sets the ACCERR bit in the FSTAT register and terminates. If the command is enabled, the Memory Controller compares the key provided in FCCOB to the backdoor comparison key in the Flash configuration field with Key 0 compared to 0xFF\_FE00, etc. If the backdoor keys match, security will be released. If the backdoor keys do not match, security is not released and all future attempts to execute the Verify Backdoor Access Key command are aborted (set ACCERR) until a reset occurs. The CCIF flag is set after the Verify Backdoor Access Key operation has completed.

| Register | Error Bit | Error Condition                                                                                                                            |
|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
|          |           | Set if CCOBIX[2:0] != 100 at command launch                                                                                                |
|          |           | Set if an incorrect backdoor key is supplied                                                                                               |
|          | ACCERR    | Set if backdoor key access has not been enabled (KEYEN[1:0] != 10, see <st-blue>Section 22.3.2.2 Flash Security Register (FSEC))</st-blue> |
| FSTAT    |           | Set if the backdoor key has mismatched since the last reset                                                                                |
|          | FPVIOL    | None                                                                                                                                       |
|          | MGSTAT1   | None                                                                                                                                       |
|          | MGSTAT0   | None                                                                                                                                       |

Table 22-54. Verify Backdoor Access Key Command Error Handling

#### 22.4.7.12 Set User Margin Level Command

The Set User Margin Level command causes the Memory Controller to set the margin level for future read operations of the P-Flash or EEPROM block.

 Table 22-55. Set User Margin Level Command FCCOB Requirements

| Register | FCCOB Parameters                              |                                                |  |
|----------|-----------------------------------------------|------------------------------------------------|--|
| FCCOB0   | 0x0D                                          | Global address [23:16] to identify Flash block |  |
| FCCOB1   | Global address [15:0] to identify Flash block |                                                |  |
| FCCOB2   | Mar                                           | gin level setting.                             |  |

| Register | FCCOB Parameters                                                                                                                                      |                                                    |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| FCCOB0   | 0x12                                                                                                                                                  | Global address [23:16] to identify<br>EEPROM block |  |
| FCCOB1   | Global address [15:0] anywhere within the sector to be erased.<br>See <st-blue>Section 22.1.2.2 EEPROM Features for EEPROM sector<br/>size.</st-blue> |                                                    |  |

 Table 22-65. Erase EEPROM Sector Command FCCOB Requirements

Upon clearing CCIF to launch the Erase EEPROM Sector command, the Memory Controller will erase the selected Flash sector and verify that it is erased. The CCIF flag will set after the Erase EEPROM Sector operation has completed.

| Register | Error Bit | Error Condition                                                                     |
|----------|-----------|-------------------------------------------------------------------------------------|
|          |           | Set if CCOBIX[2:0] != 001 at command launch                                         |
|          | ACCERR    | Set if command not available in current mode (see Table 22-28)                      |
|          |           | Set if an invalid global address [23:0] is suppliedsee Table 22-2                   |
| FSTAT    |           | Set if a misaligned word address is supplied (global address [0] != 0)              |
|          | FPVIOL    | Set if the selected area of the EEPROM memory is protected                          |
|          | MGSTAT1   | Set if any errors have been encountered during the verify operation                 |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation |

 Table 22-66. Erase EEPROM Sector Command Error Handling

## 22.4.7.17 Protection Override Command

The Protection Override command allows the user to temporarily override the protection limits, either decreasing, increasing or disabling protection limits, on P-Flash and/or EEPROM, if the comparison key provided as a parameter loaded on FCCOB matches the value of the key previously programmed on the Flash Configuration Field (see Table 22-3.). The value of the Protection Override Comparison Key must not be 16'hFFFF, that is considered invalid and if used as argument will cause the Protection Override feature to be disabled. Any valid key value that does not match the value programmed in the Flash Configuration Field will cause the Protection Override feature to be disabled. Current status of the Protection Override feature can be observed on FPSTAT FPOVRD bit (see Section 22.3.2.4, "Flash Protection Status Register (FPSTAT)).

Table 22-67. Protection Override Command FCCOB Requirements

| Register | FCCOB Parameters |                                                       |  |  |  |  |
|----------|------------------|-------------------------------------------------------|--|--|--|--|
| FCCOB0   | 0x13             | Protection Update Selection [1:0]<br>See Table 22-68. |  |  |  |  |
| FCCOB1   | Compar           | ison Key                                              |  |  |  |  |
| FCCOB2   | reserved         | New FPROT value                                       |  |  |  |  |
| FCCOB3   | reserved         | New DFPROT value                                      |  |  |  |  |



#### Figure D-3. SPI Master Timing (CPHA=1)

In Table D-1. the timing characteristics for master mode are listed.

| Table D-1. SPI Master Mode Timing Characteristics (Junction Temperature From -40°C To +175°C) |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                                                               |  |  |  |  |  |  |  |  |

| Num | Characteristic                    | Symbol            |        | Unit |      |                  |  |
|-----|-----------------------------------|-------------------|--------|------|------|------------------|--|
| Tum | Characteristic                    | Symbol            | Min    | Тур  | Max  | Unit             |  |
| 1   | SCK Frequency                     | f <sub>sck</sub>  | 1/2048 | _    | 1/2  | f <sub>bus</sub> |  |
| 1   | SCK Period                        | t <sub>sck</sub>  | 2      |      | 2048 | t <sub>bus</sub> |  |
| 2   | Enable Lead Time                  | t <sub>lead</sub> | _      | 1/2  | _    | t <sub>sck</sub> |  |
| 3   | Enable Lag Time                   | t <sub>lag</sub>  | _      | 1/2  |      | t <sub>sck</sub> |  |
| 4   | Clock (SCK) High or Low Time      | t <sub>wsck</sub> | _      | 1/2  |      | t <sub>sck</sub> |  |
| 5   | Data Setup Time (Inputs)          | t <sub>su</sub>   | 8      | _    | _    | ns               |  |
| 6   | Data Hold Time (Inputs)           | t <sub>hi</sub>   | 8      | _    | _    | ns               |  |
| 9   | Data Valid after SCK Edge         | t <sub>vsck</sub> | _      | _    | 15   | ns               |  |
| 10  | Data Valid after SS fall (CPHA=0) | t <sub>vss</sub>  | _      | _    | 15   | ns               |  |
| 11  | Data Hold Time (Outputs)          | t <sub>ho</sub>   | 0      |      | _    | ns               |  |
| 12  | Rise and Fall Time Inputs         | t <sub>rfi</sub>  | _      | _    | 8    | ns               |  |
| 13  | Rise and Fall Time Outputs        | t <sub>rfo</sub>  | _      | _    | 8    | ns               |  |

## D.0.2 Slave Mode

In Figure D-4. the timing diagram for slave mode with transmission format CPHA=0 is depicted.

# N.14 0x0690-0x0697 ACMP0

| Address<br>Offset | Register<br>Name |        | Bit 7 | 6     | 5         | 4     | 3   | 2        | 1         | Bit 0    |  |
|-------------------|------------------|--------|-------|-------|-----------|-------|-----|----------|-----------|----------|--|
| 0x0690            | ACMPC0           | R<br>W | ACE   | ACOPE | ACOPS     | ACDLY | ACH | ACHYS1-0 |           | ACMOD1-0 |  |
| 0x0691            | ACMPC1           | R<br>W | 0     | 0     | ACPSEL1-0 |       | 0   | 0        | ACNSEL1-0 |          |  |
| 0x0692            | ACMPC2           | R<br>W | 0     | 0     | 0         | 0     | 0   | 0        | 0         | ACIE     |  |
| 0x0693            | ACMPS            | R<br>W | ACO   | 0     | 0         | 0     | 0   | 0        | 0         | ACIF     |  |
| 0x0694–<br>0x0697 | Reserved         | R<br>W | 0     | 0     | 0         | 0     | 0   | 0        | 0         | 0        |  |

# N.15 0x0698-0x069F ACMP1

| Address<br>Offset | Register<br>Name |        | Bit 7 | 6     | 5         | 4     | 3   | 2     | 1         | Bit 0 |
|-------------------|------------------|--------|-------|-------|-----------|-------|-----|-------|-----------|-------|
| 0x0698            | ACMPC0           | R<br>W | ACE   | ACOPE | ACOPS     | ACDLY | ACH | YS1-0 | ACM       | DD1-0 |
| 0x0699            | ACMPC1           | R<br>W | 0     | 0     | ACPSEL1-0 |       | 0   | 0     | ACNSEL1-0 |       |
| 0x069A            | ACMPC2           | R<br>W | 0     | 0     | 0         | 0     | 0   | 0     | 0         | ACIE  |
| 0x069B            | ACMPS            | R<br>W | ACO   | 0     | 0         | 0     | 0   | 0     | 0         | ACIF  |
| 0x069C–<br>0x069F | Reserved         | R<br>W | 0     | 0     | 0         | 0     | 0   | 0     | 0         | 0     |