

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S12Z
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 40V
Data Converters	A/D 10x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912zvca96f0mlfr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Module	Size (Bytes)
0x0718–0x077F	Reserved	104
0x0780-0x0787	SPI0	8
0x0788–0x078F	Reserved	8
0x0790-0x0797	SPI1	8
0x0798-0x07BF	Reserved	32
0x07C0-0x07C7	IIC0	8
0x07C8-0x097F	Reserved	56
0x0800–0x083F	CAN0	64
0x0840-0x098F	Reserved	336
0x0990-0x0997	CANPHY0	8
0x0998-0x099F		8
0x09A0-0x09AF	SENTTX	16
0x09B0-0x0FFF		1616

NOTE

Reserved register space shown in Table 1-2. is not allocated to any module. This register space is reserved for future use. Writing to these locations has no effect. Read access to these locations returns zero.

Device	Address	Memory Block	Size (Bytes)
MC9S12ZVC64	0x00_1000 - 0x00_1FFF	SRAM	4K
&	0x10_0000 - 0x10_03FF	EEPROM	1K
MC9S12ZVCA64	0xFF_0000 - 0xFF_FFFF	Program Flash	64K
MC98127VC96	0x00_1000 - 0x00_2FFF	SRAM	8K
&	0x10_0000 - 0x10_07FF	EEPROM	2K
MC9S12ZVCA96	0xFE_8000 - 0xFF_FFFF	Program Flash	96K
MC9S12ZVC128	0x00_1000 - 0x00_2FFF	SRAM	8K
&	0x10_0000 - 0x10_07FF	EEPROM	2K
MC9S12ZVCA128	0xFE_0000 - 0xFF_FFFF	Program Flash	128K
MC9S12ZVC192	0x00_1000 - 0x00_3FFF	SRAM	12K
&	0x10_0000 - 0x10_07FF	EEPROM	2K
MC9S12ZVCA192	0xFD_0000 - 0xFF_FFFF	Program Flash	192K

 Table 1-3. S12ZVC-Family Memory Address Ranges

Optional features supported on dedicated pins:

- Open drain for wired-or connections (ports S and J)
- Interrupt input with glitch filtering
- High current drive strength from VDDX with over-current protection
- High current drive strength to VSSX
- Selectable drive strength (port P)

2.2 External Signal Description

This section lists and describes the signals that do connect off-chip.

Table 2-2 shows all pins with the pins and functions that are controlled by the PIM. Routing options are denoted in parentheses.

NOTE

If there is more than one function associated with a pin, the <u>output</u> priority is indicated by the position in the table from top (highest priority) to bottom (lowest priority).

Port	Pin	Pin Function & Priority	I/O	Description	Routing Register Bit	Func. after Reset
	BKGD	MODC ¹	Ι	MODC input during RESET	—	BKGD
		BKGD	I/O	S12ZBDC communication	—	
Е	PE1	XTAL	_	CPMU OSC signal	—	GPIO
		PTE[1]	I/O	GPIO	—	
	PE0	EXTAL	_	CPMU OSC signal	—	
		PTE[0]	I/O	GPIO	—	
AD	PAD15	AN15	Ι	ADC0 analog input	—	GPIO
		(ETRIG0)	Ι	ADC0 external trigger	TRIG0RR1-0	
		PTADH[7]/ KWADH[7]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD14-10	AN14:AN10	Ι	ADC0 analog input	—	
		PTADH[6:2]/ KWADH[6:2]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD9	AMP	0	DAC buffered analog output	—	
		AN9	Ι	ADC0 analog input	—	
		PTADH[1]/ KWADH[1]	I/O	GPIO with pin-interrupt and key-wakeup	—	
	PAD8	AMPM	Ι	DAC standalone OPAMP inverting input	—	
		AN8	Ι	ADC0 analog input	_	
		PTADH[0]/ KWADH[0]	I/O	GPIO with pin-interrupt and key-wakeup	—	

Table 2-2. Pin Functions and Priorities

Chapter 2 Port Integration Module (S12ZVCPIMV1)

Port	Pin	Pin Function & Priority	I/O	Description	Routing Register Bit	Func. after Reset
	PAD7	AMPP	Ι	DAC standalone OPAMP non-inverting input		
		AN7	Ι	ADC0 analog input	—	
		PTADL[7]/ KWADL[7]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD6	DACU	0	DAC unbuffered analog output	—	
		AN6	Ι	ADC0 analog input	—	
		PTADL[6]/ KWADL[6]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD5	ACMPO1	0	ACMP1 unsynchronized output	—	
		AN5	Ι	ADC0 analog input	—	
		PTADL[5]/ KWADL[5]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD4	ACMP1_1	Ι	ACMP1 analog input 1	—	
		AN4	Ι	ADC0 analog input	—	
		PTADL[4]/ KWADL[4]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD3	ACMP1_0	Ι	ACMP1 analog input 0	—	
		VRH	Ι	ADC0 voltage reference high	—	
		AN3	Ι	ADC0 analog input	—	
		PTADL[3]/ KWADL[3]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD2	ACMPO0	0	ACMP0 unsynchronized output	—	
		AN2	Ι	ADC0 analog input	—	
		PTADL[2]/ KWADL[2]	I/O	GPIO with pin-interrupt and key-wakeup		
	PAD1	ACMP0_1	Ι	ACMP0 analog input 1	—	
		AN1	Ι	ADC0 analog input	—	
		(ETRIG0)	Ι	ADC0 external trigger	TRIG0RR1-0	
		PTADL[1]/ KWADL[1]	I/O	GPIO with pin-interrupt and key-wakeup	_	
	PAD0	ACMP0_0	Ι	ACMP0 analog input 0	—	
		AN0	Ι	ADC0 analog input		
		PTADL[0]/ KWADL[0]	I/O	GPIO with pin-interrupt and key-wakeup		

Chapter 2 Port Integration Module (S12ZVCPIMV1)

2.3.4.6 Port L Polarity Select Register (PPSL)

¹ Read: Anytime Write: Anytime

Table 2-26.	PPSL	Register	Field	Descriptions
1401000	I I OL	11051Stor	I IUIU	Descriptions

Field	Description
1-0 PPSL1-0	Polarity Select — This bit selects the polarity of the active interrupt edge on the associated HVI pin. 1 Rising edge selected 0 Falling edge selected

2.3.4.7 Port L ADC Bypass Register (PTABYPL)

Write: Anytime

Table 2-27. PTABYPL Regi	ster Field Descriptions
--------------------------	-------------------------

Field	Description					
1-0	Port L ADC Connection Bypass —					
PTABYPL	This bit bypasses and powers down the impedance converter stage in the signal path from the analog input pin to the ADC					
1-0	channel input. This bit takes effect only if using direct input connection to the ADC channel (PTADIRL=1).					
	1 Impedance converter bypassed					
	0 Impedance converter used					

Chapter 4 Memory Mapping Control (S12ZMMCV1)

Revision Number	Revision Date	Sections Affected	Description of Changes	
V01.05	6 Aug 2012		Fixed wording	
V01.06	12 Feb 2013	Figure 4-8 4.3.2.2/4-156	 Changed "KByte:to "KB" Corrected the description of the MMCECH/L register 	
V01.07	3 May 2013		Fixed typosRemoved PTU references	

Table 4-1. Revision History

4.1 Introduction

The S12ZMMC module controls the access to all internal memories and peripherals for the S12ZCPU, and the S12ZBDC module. It also provides dirct memory access for the ADC module. The S12ZMMC determines the address mapping of the on-chip resources, regulates access priorities and enforces memory protection. Figure 4-1 shows a block diagram of the S12ZMMC module.

Chapter 5 S12Z Interrupt (S12ZINTV0)

Address	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x00001D	INT_CFDATA5	R	0	0	0	0	0		PRIOLVL[2:0]	
		W								
0x00001E	INT CFDATA6	R	0	0	0	0	0			
0.1000012		w		•		•		PRIOLVL[2:0]]
								L		
0x00001F	INT_CFDATA7	R	0	0	0	0	0			1
		W							PRIOLVL[2.0]	
	= Unimplemented or Reserved									

5.3.2.1 Interrupt Vector Base Register (IVBR)

Address: 0x000010

Figure 5-3. Interrupt Vector Base Register (IVBR)

Read: Anytime

Write: Anytime

Table 5-4	. IVBR	Field	Descriptions
-----------	--------	-------	--------------

Field	Description
15–1 IVB_ADDR [15:1]	 Interrupt Vector Base Address Bits — These bits represent the upper 15 bits of all vector addresses. Out of reset these bits are set to 0xFFFE (i.e., vectors are located at 0xFFFE00-0xFFFFF). Note: A system reset will initialize the interrupt vector base register with "0xFFFE" before it is used to determine the reset vector address. Therefore, changing the IVBR has no effect on the location of the reset vector (0xFFFFC-0xFFFFFF).

Priority	Source	Action			
Highest	TRIG	Force immediately to final state			
	DBGEEV	Force to next state as defined by state control registers (EEVE=2'b10)			
	Match3	Force to next state as defined by state control registers			
	Match1	Force to next state as defined by state control registers			
Lowest	Match0	Force to next state as defined by state control registers			

Table 6-31. Event Priorities

6.4.4 State Sequence Control

Figure 6-19. State Sequencer Diagram

The state sequencer allows a defined sequence of events to provide a breakpoint. When the DBG module is armed by setting the ARM bit in the DBGC1 register, the state sequencer enters State1. Further transitions between the states are controlled by the state control registers and depend upon event occurrences (see Section 6.4.3, "Events). From Final State the only permitted transition is back to the disarmed State0. Transition between the states 1 to 3 is not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current state. If breakpoints are enabled, then an event based transition to State0 generates the breakpoint request. A transition to State0 resulting from writing "0" to the ARM bit does not generate a breakpoint request.

6.4.4.1 Final State

When the Final State is reached the state sequencer returns to State0 immediately and the debug module is disarmed. If breakpoints are enabled, a breakpoint request is generated on transitions to State0.

6.4.5 Breakpoints

Breakpoints can be generated by state sequencer transitions to State0. Transitions to State0 are forced by the following events

NOTE

In principle, the MCU could stay in Wait Mode for a shorter period of time than the ADC needs to abort an ongoing conversion (range of $\mu\mu\mu\mu\mu$ s). Therefore in case a Sequence Abort Event is issued automatically due to MCU Wait Mode request a following Restart Event after exit from MCU Wait Mode can not be executed before ADC has finished this Sequence Abort Event. The Restart Event is detected but it is pending. This applies in case MCU Wait Mode is exited before ADC has finished the Sequence Abort Event and a Restart Event is issued immediately after exit from MCU Wait Mode. Bit READY can be used by software to detect when the Restart Event can be issued without latency time in processing the event (see also Figure 9-1).

Figure 9-1. Conversion Flow Control Diagram - Wait Mode (SWAI=1'b1, AUT_RSTA=1'b0)

• MCU Freeze Mode

Depending on the ADC Freeze Mode configuration bit FRZ_MOD, the ADC either continues conversion in Freeze Mode or freezes conversion at next conversion boundary before the MCU Freeze Mode is entered. After exit from MCU Freeze Mode with previously frozen conversion sequence the ADC continues the conversion with the next conversion command and all ADC interrupt flags are unchanged during MCU Freeze Mode.

11.3.2.18 Output Compare Pin Disconnect Register(OCPD)

Module Base + 0x002C

Figure 11-28. Output Compare Pin Disconnect Register (OCPD)

Read: Anytime

Write: Anytime

All bits reset to zero.

Table 11-22. OCPD Field Description

Note: Writing to unavailable bits has no effect. Reading from unavailable bits return a zero.

Field	Description
7:0	Output Compare Pin Disconnect Bits
OCPD[7:0]	0 Enables the timer channel port. Output Compare action will occur on the channel pin. These bits do not affect the input canture or pulse accumulator functions
	 Disables the timer channel port. Output Compare action will not occur on the channel pin, but the output compare flag still become set.

11.3.2.19 Precision Timer Prescaler Select Register (PTPSR)

Module Base + 0x002E

Figure 11-29. Precision Timer Prescaler Select Register (PTPSR)

Read: Anytime

Write: Anytime

All bits reset to zero.

13.3.2.10 PWM Channel Counter Registers (PWMCNTx)

Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock source. The counter can be read at any time without affecting the count or the operation of the PWM channel. In left aligned output mode, the counter counts from 0 to the value in the period register - 1. In center aligned output mode, the counter counts from 0 up to the value in the period register and then back down to 0.

Any value written to the counter causes the counter to reset to \$00, the counter direction to be set to up, the immediate load of both duty and period registers with values from the buffers, and the output to change according to the polarity bit. The counter is also cleared at the end of the effective period (see Section 13.4.2.5, "Left Aligned Outputs" and Section 13.4.2.6, "Center Aligned Outputs" for more details). When the channel is disabled (PWMEx = 0), the PWMCNTx register does not count. When a channel becomes enabled (PWMEx = 1), the associated PWM counter starts at the count in the PWMCNTx register. For more detailed information on the operation of the counters, see Section 13.4.2.4, "PWM Timer Counters".

In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the low or high order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be made by 16-bit access to maintain data coherency.

NOTE

Writing to the counter while the channel is enabled can cause an irregular PWM cycle to occur.

Module Base + 0x000C = PWMCNT0, 0x000D = PWMCNT1, 0x000E = PWMCNT2, 0x000F = PWMCNT3 Module Base + 0x0010 = PWMCNT4, 0x0011 = PWMCNT5, 0x0012 = PWMCNT6, 0x0013 = PWMCNT7

_	7	6	5	4	3	2	1	0
R	Bit 7	6	5	4	3	2	1	Bit 0
W	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0

Figure 13-12. PWM Channel Counter Registers (PWMCNTx)

¹ This register is available only when the corresponding channel exists and is reserved if that channel does not exist. Writes to a reserved register have no functional effect. Reads from a reserved register return zeroes.

Read: Anytime

Write: Anytime (any value written causes PWM counter to be reset to \$00).

13.3.2.11 PWM Channel Period Registers (PWMPERx)

There is a dedicated period register for each channel. The value in this register determines the period of the associated PWM channel.

The period registers for each channel are double buffered so that if they change while the channel is enabled, the change will NOT take effect until one of the following occurs:

• The effective period ends

Chapter 14 Serial Communication Interface (S12SCIV6)

Field	Description
1 PE	Parity Enable Bit — PE enables the parity function. When enabled, the parity function inserts a parity bit in the most significant bit position. 0 Parity function disabled 1 Parity function enabled
0 PT	 Parity Type Bit — PT determines whether the SCI generates and checks for even parity or odd parity. With even parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an odd number of 1s clears the parity bit and an even number of 1s sets the parity bit. 0 Even parity 1 Odd parity

Table 14-3. SCICR1 Field Descriptions (continued)

Table 14-4. Loop Functions

LOOPS	RSRC	Function
0	х	Normal operation
1	0	Loop mode with transmitter output internally connected to receiver input
1	1	Single-wire mode with TXD pin connected to receiver input

indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in SCI control register 2 (SCICR2) is also set, the RDRF flag generates an RDRF interrupt request.

14.4.6.3 Data Sampling

The RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see Figure 14-21) is re-synchronized immediately at bus clock edge:

- After every start bit
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 14-21. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Figure 14-17 summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

Figure 15-1. SPI Block Diagram

15.2 External Signal Description

This section lists the name and description of all ports including inputs and outputs that do, or may, connect off chip. The SPI module has a total of four external pins.

15.2.1 MOSI — Master Out/Slave In Pin

This pin is used to transmit data out of the SPI module when it is configured as a master and receive data when it is configured as slave.

15.2.2 MISO — Master In/Slave Out Pin

This pin is used to transmit data out of the SPI module when it is configured as a slave and receive data when it is configured as master.

Chapter 18 Scalable Controller Area Network (S12MSCANV3)

Figure 18-5. MSCAN Control Register 1 (CANCTL1)

¹ Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1), except CANE which is write once in normal and anytime in special system operation modes when the MSCAN is in initialization mode (INITRQ = 1 and INITAK = 1)

Field	Description
7 CANE	MSCAN Enable 0 MSCAN module is disabled 1 MSCAN module is enabled
6 CLKSRC	MSCAN Clock Source — This bit defines the clock source for the MSCAN module (only for systems with a clock generation module; Section 18.4.3.2, "Clock System," and Section Figure 18-43., "MSCAN Clocking Scheme,"). 0 MSCAN clock source is the oscillator clock 1 MSCAN clock source is the bus clock
5 LOOPB	 Loopback Self Test Mode — When this bit is set, the MSCAN performs an internal loopback which can be used for self test operation. The bit stream output of the transmitter is fed back to the receiver internally. The RXCAN input is ignored and the TXCAN output goes to the recessive state (logic 1). The MSCAN behaves as it does normally when transmitting and treats its own transmitted message as a message received from a remote node. In this state, the MSCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure proper reception of its own message. Both transmit and receive interrupts are generated. 0 Loopback self test disabled 1 Loopback self test enabled
4 LISTEN	Listen Only Mode — This bit configures the MSCAN as a CAN bus monitor. When LISTEN is set, all valid CAN messages with matching ID are received, but no acknowledgement or error frames are sent out (see Section 18.4.4.4, "Listen-Only Mode"). In addition, the error counters are frozen. Listen only mode supports applications which require "hot plugging" or throughput analysis. The MSCAN is unable to transmit any messages when listen only mode is active. 0 Normal operation 1 Listen only mode activated
3 BORM	 Bus-Off Recovery Mode — This bit configures the bus-off state recovery mode of the MSCAN. Refer to Section 18.5.2, "Bus-Off Recovery," for details. 0 Automatic bus-off recovery (see Bosch CAN 2.0A/B protocol specification) 1 Bus-off recovery upon user request
2 WUPM	 Wake-Up Mode — If WUPE in CANCTL0 is enabled, this bit defines whether the integrated low-pass filter is applied to protect the MSCAN from spurious wake-up (see Section 18.4.5.5, "MSCAN Sleep Mode"). 0 MSCAN wakes up on any dominant level on the CAN bus 1 MSCAN wakes up only in case of a dominant pulse on the CAN bus that has a length of T_{wup}

Table 18-3. CANCTL1 Register Field Descriptions

18.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received. The number of bytes to be transmitted or received is determined by the data length code in the corresponding DLR register.

Module Base + 0x00X4 to Module Base + 0x00XB

	7	6	5	4	3	2	1	0
R W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Reset:	х	х	Х	х	х	х	х	х

1

Figure 18-34. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

Table 18-32.	DSR0-DSR7	Register	Field	Descriptions
--------------	-----------	----------	-------	--------------

Field	Description
7-0 DB[7:0]	Data bits 7-0

The ACMP is enabled with ACMPC0[ACE]. When this bit is set, the inputs are connected to low-pass filters while the comparator output is disconnected from the subsequent logic for 127 bus clock cycles. During this time the output state is preserved to mask potential glitches. This initialization delay must be accounted for before the first comparison result can be expected. The same delay must be accounted for after returning from STOP mode.

The initial hold state after reset is logic level 0. If input voltages are set to result in logic level 1 $(V_{ACMPP} > V_{ACMPM})$ before the initialization delay has passed, a flag will be set immediately after the delay if rising edge is selected as flag setting event.

Similarly the ACMPS[ACIF] flag will also be set when disabling the ACMP, then re-enabling it with the inputs changing to produce an opposite result to the hold state before the end of the initialization delay.

The unsynchronized comparator output can be connected to the synchronized timer input capture channel defined at SoC-level (see Figure 20-1). This feature can be used to generate time stamps and timer interrupts on ACMP events.

The comparator output signal can be read at register bit location ACMPS[ACO].

The condition causing the interrupt flag to assert is selected with ACMPC0[ACMOD]. This includes any edge configuration, that is rising, or falling, or rising and falling edges of the comparator output. Also flag setting can be disabled.

An interrupt will be generated if the interrupt enable bit (ACMPC2[ACIE]) and the interrupt flag (ACMPS[ACIF]) are both set. ACMPS[ACIF] is cleared by writing a 1.

The comparator output signal ACMPO can be driven out on an external pin by setting ACMPC0[ACOPE] and optionally inverted by setting ACMPC0[ACOPS].

One out of four hysteresis levels can be selected by setting ACMPC0[ACHYS].

The input delay of the ACMP_0 and ACMP_1 input depends on the selected filter characteristic by ACMPC0[ACDLY].

20.8 Interrupts

Table 20-7 shows the interrupt generated by the ACMP.

Table	20-7.	ACMP	Interrupt	Sources
-------	-------	------	-----------	---------

Module Interrupt Sources	Local Enable				
ACMP interrupt	ACMPC2[ACIE]				

Chapter 21 SENT Transmitter Module (SENTTXV1)

21.8.4.2 Single-buffered Transmission without Pause Pulse

This option offers the most up-to-date transmit data. The disadvantage for software is that the preparation of the transmit data has to occur in much less time (less than the length of the calibration pulse, meaning less than 56 unit-time ticks) compared to the double-buffered transmission option.

The software uses the Transmission Complete interrupt (TC) to prepare new data for the next transmission. An example for this case is provided in Figure 21-4 below.

Figure 21-4. Transmission Complete driven SENT transfer without Pause Pulse

21.8.4.3 Double-buffered Transmission with Pause Pulse

This option is similar to the double-buffered transmission without pause-pulse (for details please refer to Section 21.8.4.1, "Double-buffered Transmission without Pause Pulse). The only difference is that due to the pause pulse the message periods become longer offering even more time for the software to prepare new data.

The software uses the Transmit Buffer Empty interrupt (TBE) to prepare new data for the next transmission. An example for this case is provided in Figure 21-5 below.

Figure 21-5. Transmit-Buffer Empty driven SENT transfer with Pause Pulse

Supply voltage 3.13 V $<$ V _{DDA} $<$ 5.5 V									
Num	Rating	Symbol	Min	Тур	Max	Unit			
1	Max input source resistance	R _S			1	KΩ			
2	Total input capacitance Non sampling Total input capacitance Sampling	C _{INN} C _{INS}			10 16	pF			
3	Input internal Resistance	R _{INA}	-	5	15	kΩ			
4	Disruptive analog input current	I _{NA}	-2.5	_	2.5	mA			
5	Coupling ratio positive current injection	K _p	_	_	1E-4	A/A			
6	Coupling ratio negative current injection	K _n	_	_	5E-3	A/A			

Table B-2. ADC Electrical Characteristics (Junction Temperature From –40°C To +175°C)

B.1.2 ADC Accuracy

Table B-3. specifies the ADC conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Appendix F BATS Electrical Specifications

F.2 Dynamic Electrical Characteristics

Characteristics noted under conditions $5.5V \le VSUP \le 18$ V, unless otherwise noted. Typical values noted reflect the approximate parameter mean at $T_A = 25^{\circ}C^1$ under nominal conditions.								
Num	Ratings	Тур	Max	Unit				
1	Enable Uncertainty Time	T _{EN_UNC}	_	1	-	us		
2	Voltage Warning Low Pass Filter	$f_{VWLP_{filter}}$	_	0.5	_	Mhz		

Table F-3. Dynamic Electrical Characteristics - (BATS).

¹ T_A: Ambient Temperature

N.16 0x06C0-0x06DF CPMU (continued)

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0	
0x06D3	CPMUACLKT R	R W	ACLKTR5	ACLKTR4	ACLKTR3	ACLKTR2	ACLKTR1	ACLKTR0	0	0	
0x06D4	CPMUAPIRH	R W	APIR15	APIR14	APIR13	APIR12	APIR11	APIR10	APIR9	APIR8	
0x06D5	CPMUAPIRL	R W	APIR7	APIR6	APIR5	APIR4	APIR3	APIR2	APIR1	APIR0	
0x06D6	RESERVED	R	0	0	0	0	0	0	0	0	
0x00D0	CPMUTEST3	W									
0x06D7	CPMUHTTR	R W	HTOE	0	0	0	HTTR3	HTTR2	HTTR1	HTTR0	
0.0(D0	CPMU IRCTRIMH	R		r				0			
0x00D8		W	ICIRIM[4:0]						IKU I KIM[9:8]		
0x06D9	CPMU IRCTRIML	R W				IRCTRIM[7:0]					
0x06DA	CPMUOSC	R W	OSCE	Reserved	Reserved	Reserved					
0v06DB	CPMUPROT	B CPMUPROT	R	0	0	0	0	0	0	0	PPOT
0X00DB		W								TKOT	
0x06DC	RESERVED CPMUTEST2	RESERVED R	0	0	0	0	0	0	0	0	
UXUODC		W	0	0						0	
0x06DD	CPMU VREGCTL	CPMU I VREGCTL V	R	0	0	0	0	0	EXTCON	EXTXON	INTXON
			VREGCTL	W						Enreon	Litinoit
0x06DE	CPMU RESERVED1E	R	0	0	0	0	0	0	0	0	
		W									
0x06DF	CPMU	R	0	0	0	0	0	0	0	0	
	RESERVED1F	RESERVED1F	W								