E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Last Time Buy
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	417MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	489-LFBGA
Supplier Device Package	489-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8309cvmahfca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.2 Power supply voltage specification

The following table provides the recommended operating conditions for the MPC8309. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Note
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	1
PLL supply voltage	AV _{DD1} AV _{DD2} AV _{DD3}	1.0 V ± 50 mV	V	1
DDR2 DRAM I/O voltage	GV _{DD}	1.8 V ± 100 mV	V	1
PCI, Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, eSDHC, FlexCAN,USB and JTAG I/O voltage	OV _{DD}	3.3 V ± 300 mV	V	1, 3
Junction temperature	T _A /T _J	0 to 105	°C	2

	Table 2	. Recommended	operating	conditions
--	---------	---------------	-----------	------------

Notes:

1. GV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

 Minimum temperature is specified with T_A(Ambient Temperature); maximum temperature is specified with T_J(Junction Temperature).

3. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.

The following figure shows the undershoot and overshoot voltages at the interfaces of the MPC8309

Figure 2. Overshoot/Undershoot voltage for GV_{DD}/OV_{DD}

Clock input timing

The following table shows the estimated typical I/O power dissipation for the device.

Table 6. Typical I/O power dissipatio	n	
		-

Interface	Parameter	GV _{DD} (1.8 V)	OV _{DD} (3.3 V)	Unit	Comments
DDR I/O 65% utilization 1.8 V R _s = 20 Ω R _t = 50 Ω 1 pair of clocks	266 MHz, 1 × 16 bits	0.149		W	_
Local bus I/O load = 25 pF 1 pair of clocks	66 MHz, 26 bits				
QUICC Engine block and other I/Os	TDM serial, HDLC/TRAN serial, DUART, MII, RMII, Ethernet management, USB, PCI, SPI, Timer output, FlexCAN, eSDHC	—	0.415	W	1

Note:

1. Typical I/O power is based on a nominal voltage of V_{DD} = 3.3V, ambient temperature, and the core running a Dhrystone benchmark application. The measurements were taken on the evaluation board using WC process silicon.

4 Clock input timing

This section provides the clock input DC and AC electrical characteristics for the MPC8309.

NOTE

The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of OV_{DD} ; fall time refers to transitions from 90% to 10% of OV_{DD} .

4.1 DC electrical characteristics

The following table provides the clock input (SYS_CLK_IN/PCI_SYNC_IN) DC specifications for the MPC8309. These specifications are also applicable for QE_CLK_IN.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	—	V _{IH}	2.4	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
SYS_CLK_IN input current	$0 V \le V_{IN} \le OV_{DD}$	I _{IN}	—	±5	μA
SYS_CLK_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$	I _{IN}	—	±5	μA
SYS_CLK_IN input current	$0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$	I _{IN}	—	±50	μA

Table 7. SYS_CLK_IN DC electrical characteristics

DDR2 SDRAM

Table 15. DDR2 SDRAM input AC timing specifications

At recommended operating conditions with GV_{DD} of 1.8V \pm 100mV.

Parameter	Symbol	Min	Мах	Unit	Note
Controller skew for MDQS—MDQ/MDM	t _{CISKEW}			ps	1, 2
266 MHz		-750	750		

Notes:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the equation: t_{DISKEW} = ±(T/4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

The following figure shows the input timing diagram for the DDR controller.

Figure 4. DDR input timing diagram

6.2.2 DDR2 SDRAM output AC timing specifications

The following table provides the output AC timing specifications for the DDR2 SDRAM interfaces.

Table 16. DDR2 SDRAM output AC timing specifications

At recommended operating conditions with GV_{DD} of 1.8V \pm 100mV.

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK cycle time, (MCK/MCK crossing)	t _{MCK}	5.988	8	ns	2
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz	^t DDKHAS	2.4 2.5	_	ns	3
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz	^t DDKHAX	2.4 2.5	_	ns	3

DDR2 SDRAM

The following figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}) .

Figure 5. Timing diagram for t_{DDKHMH}

The following figure shows the DDR2 SDRAM output timing diagram.

Figure 6. DDR2 SDRAM output timing diagram

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	OV _{DD}	—		3	3.6	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$	OV _{DD} = Min	2.40	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	OV _{DD} = Min	GND 0.	50	V
Input high voltage	V _{IH}	—	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	_	-0.3	0.90	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$		—	±5	μA

Table 19. MII and RMII DC electrical characteristics

8.2 MII and RMII AC timing specifications

The AC timing specifications for MII and RMII are presented in this section.

8.2.1 MII AC timing specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII transmit AC timing specifications

The following table provides the MII transmit AC timing specifications.

```
Table 20. MII transmit AC timing specifications
```

```
At recommended operating conditions with \text{OV}_{\text{DD}} of 3.3 V \pm 300mV.
```

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise VIL(min) to VIH(max)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$ t	MTXF	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

The following figure shows the MII receive AC timing diagram.

Figure 13. MII receive AC timing diagram

8.2.2 RMII AC timing specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.2.1 RMII transmit AC timing specifications

The following table provides the RMII transmit AC timing specifications.

Table 22. RMII transmit AC timing specifications

At recommended operating conditions with OV_{DD} of 3.3 V \pm 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
REF_CLK clock	t _{RMX}	_	20		ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX}	2	_	13 ns	
REF_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	_	4.0	ns
REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$ t	RMXF	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

The following figure provides the AC test load.

Figure 14. AC test load

The following figure shows the RMII receive AC timing diagram.

Figure 16. RMII receive AC timing diagram

8.3 Ethernet management interface electrical characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet controller (10/100 Mbps)—MII/RMII electrical characteristics."

8.3.1 MII management DC electrical characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in the following table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		3	3.6	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.40	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND 0.	50	V
Input high voltage	V _{IH}	—		2.00	—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$		—	±5	μA

Table 24. MII management DC electrical characteristics when powered at 3.3 V

8.3.2 MII management AC electrical specifications

The following table provides the MII management AC timing specifications.

Table 25. MII management AC timing specifications

At recommended operating conditions with OV_{DD} is 3.3 V \pm 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Note
MDC frequency	f _{MDC}	—	2.5	—	MHz	_
MDC period	t _{MDC}	—	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32	_	_	ns	

Table 31. PCI AC timing specifications at 66 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	2
Output hold from clock	t _{PCKHOX}	1	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2,
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2,

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

Table 32. PCI AC timing specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	—	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2,
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2,

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

Figure 23 provides the AC test load for PCI.

Figure 23. PCI AC test load

3

Figure 24 shows the PCI input AC timing conditions.

Figure 24. PCI input AC timing measurement conditions

Figure 25 shows the PCI output AC timing conditions.

Figure 25. PCI output AC timing measurement condition

12 USB

12.1 USB controller

This section provides the AC and DC electrical specifications for the USB (ULPI) interface.

12.1.1 USB DC electrical characteristics

The following table provides the DC electrical characteristics for the USB interface.

Table 33. USB D	DC electrical	characteristics
-----------------	----------------------	-----------------

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2.0	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}	—	±5	μA
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

12.1.2 USB AC electrical specifications

The following table describes the general timing parameters of the USB interface.

15 FlexCAN

This section describes the DC and AC electrical specifications for the FlexCAN interface.

15.1 FlexCAN DC electrical characteristics

The following table provides the DC electrical characteristics for the FlexCAN interface.

Table 39. FlexCAN DC electrical characteristics (3.3V)

For recommended operating conditions, see Table 2

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	2	—	V	1
Input low voltage	V _{IL}	—	0.8	V	1
Input current ($OV_{IN} = 0 V \text{ or } OV_{IN} = OV_{DD}$)	I _{IN}	—	±5	μA	2
Output high voltage (OV _{DD} = min, $I_{OH} = -2 \text{ mA}$)	V _{OH}	2.4	—	V	—
Output low voltage ($OV_{DD} = min$, $I_{OL} = 2 mA$)	V _{OL}	—	0.4	V	—

Note:

1. Min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 2.

2. OV_{IN} represents the input voltage of the supply. It is referenced in Table 2.

15.2 FlexCAN AC timing specifications

The following table provides the AC timing specifications for the FlexCAN interface.

Table 40. FlexCAN AC timing specifications

For recommended operating conditions, see Table 2

Parameter	Min	Мах	Unit	Notes
Baud rate	10	1000	Kbps	_

18 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8309.

18.1 GPIO DC electrical characteristics

The following table provides the DC electrical characteristics for the MPC8309 GPIO.

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	_	-0.3	0.8	V	
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$	— ±	5	μÂ	

Table 45. GPIO DC electrical characteristics

Note:

1. This specification applies when operating from 3.3-V supply.

18.2 GPIO AC timing specifications

The following table provides the GPIO input and output AC timing specifications.

Table 46. GPIO input AC timing specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN. Timings are measured at the pin.

2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

The following figure provides the AC test load for the GPIO.

Figure 33. GPIO AC test load

19 IPIC

IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8309.

19.1 IPIC DC electrical characteristics

The following table provides the DC electrical characteristics for the external interrupt pins of the MPC8309.

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±5	μA
Output High Voltage	V _{OH}	I _{OL} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 47. IPIC DC electrical characteristics^{1,2}

Notes:

1. This table applies for pins $\overline{IRQ}, \overline{MCP_OUT}, and QE ports Interrupts.$

2. $\overline{\text{MCP}_\text{OUT}}$ is open drain pins, thus V_{OH} is not relevant for those pins.

19.2 IPIC AC timing specifications

The following table provides the IPIC input and output AC timing specifications.

Table 48. IPIC Input AC timing specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN. Timings are measured at the pin.

2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when working in edge triggered mode.

20 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8309.

20.1 SPI DC electrical characteristics

The following table provides the DC electrical characteristics for the MPC8309 SPI.

The following figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

The following figure shows the SPI timing in master mode (internal clock).

Figure 36. SPI AC timing in master mode (internal clock) diagram

21 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1[™] (JTAG) interface of the MPC8309.

21.1 JTAG DC electrical characteristics

The following table provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8309.

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA 2.	4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 51. JTAG interface DC electrical characteristics

Package and pin listings

SPIMISO	E16	IO	OV _{DD}	-
SPICLK E17		10	OV _{DD}	-
SPISEL	A19	I	OV _{DD}	-
SPISEL_BOOT_B	D18		OV _{DD}	-
	JTAG		•	
тск	A2	I	OV _{DD}	-
TDI	C5	I	OV _{DD}	2
TDO	A3	0	OV _{DD}	-
TMS	D7	I	OV _{DD}	2
TRST_B	E9	I	OV _{DD}	2
	Test Interface		•	
TEST_MODE	C6	I	OV _{DD}	-
	System Control Signals	<u>.</u>	•	
HRESET_B	W23	10	OV _{DD}	1
PORESET_B	W22	I	OV _{DD}	-
	Clock Interface			
QE_CLK_IN	R22	I	OV _{DD}	-
SYS_CLK_IN	R23	I	OV _{DD}	-
SYS_XTAL_IN	P23	I	OV _{DD}	-
SYS_XTAL_OUT	P19	0	OV _{DD}	-
PCI_SYNC_IN	T23	I	OV _{DD}	-
PCI_SYNC_OUT	R20	0	OV _{DD}	-
CFG_CLKIN_DIV_B	U23	I	OV _{DD}	-
RTC_PIT_CLOCK	V23	I		
	Miscellaneous Signals			
QUIESCE_B	D6	0	OV _{DD}	-
THERM0	E8		OV _{DD}	-
	GPIO			
GPIO_0/SD_CLK/MSRCID0 (DDR ID)	E4	10	OV _{DD}	-
GPIO_1/SD_CMD/MSRCID1 (DDR ID)	E6	10	OV _{DD}	-
GPIO_2/SD_CD/MSRCID2 (DDR ID)	D3	10	OV _{DD}	-
GPIO_3/SD_WP/MSRCID3 (DDR ID)	E7	10	OV _{DD}	-
GPIO_4/SD_DAT0/MSRCID4 (DDR ID)	D4	10	OV _{DD}	-
GPIO_5/SD_DAT1/MDVAL (DDR ID)	C4	10	OV _{DD}	-
GPIO_6/SD_DAT2/QE_EXT_REQ_3	B2	10	OV _{DD}	-
GPIO_7/SD_DAT3/QE_EXT_REQ_1	B3	10	OV _{DD}	-
GPIO_8/RXCAN1/LSRCID0/LCS_B4	C16	10	OV _{DD}	-

Package and pin listings

FEC2_RX_CLK[CLK7]/GPIO_34	W14	IO	OV _{DD}	-
FEC2_RX_DV/GTM2_TIN2/GPIO_35	AB16	IO	OV _{DD}	-
FEC2_RX_ER/GTM2_TGATE2_B/GPIO_36	Y14	IO	OV _{DD}	-
FEC2_RXD0/GPIO_37	AA15	IO	OV _{DD}	-
FEC2_RXD1/GTM2_TIN3/GPIO_38	AC15	IO	OV _{DD}	-
FEC2_RXD2/GTM2_TGATE3_B/GPIO_39	AC16	IO	OV _{DD}	-
FEC2_RXD3/GPIO_40	AA14	IO	OV _{DD}	-
FEC2_TX_CLK[CLK8]/GTM2_TIN4/GPIO_41	W13	IO	OV _{DD}	-
FEC2_TX_EN/GTM2_TGATE4_B/GPIO_42	AB14	IO	OV _{DD}	-
FEC2_TX_ER/GTM2_TOUT4_B/GPIO_43	AC14	10	OV _{DD}	-
FEC2_TXD0/GTM2_TOUT1_B/GPIO_44	Y12	IO	OV _{DD}	-
FEC2_TXD1/GTM2_TOUT2_B/GPIO_45	AA13	IO	OV _{DD}	-
FEC2_TXD2/GTM2_TOUT3_B/GPIO_46	AB13	IO	OV _{DD}	-
FEC2_TXD3/GPIO_47	AC13	IO	OV _{DD}	-
FEC3_COL/GPIO_48	AC12	IO	OV _{DD}	-
FEC3_CRS/GPIO_49	W11	10	OV _{DD}	-
FEC3_RX_CLK[CLK11]/GPIO_50	W12	IO	OV _{DD}	-
FEC3_RX_DV/FEC1_TMR_TX_ESFD/GPIO_51	AA12	IO	OV _{DD}	-
FEC3_RX_ER/FEC1_TMR_RX_ESFD/GPIO_52	AB11	10	OV _{DD}	-
FEC3_RXD0/FEC2_TMR_TX_ESFD/GPIO_53	AA11	IO	OV _{DD}	-
FEC3_RXD1/FEC2_TMR_RX_ESFD/GPIO_54	AC11	IO	OV _{DD}	-
FEC3_RXD2/FEC_TMR_TRIG1/GPIO_55	Y11	IO	OV _{DD}	-
FEC3_RXD3/FEC_TMR_TRIG2/GPIO_56	AB10	IO	OV _{DD}	-
FEC3_TX_CLK[CLK12]/FEC_TMR_CLK/GPIO_5 7	AC10	IO	OV _{DD}	-
FEC3_TX_EN/FEC_TMR_GCLK/GPIO_58	AA10	IO	OV _{DD}	-
FEC3_TX_ER/FEC_TMR_PP1/GPIO_59	AC8	IO	OV _{DD}	-
FEC3_TXD0/FEC_TMR_PP2/GPIO_60	AB8	IO	OV _{DD}	-
FEC3_TXD1/FEC_TMR_PP3/GPIO_61	AA9	IO	OV _{DD}	-
FEC3_TXD2/FEC_TMR_ALARM1/GPIO_62	AA8	IO	OV _{DD}	-
FEC3_TXD3/FEC_TMR_ALARM2/GPIO_63	AC7	IO	OV _{DD}	-

23 Clocking

The following figure shows the internal distribution of clocks within the MPC8309.

The primary clock source for the MPC8309 can be one of three inputs,Crystal(SYS_XTAL_IN), SYS_CLK_IN or PCI_SYNC_IN, depending on whether the device is configured in PCI host or PCI agent mode, respectively.

		PCI_SYNC_IN(MHz)			
SPMF	csb_clk : sys_clk_in Ratio	25	33.33	66.67	
		csb_c	clk Frequency (MI	łz)	
0010	2:1			133	
0011	3:1				
0100	4:1		133		
0101	5:1	125	167		
0110	6:1				

Table 57. CSB frequency options

23.5 Core PLL configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). The following table shows the encodings for RCWL[COREPLL]. COREPLL values not listed, and should be considered reserved.

RCWL[COREPLL]		LL]			
0-1	2-5	6		VCO Divider	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	÷2	
01	0001	0	1:1	÷4	
10	0001	0	1:1	÷8	
11	0001	0	1:1	÷8	
00	0001	1	1.5:1	÷ 2	
01	0001	1	1.5:1	÷ 4	
10	0001	1	1.5:1	÷ 8	
11	0001	1	1.5:1	÷ 8	
00	0010	0	2:1	÷ 2	
01	0010	0	2:1	÷ 4	
10	0010	0	2:1	÷ 8	
11	0010	0	2:1	÷ 8	
00	0010	1	2.5:1	÷ 2	
01	0010	1	2.5:1	÷ 4	
10	0010	1	2.5:1	÷ 8	
11	0010	1	2.5:1	÷8	
00	0011	0	3:1	÷ 2	

Table 58. e300 Core PLL configuration

to minimize inductance. Suggested bulk capacitors—100 to 330 μ F (AVX TPS tantalum or Sanyo OSCON).

25.4 Output buffer DC impedance

For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 45). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 45. Driver impedance measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

27 Document revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantive Change(s)		
2	09/2012	 In Table 53, swapped CLK13 and CLK14. In Table 53, removed the following test signals, as there are no corresponding use cases: ECID_TMODE_IN BOOT_ROM_ADDR[2] to BOOT_ROM_ADDR[12] BOOT_ROM_RDATA[0] to BOOT_ROM_RDATA[31] BOOT_ROM_RDATA[0] to BOOT_ROM_RWB, BOOT_ROM_XFR_WAIT, BOOT_ROM_XFR_ERR UC1_RM, UC2_RM, UC3_RM, UC5_RM, UC7_RM, AND URM_TRIG TPR_SYS_AAD[0] to TPR_SYS_AAD[15] TPR_SYS_SYNC, TPR_SYS_DACK QE_TRB_0, QE_TRB_1 PLLCZ_CORE_CLKIN JTAG_BISE, JTAG_PRPGPS, JTAG_BISR_TDO_EN CLOCK_XLB_CLOCK_OUT PD_XLB2MG_DDR_CLOCK In Table 53, changed the following signal names as only QE-Based Fast Ethernet Controller is present in this device: TSEC_TMR_TRIG1 to FEC_TMR_TRIG1 TSEC_TMR_CLK to FEC_TMR_TRIG2 TSEC_TMR_CLK to FEC_TMR_CLK TSEC_TMR_PP1 to FEC_TMR_PP2 TSEC_TMR_PP2 to FEC_TMR_PP3 TSEC_TMR_ALARM1 to FEC_TMR_ALARM1 TSEC_TMR_ALARM1 to FEC_TMR_ALARM1 TSEC_TMR_ALARM2 to FEC_TMR_TX_ESFD FEC3_TMR_RX_ESFD to FEC2_TMR_RX_ESFD. In Table 18, added parameteres t_ALEHOV, t_LALETOT, and t_LBOTOT and made the corresponding updates in Figure 3, replaced "32 X tSYS_CLK_IN" with "32 X tSYS_CLK_IN/PCI_SYNC_IN. 		
1	08/2011	 Updated QUICC Engine frequency in Table 5. Updated QUICC Engine frequency from 200 MHz to 233 MHz in Table 61. Updated CEPMF and CEDF as per new QE frequency in Table 61. Updated QUICC Engine frequency to 233 MHz in Table 64. Corrected LCCR to LCRR for all instances. 		
0	03/2011	Initial Release.		

Table 66. Document revision history

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. ARM is the registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc.

Document Number: MPC8309EC Rev. 2 09/2012

