

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k42-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ENAIVIFLE IS	-4. VVNI		
	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_BLOCK			
	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINCO	; store data
	DECFSZ	COUNTER	; done?
	BRA	READ_BLOCK	; repeat
MODIFY_WORD			
	MOVLW		; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL NEW DATA LOW	· undate huffer word
	MOVLW MOVWF	NEW_DATA_LOW POSTINC0	; update buffer word
	MOVLW	NEW DATA HIGH	
	MOVHW	INDF0	
ERASE BLOCK		INDIO	
	MOVLW	CODE ADDR UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE ADDR HIGH	,
	MOVWF	TBLPTRH	
	MOVLW	CODE ADDR LOW	
	MOVWF	TBLPTRL	
	BCF	NVMCON1, REG0	; point to Program Flash Memory
	BSF	NVMCON1, REG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BSF	NVMCON1, FREE	; enable Erase operation
	BCF	INTCONO, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start erase (CPU stall)
	BSF	INTCON0, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
מסדקר סווביהה	MOVWF	FSROL	
WRITE_BUFFE	_	BlockSizo	· number of butes in holding register
	MOVLW	BlockSize COUNTER	; number of bytes in holding register
	MOVWF		; number of write blocks in 64 bytes
	MOVLW MOVWF	D'64'/BlockSize COUNTER2	, number of wirde procks in 04 bytes
	PIO V W P	COUNTRIVE	
1			

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
	SLEW	PU<	:1:0>	—	—	TH<	:1:0>		
bit 7	·						bit 0		
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'			
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and B	OR/Value at all	other Resets		
'1' = Bit is s	et	'0' = Bit is cle	ared	HS = Hardware set					
bit 7	Unimpleme	nted: Read as '	0'						
bit 6	SLEW: I ² C s	pecific slew rate	e limiting is en	abled					
		ecific slew rate I	imiting is enab	led. Standard	pad slew limiti	ng is disabled.	The SLRxy bit		
	is ignor		oto, on oblod/		Duchit				
		rd GPIO Slew F		JISADIEU VIA SL	RXY DIL.				
bit 5-4	11 = Reser	C Pull-up Select	ion dits						
		urrent of standa	rd weak pull-u	p					
		rent of standard	•						
	00 = Stand	ard GPIO weak	pull-up, enabl	ed via WPUxy	bit				
bit 3-2	Unimpleme	nted: Read as '	0'						
bit 1-0		C Input Thresho		ts					
		is 3.0 (1.35 V) ii							
		is 2.0 (2.1 V) inp							
		ecific input thre	510105						

REGISTER 16-9: RxyI2C: I²C PAD Rxy CONTROL REGISTER

00 = Standard GPIO Input pull-up, enabled via INLVLxy registers

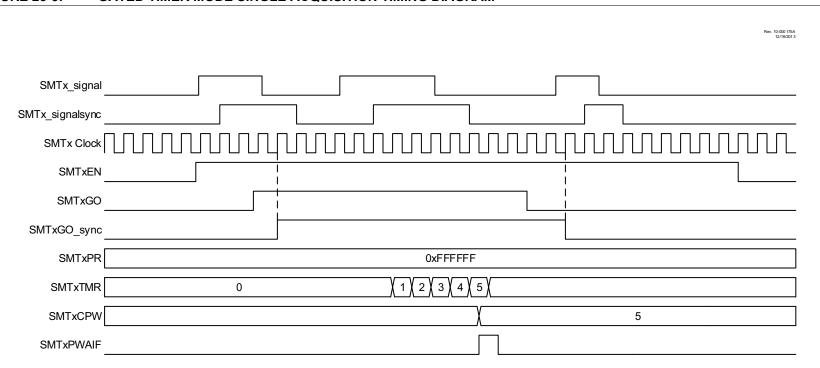

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RB1I2C	_	SLEW	PU<1:0>		—	—	TH<1:0>	
RB2I2C	_	SLEW	PU<1:0>		—	_	TH<	1:0>
RC3I2C	_	SLEW	PU<	1:0>	—	—	TH<	1:0>
RC4I2C	_	SLEW	PU<	1:0>	—	—	TH<	1:0>
RD0I2C ⁽¹⁾	_	SLEW	PU<1:0>		—	_	TH<	1:0>
RD1I2C ⁽¹⁾	_	SLEW	PU<1:0>		—	—	TH<	1:0>

TABLE 16-10: I2C PAD CONTROL REGISTERS

Note 1: Unimplemented in PIC18(L)F26/27K42.

REGISTER	21-2: IXGC	UN: HMER	X GATE CO	NIROL REGIS	IER		
R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R-x	U-0	U-0
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	_	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	nted bit, read as	s 'O'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cleare	ed	x = Bit is unkno	own
bit 7	If TMRxON = 1 = Timerx 0 = Timerx If TMRxON =	counting is co is always cour	ntrolled by th	e Timerx gate fur	nction		
bit 6	1 = Timerx		-high (Timerx	counts when gat			
bit 5	1 = Timerx 0 = Timerx	Gate Toggle I Gate Toggle m Gate Toggle m Flip Flop Togg	node is enabl node is disabl	ed and Toggle flip	p-flop is cleared		
bit 4	1 = Timerx	rx Gate Single Gate Single P Gate Single P	ulse mode is	enabled and is co	ontrolling Timer	gate)	
bit 3	1 = Timerx 0 = Timerx	Gate Single P Gate Single P	ulse Acquisiti ulse Acquisiti	Acquisition Status on is ready, waitii on has completed (GSPM is cleared	ng for an edge d or has not bee	n started.	
bit 2	Indicates the	rx Gate Currer current state o y Timerx Gate	of the Timerx	gate that could b RxGE)	e provided to TN	MRxH:TMRxL	
bit 1-0	Unimpleme	nted: Read as	ʻ0 '				

REGISTER 21-2: TxGCON: TIMERx GATE CONTROL REGISTER

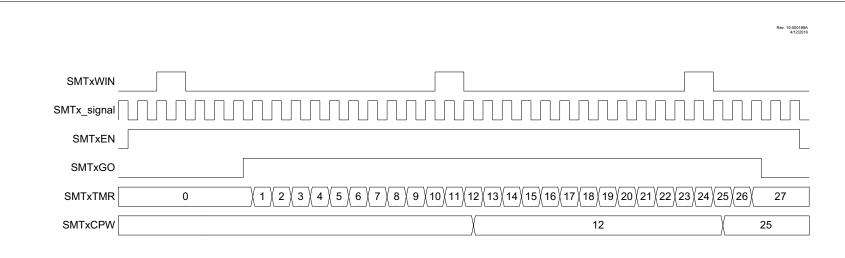


FIGURE 25-5: GATED TIMER MODE SINGLE ACQUISITION TIMING DIAGRAM

25.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMT1_signal input. This mode is asynchronous to the SMT clock and uses the SMT1_signal as a time source. The SMT1CPW register will be updated with the current SMT1TMR value on the rising edge of the SMT1WIN input. See Figure 25-18.

FIGURE 25-18: COUNTER MODE TIMING DIAGRAM

25.6.10 GATED COUNTER MODE

This mode counts pulses on the SMT1_signal input, gated by the SMT1WIN input. It begins incrementing the timer upon seeing a rising edge of the SMT1WIN input and updates the SMT1CPW register upon a falling edge on the SMT1WIN input. See Figure 25-19 and Figure 25-20.

26.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWGxA output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWGxB is affected.

The CWGxDBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWGxDBR register value is double-buffered. When EN = 0 (Register 26-1), the buffer is loaded when CWGxDBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 26-1) is set. Refer to Figure 26-12 for an example.

26.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWGxB output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWGxD is affected.

The CWGxDBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWGxDBF register value is double-buffered. When EN = 0 (Register 26-1), the buffer is loaded when CWGxDBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 26-1) is set. Refer to Figure 26-13 for an example.

FIGURE 31-5:	ASYNCHRONOUS RECE	EPTION			
RX pin	Start bit bit 0 bit 1 Sto	p Start bit bit 0 / /	Xlast bit/ Stop bit	Stop	
Rcv Shift Reg Rcv Buffer Reg.	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	<u> </u>	Word 2 UxRXB	<u></u>	
RXIDL -		<u> </u>	i~i	<u>}</u>	
Read Rcv Buffer Reg. UxRXB —	<u>} </u>	<u>} </u>		<u>}</u>	ų
UxRXIF (Interrupt Flag) -	j	<u> </u>			
RXFOIF bit		<u> </u>		<u></u> ز	
				Cleared by so	oftware)
	iming diagram shows three words appearing eived, causing the RXFOIF (FIFO overrun) b			ead before the third w	/ord

31.3 Asynchronous Address Mode

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems.

When Asynchronous Address mode is enabled, all data is transmitted and received as 9-bit characters. The 9th bit determines whether the character is an address or data. When the 9th bit is set, the eight Least Significant bits are the address. When the 9th bit is clear, the Least Significant bits are data. In either case, the 9th bit is stored in PERIF when the byte is written to the receive FIFO. When PERIE is also set, the RXIF will be suppressed, thereby suspending DMA transfers allowing software to process the received address.

An address character will enable all receivers that match the address and disable all other receivers. Once a receiver is enabled, all non-address characters will be received until an address character is received that does not match.

31.3.1 ADDRESS MODE TRANSMIT

The UART transmitter is enabled for asynchronous address operation by configuring the following control bits:

- TXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RxyPPS = code for desired output pin
- ON = 1

Addresses are sent by writing to the UxP1L register. This transmits the written byte with the 9th bit set, which indicates that the byte is an address.

Data is sent by writing to the UxTXB register. This transmits the written byte with the 9th bit cleared, which indicates that the byte is data.

To send data to a particular device on the transmission bus, first transmit the address of the intended device. All subsequent data will be accepted only by that device until an address of another device is transmitted.

Writes to UxP1L take precedence over writes to UxTXB. When both the UxP1L and UxTXB registers are written while the TSR is busy, the next byte to be transmitted will be from UxP1L.

To ensure that all data intended for one device is sent before the address is changed, wait until the TXMTIF bit is high before writing UxP1L with the new address.

31.3.2 ADDRESS MODE RECEIVE

The UART receiver is enabled for asynchronous address operation by configuring the following control bits:

- RXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RXPPS = code for desired input pin
- Input pin ANSEL bit = 0
- UxP2L = receiver address
- UxP3L = address mask
- ON = 1

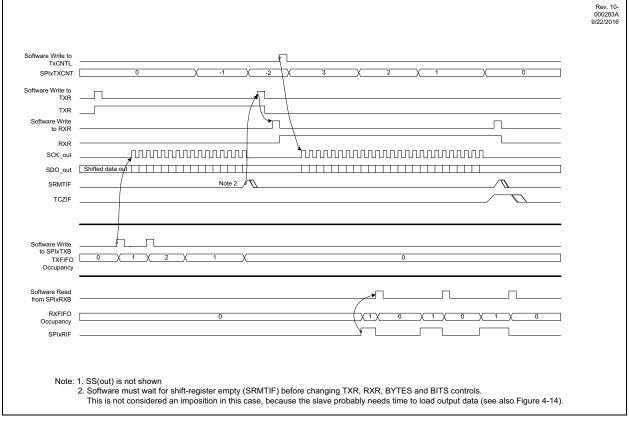
In Address mode, no data will be transferred to the input FIFO until a valid address is received. This is the default state. Any of the following conditions will cause the UART to revert to the default state:

- ON = 0
- RXEN = 0
- · Received address does not match

When a character with the 9th bit set is received, the Least Significant eight bits of that character will be qualified by the values in the UxP2L and UxP3L registers.

The byte is XOR'd with UxP2L then AND'd with UxP3L. A match occurs when the result is 0h, in which case, the unaltered received character is stored in the receive FIFO, thereby setting the UxRXIF interrupt bit. The 9th bit is stored in the corresponding PERIF bit, identifying this byte as an address.

An address match also enables the receiver for all data such that all subsequent characters without the 9th bit set will be stored in the receive FIFO.


When the 9th bit is set and a match does not occur, the character is not stored in the receive FIFO and all subsequent data is ignored.

The UxP3L register mask allows a range of addresses to be accepted. Software can then determine the subaddress of the range by processing the received address character.

32.5.3 RECEIVE ONLY MODE

When RXR is set and TXR is clear, the SPI master is in Receive Only mode. In this mode, data transfers when the RXFIFO is not full and the Transfer Counter is nonzero. In this mode, writing a value to SPIxTCNTL will start the clocks for transfer. The clocks will suspend while the RXFIFO is full and cease when the SPIxTCNT reaches zero (see Section 32.4 "Transfer Counter"). If there is any data in the TXFIFO, the first data written to the TXFIFO will be transmitted on each data exchange, although the TXFIFO occupancy will not change, meaning that the same message will be sent on each transmission. If there is no data in the TXFIFO, the most recently received data will instead be transmitted. Figure 32-5 shows an example of sending a command using Section 32.5.2 "Transmit Only Mode" and then receiving a byte of data using this mode.

32.5.4 TRANSFER OFF MODE

When both TXR and RXR are cleared, the SPI master is in Transfer Off mode. In this mode, SCK will not toggle and no data is exchanged. However, writes to SPIxTXB will be transferred to the TXFIFO which will be transmitted if the TXR bit is set.

33.3.2 BYTE FORMAT

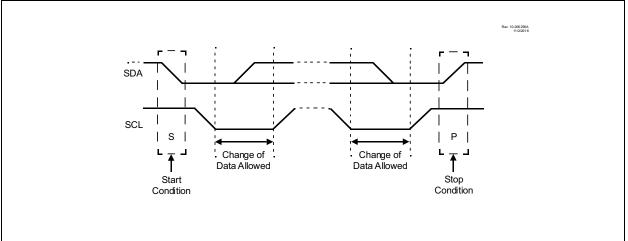
All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent by the receiver. After the 8th falling edge of the SCL line, the device transmitting data on the SDA line releases control of that pin to an input, and reads in an acknowledge value on the next clock pulse. The clock signal is provided by the master. Data is valid to change while the SCL line is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define Start and Stop conditions on the bus which are explained further in the chapter.

33.3.3 SDA AND SCL PINS

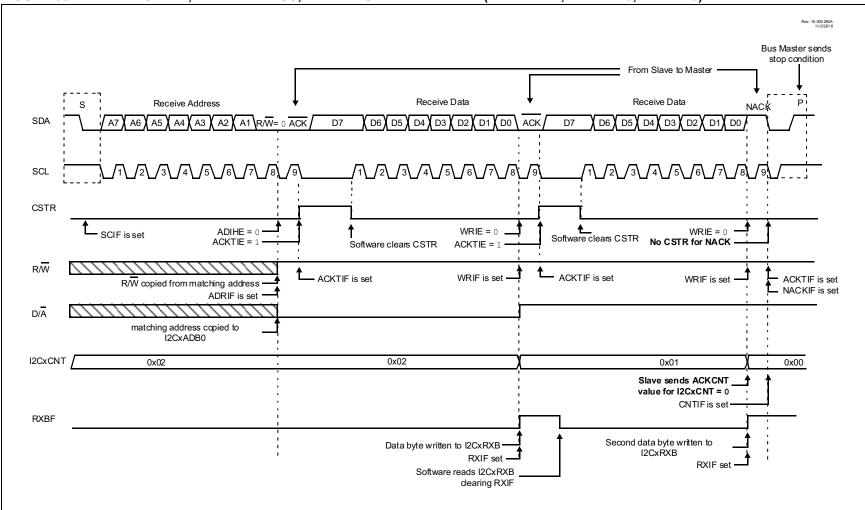
The user must configure these pins as open-drain inputs. This is done by clearing the appropriate TRIS bits and setting the appropriate and ODCON bits. The user may also select the input threshold, slew-rate and internal pull-up settings using the Rxyl2C control registers (Register 16-9).

33.3.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT<1:0> bits of the I2CxCON2 register. Hold time is the time SDA is held valid after the falling edge of SCL. A longer hold time setting may help on buses with large capacitance.


33.3.5 START CONDITION

The I²C specification defines a Start condition as a transition of SDA line from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 33-3 shows waveforms for Start conditions. Master hardware waits for the BFRE bit of I2CxSTAT0 to be set, before asserting a Start condition on the SCL and SDA lines. If two masters assert a start at the same time, a collision will occur during the addressing phase.


33.3.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low to high while the SCL line is high. Figure 33-3 shows waveforms for Stop conditions.

Note:	At least one SCL low time must appear									
	before a Stop is valid. Therefore if the									
	SDA line goes low then high again while									
	the SCL line is high, only the Start									
	condition is detected.									

FIGURE 33-7: $I^{2}C$ SLAVE, 7-BIT ADDRESS, RECEPTION WITH I2CxCNT (ACKTIE = 1, ADRIE = 0, WRIE = 0)

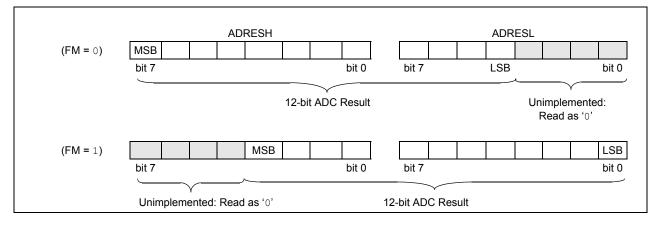
PIC18(L)F26/27/45/46/47/55/56/57K42

36.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIRx register. The ADC Interrupt Enable is the ADIE bit in the PIEx register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake up from Sleep and resume in-line code execution, the ADIE bit of the PIEx register and the GIE bits of the INTCON0 register must both be set. If all these bits are set, the execution will switch to the Interrupt Service Routine.


36.1.6 RESULT FORMATTING

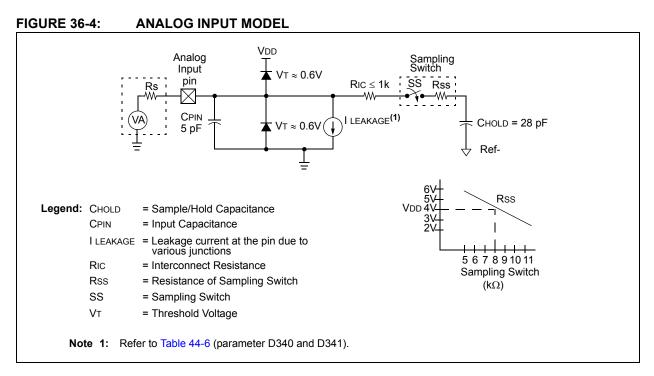
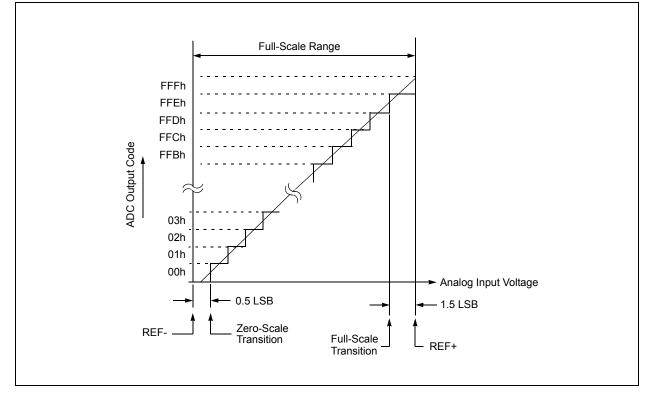

The 12-bit ADC conversion result can be supplied in two formats, left justified or right justified. The FM bits of the ADCON0 register controls the output format.

Figure 36-3 shows the two output formats.


Writes to the ADRES register pair are always right justified regardless of the selected format mode. Therefore, data read after writing to ADRES when ADFRM0 = 0 will be shifted left four places.

© 2017 Microchip Technology Inc.

DS40001919B-page 608

41.2.2 EXTENDED INSTRUCTION SET

ADDULNK	Add Lite	eral to FS	SR2 and	Return				
Syntax:	ADDULNK k							
Operands:	$0 \le k \le 63$	3						
Operation:	FSR2 + k	$x \rightarrow FSR2$,					
	$(TOS) \rightarrow$	PC						
Status Affected:	None							
Encoding:	1110	1000	11kk	kkkk				
Description:	contents executed TOS. The instru- execute; the secon This may case of th	be though ne ADDFSI 3 (binary	A RETURN g the PC v es two cyc performed ht of as a R instruction	r is then with the cles to during special on,				
Words:	1							
Cycles:	2							

Q Cycle Activity:

Q1	Q1 Q2		Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3FA1h	T4HLT	PSYNC	CKPOL	CKSYNC		•	MODE			339
3FA0h	T4CON	ON		CKPS			OU	ITPS		338
3F9Fh	T4PR				P	R4				337
3F9Eh	T4TMR				T	/IR4				337
3F9Dh	T5CLK				(CS				335
3F9Ch	T5GATE				G	SS				316
3F9Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	—	_	314
3F9Ah	T5CON	—	_	СК	PS	_	NOT_SYNC	RD16	ON	338
3F99h	TMR5H				ΤN	IR5H				317
3F98h	TMR5L				ΤN	1R5L				317
3F97h	T6RST	—	_	—			RSEL			336
3F96h	T6CLK	—	_	_	_		(CS		315
3F95h	T6HLT	PSYNC	CKPOL	CKSYNC			MODE			339
3F94h	T6CON	ON		CKPS			OU	ITPS		338
3F93h	T6PR				P	R6				337
3F92h	T6TMR				T	MR6				337
3F91h - 3F80h	_				Unimpl	emented				
3F7Fh	CCP1CAP				C	TS				352
3F7Eh	CCP1CON	EN	_	OUT	FMT		M	DDE		350
3F7Dh	CCPR1H				F	RH				353
3F7Ch	CCPR1L				I	RL				352
3F7Bh	CCP2CAP				C	TS				352
3F7Ah	CCP2CON	EN	_	OUT	FMT		M	DDE		350
3F79h	CCPR2H				F	RH				353
3F78h	CCPR2L				I	RL				352
3F77h	CCP3CAP				C	TS				352
3F76h	CCP3CON	EN	_	OUT	FMT		M	DDE		350
3F75h	CCPR3H		•		F	RH				353
3F74h	CCPR3L				I	RL				352
3F73h	CCP4CAP				C	TS				352
3F72h	CCP4CON	EN	_	OUT	FMT		М	DDE		350
3F71h	CCPR4H		•		F	RH				353
3F70h	CCPR4L					RL				352
3F6Fh	_				Unimpl	emented				
3F6Eh	PWM5CON	EN	_	OUT	POL		_		_	358
3F6Dh	PWM5DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F6Dh	PWM5DCH				C	C8				360
3F6Ch	PWM5DCL	DC1	DC0	_	_	_	_	—	—	360
3F6Ch	PWM5DCL	D	С	_	_	_	_	_	_	360
3F6Bh					Unimpl	emented				
3F6Ah	PWM6CON	EN	_	OUT	POL		_	_	_	358
3F69h	PWM6DCH	D	C9	DC7	DC6	DC5	DC4	DC3	DC2	360
3F69h	PWM6DCH				[DC DC				360
3F68h	PWM6DCL	DC1	DC0	_	_	_	_	—	—	360
3F68h	PWM6DCL	D	С	_	_	_	_	—	_	360
3F67h					Unimpl	emented				

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
3BFEh	DMA1AIRQ	_		•	•	AIRQ				256	
3BFDh	DMA1CON1	EN	SIRQEN	DGO	—	_	AIRQEN		XIP	249	
3BFCh	DMA1CON0	DN	10DE	DSTP	SN	1R	SMC	DDE	SSTP	248	
3BFBh	DMA1SSAU	_	_		•		SSA			251	
3BFAh	DMA1SSAH		SSA								
3BF9h	DMA1SSAL		SSA								
3BF8h	DMA1SSZH	_	_	— — — SSZ							
3BF7h	DMA1SSZL				SS	SZ				252	
3BF6h	DMA1SPTRU	_	_			S	SPTR			252	
3BF5h	DMA1SPTRH				SP	TR				251	
3BF4h	DMA1SPTRL			SPTR							
3BF3h	DMA1SCNTH	_	_	_	—		S	CNT		253	
3BF2h	DMA1SCNTL				SC	NT				253	
3BF1h	DMA1DSAH				DS	SA				254	
3BF0h	DMA1DSAL				SS	6A				253	
3BEFh	DMA1DSZH	_	_	_	_		D	SZ		255	
3BEEh	DMA1DSZL				DS	SZ				255	
3BEDh	DMA1DPTRH				DP	TR				254	
3BECh	DMA1DPTRL				DP	TR				254	
3BEBh	DMA1DCNTH	_	_	_	_		D	CNT		256	
3BEAh	DMA1DCNTL				DC	NT				255	
3BE9h	DMA1BUF				BL	JF				250	
3BE8h - 3BE0h	—				Unimple	mented					
3BDFh	DMA2SIRQ	_				SIRQ				256	
3BDEh	DMA2AIRQ	_				AIRQ				256	
3BDDh	DMA2CON1	EN	SIRQEN	DGO	_	_	AIRQEN	_	XIP	249	
3BDCh	DMA2CON0	DN	10DE	DSTP	SN	1R	SMC	DDE	SSTP	248	
3BDBh	DMA2SSAU	_	_				SSA			251	
3BDAh	DMA2SSAH				SS	SA				250	
3BD9h	DMA2SSAL				SS	SA				250	
3BD8h	DMA2SSZH	_	_	_	_		S	SZ		252	
3BD7h	DMA2SSZL				SS	SZ				252	
3BD6h	DMA2SPTRU	_	_			S	SPTR			252	
3BD5h	DMA2SPTRH				SP	TR				251	
3BD4h	DMA2SPTRL				SP	TR				251	
3BD3h	DMA2SCNTH	—	_	_	—		S	CNT		253	
3BD2h	DMA2SCNTL				SC	NT				253	
3BD1h	DMA2DSAH				DS	SA				254	
3BD0h	DMA2DSAL				SS	SA				253	
3BCFh	DMA2DSZH	_	_				C	SZ		255	
3BCEh	DMA2DSZL				DS	SZ				255	
3BCDh	DMA2DPTRH				DP	TR				254	
3BCCh	DMA2DPTRL				DP	TR				254	
	DMAODONITU		_	_	_		D	CNT		256	
3BCBh	DMA2DCNTH										
3BCBh 3BCAh	DMA2DCNTH DMA2DCNTL				DC	NT				255	

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

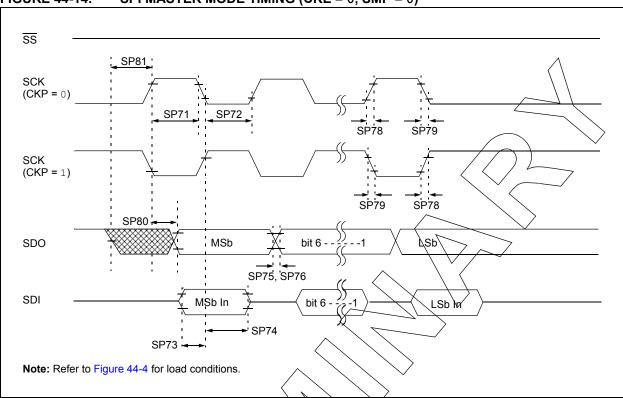
2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

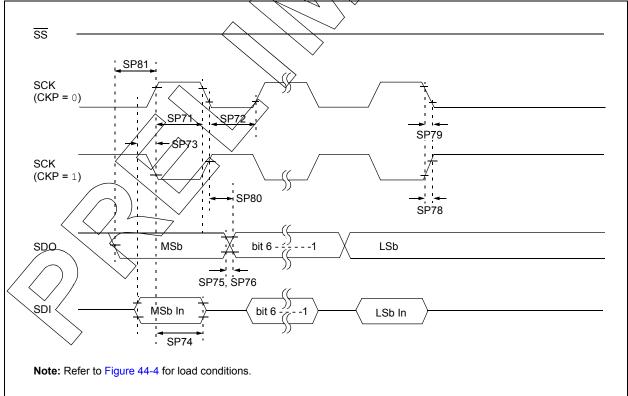
TABLE 44-15: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

<mark>Operating Conditions (unless otherwise stated)</mark> VDD = 3.0V, TA = 25°C, TAD = 1μs							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—	_	12	bit	\wedge
AD02	EIL	Integral Error	_	±0.1	±2.0	LSb	ADCREF+ = 3.0V, ADCREF- $\neq 0$
AD03	Edl	Differential Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= ρV
AD04	EOFF	Offset Error	_	0.5	6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD05	Egn	Gain Error	_	±0.2	±6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V	
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	1	—	kΩ	
AD09	Rvref	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	Note 3

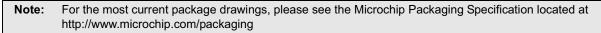

* These parameters are characterized but not tested.

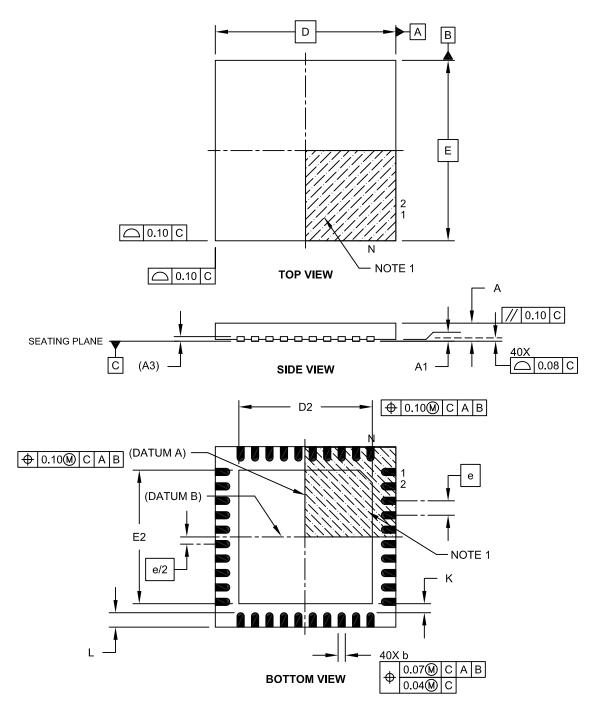
+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.


2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.




FIGURE 44-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-156A Sheet 1 of 2