

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k42-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P
C
18
3(
Ţ
26
7
/4
5/
4
2/2
7
ເ
Ś
5
6/
57
x
4
N

0/I	48-Pin TQFP	48-Pin UQFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	l²C	SPI	UART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC2	40	40	ANC2	—	-	—	—	—	-	—	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	-	-	—	IOCC2	-
RC3	41	41	ANC3	-	-	—	—	SCL1 ^(3,4)	SCK1 ⁽¹⁾	-	—	T2IN ⁽¹⁾	-	—	_	—	—	IOCC3	-
RC4	46	46	ANC4	—	-	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	—	_	—	—	_	—	—	IOCC4	
RC5	47	47	ANC5	—	-	—	—	—	—	—	—	T4IN ⁽¹⁾	—	—	—	—	—	IOCC5	-
RC6	48	48	ANC6	_	-	-	—	_	_	CTS1 ⁽¹⁾	_	_	—	_		—	-	IOCC6	-
RC7	1	1	ANC7	_	-	—	—	_	—	RX1 ⁽¹⁾	_	_	_	_	_	—	—	IOCC7	-
RD0	42	42	AND0	_	-	_	—	(4)	_	_	_	_	—	_		—	-	_	-
RD1	43	43	AND1	_	-	—	—	(4)	—	_	_	-	-	—		—	—	-	-
RD2	44	44	AND2	_	-	-	—	_	—	_	_	-	-	_	_	-	-	-	-
RD3	45	45	AND3	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RD4	2	2	AND4	_	-	_	_	_	—	_	-	-	_	-	_	_	_	-	—
RD5	3	3	AND5	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RD6	4	4	AND6	_	-	-	—	_	_	_	_	_	—	_		—	-	_	-
RD7	5	5	AND7	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RE0	27	27	ANE0	_	-	-	—	_	—	_	_	_	—	_		—	-	_	-
RE1	28	28	ANE1	_	-	—	—	_	—	_	_	_	_	_	_	—	—	-	-
RE2	29	29	ANE2	_	-	_	_	_	—	_	-	-	_	-	_	_	_	-	—
RE3	20	20	—	—	—	—	-	—	—	—	—	-	—	—	-	—	—	IOCE3	MCLR VPP
RF0	36	36	ANF0	_	-	_	—	_	—	_	_	-	_	_	_	_	_	-	—
RF1	37	37	ANF1	—	-	—	—	—	—	—	_	-	—	_	-	—	—	_	—
RF2	38	38	ANF2	—	_	_	—	—	—	—	—	_	—	—	—	—	—	—	_
RF3	39	39	ANF3	—	_	_	—	—	—	—	_	_	—	_	_	—	_	_	_
RF4	12	12	ANF4	_	_	_	-	_	—	_	_	-	_	_	_	_	-	_	-
RF5	13	13	ANF5	-	—	—	—	—	—	-	—	-	—	_	—	—	-	_	-
RF6	14	14	ANF6	_	—	—	_	_	—	_	—	-	—	_	_	—	-	—	-
RF7	15	15	ANF7	-	-	—	_	_	—	-	—	-	—	_	-	—	-	_	-
Note	1:	This is	a PPS remap	pable input si	ignal. The input	t function ma	y be mov	ed from the d	lefault locatio	on shown to a	one of several of	other PORTx pin	s.						

48-PIN ALLOCATION TABLE FOR PIC18(L)F5XK42 (CONTINUED)

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

TABLE 3:

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/W-1					
_	_	_	-	_	—	_	CP					
bit 7 bit 0												
Legend:												
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '1'								
-n = Value for blank device '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												

REGISTER 5-9: CONFIGURATION WORD 5L (30 0008h)

bit 7-1 Unimplemented: Read as '1'

bit 0

CP: User Program Flash Memory and Data EEPROM Code Protection bit

1 = User Program Flash Memory and Data EEPROM code protection is disabled

0 = User Program Flash Memory and Data EEPROM code protection is enabled

REGISTER 5-10: CONFIGURATION WORD 5H (30 0009h)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	_	_	_	_	_
bit 7							bit 0

Legend:										
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'							
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							

bit 7-0 Unimplemented: Read as '1'

TABLE 5-2:SUMMARY OF CONFIGURATION WORDS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
30 0000h	CONFIG1L	_	l	RSTOSC<2:0	>		FEXTOSC<2:0>			1111 1111
30 0001h	CONFIG1H	_	_	FCMEN	_	CSWEN		PR1WAY	CLKOUTEN	1111 1111
30 0002h	CONFIG2L	BORE	N<1:0>	LPBOREN	IVT1WAY	MVECEN	PWRT	PWRTS<1:0> MCLRE		1111 1111
30 0003h	CONFIG2H	XINST	—	DEBUG	STVREN	PPS1WAY	ZCD BORV<1:0>			1111 1111
30 0004h	CONFIG3L	_	WDTI	E<1:0>		WDTCPS<4:0>				1111 1111
30 0005h	CONFIG3H	_	—	V	VDTCCS<2:0	>		WDTCWS<2	:0>	1111 1111
30 0006h	CONFIG4L	WRTAPP	_	_	SAFEN	BBEN		BBSIZE<2:0)>	1111 1111
30 0007h	CONFIG4H	—	—	LVP	_	WRTSAF	WRTD	WRTC	WRTB	1111 1111
30 0008h	CONFIG5L	_	_	_	_	_	_	_	CP	1111 1111
30 0009h	CONFIG5H	_	_	_	_	_	_	_	_	1111 1111

© 2017 Microchip Technology Inc.

WRITE_BYTE	TO_HREGS		
	MOVF	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until holding registers are full
	BRA	WRITE WORD TO HREGS	
PROGRAM MEN	MORY		
—	BCF	NVMCON1, REG0	; point to Program Flash Memory
	BSF	NVMCON1, REG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BCF	NVMCON1, FREE	; enable write to memory
	BCF	INTCON0, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE BYTE TO HREGS	
	BSF	INTCONO, GIE	; re-enable interrupts
	BCF	NVMCON1, WREN	; disable write to memory

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

21.3 Timer1/3/5 Prescaler

Timer1/3/5 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the TxCON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMRxH or TMRxL.

21.4 Timer1/3/5 Operation in Asynchronous Counter Mode

If control bit SYNC of the TxCON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.4.1 "Reading and Writing Timer1/3/5 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

21.4.1 READING AND WRITING TIMER1/3/ 5 IN ASYNCHRONOUS COUNTER MODE

Reading TMRxH or TMRxL while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMRxH:TMRxL register pair.

21.5 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 21-2 for more details.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

© 2017 Microchip Technology Inc.

25.7 Interrupts

The SMT can trigger an interrupt under three different conditions:

- PW Acquisition Complete
- PR Acquisition Complete
- Counter Period Match

The interrupts are controlled by the PIR and PIE registers of the device.

25.7.1 PW AND PR ACQUISITION INTERRUPTS

The SMT can trigger interrupts whenever it updates the SMT1CPW and SMT1CPR registers, the circumstances for which are dependent on the SMT mode, and are discussed in each mode's specific section. The SMT1CPW interrupt is controlled by SMT1PWAIF and SMT1PWAIE bits in the respective PIR and PIE registers. The SMT1CPR interrupt is controlled by the SMT1PRAIF and SMT1PRAIE bits, also located in the respective PIR and PIE registers.

In synchronous SMT modes, the interrupt trigger is synchronized to the SMT1CLK. In Asynchronous modes, the interrupt trigger is asynchronous. In either mode, once triggered, the interrupt will be synchronized to the CPU clock.

25.7.2 COUNTER PERIOD MATCH INTERRUPT

As described in Section 25.1.2 "Period Match interrupt", the SMT will also interrupt upon SMT1TMR, matching SMT1PR with its period match limit functionality described in Section 25.3 "Halt Operation". The period match interrupt is controlled by SMT1IF and SMT1IE, located in the respective PIR and PIE registers.

R-0/0

U-0

R-0/0

R-0/0

CPRUP	CPWUP	RST			TS	WS	AS		
bit 7							bit 0		
Legend:									
HC = Bit is clea	ared by hardwa	are		HS = Bit is set by hardware					
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condi	tion			
bit 7	CPRUP: SMT	Manual Perio	d Buffer Updat	e bit					
	$1 = \text{Request } \iota$	update to SMT	1PRx registers						
hit G		T Manual Dula		; Lindoto hit					
DILO	1 = Request u	Indate to SMT	1CPW register	opuale bit					
	0 = SMT1CP\	W registers up	date is complet	te					
bit 5	RST: SMT Ma	anual Timer Re	eset bit						
	1 = Request F	Reset to SMT1	TMR registers						
	0 = SMI1IM	R registers upo	late is complet	e					
bit 4-3	Unimplemen	ted: Read as '	0'						
bit 2	TS: GO Value	e Status bit							
	1 = SMT time 0 = SMT time	r is not increm	ny entina						
bit 1	WS: SMT1WI	IN Value Status	s bit						
	1 = SMT wind	low is open							
	0 = SMT wind	low is closed							
bit 0	AS: SMT_sign	nal Value Statu	s bit						
	1 = SMT acqu	uisition is in pro	ogress						
			i piogress						

U-0

REGISTER 25-3: SMT1STAT: SMT STATUS REGISTER

R/W/HC-0/0 R/W/HC-0/0

R/W/HC-0/0

28.1 NCO Operation

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 28-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCO output to reduce uncertainty.

EQUATION 28-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

28.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- Fosc
- HFINTOSC
- LFINTOSC
- MFINTOSC/4 (32 kHz)
- MFINTOSC (500 kHz)
- CLC1/2/3/4_out
- CLKREF
- SOSC

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

28.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

28.1.3 ADDER

The NCO Adder is a full adder, which operates independently from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

28.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not useraccessible.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
	PWS<2:0>(1,2	:)			CKS	<3:0>						
bit 7		L. L					bit					
Legend:												
R = Readabl	le bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'						
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets					
'1' = Bit is se	et	'0' = Bit is clea	red									
bit 7-5	PWS<2:0>: N	NCO1 Output Pu	Ise Width Se	elect bits ^(1,2)								
	111 = NCO1 output is active for 128 input clock periods											
	110 = NCO1 output is active for 64 input clock periods											
	101 = NCO1 output is active for 32 input clock periods											
	100 = NCO	100 - NCOT output is active for 8 input clock periods 011 = NCO1 output is active for 8 input clock periods										
	011 = NCO	010 = NCO1 output is active for 4 input clock periods										
	010 = NCO	001 = NCO1 output is active for 2 input clock periods										
	000 = NCO	1 output is active	e for 1 input of	clock period								
bit 4	Unimplemen	ited: Read as '0	,									
bit 3-0	CKS<3:0>: NCO1 Clock Source Select bits											
	1111 = Rese	1111 = Reserved										
	•											
	•											
	•											
	1011 = Rese	rved										
	1010 = CLC4	1_out										
	1001 = CLC3	3_out										
	$1000 = CLC_2$	2_OUT										
	0111 - CLC	I_OUL PEE out										
	0110 = CER											
	0100 = MFIN	U ITOSC/4 (32 kH	z)									
	0011 = MFIN	ITOSC (500 kHz	_/ _)									
	0010 = LFIN	TOSC	,									
	0001 = HFIN	TOSC										
	0000 - Eosc											

- **Note 1:** N1PWS applies only when operating in Pulse Frequency mode.
 - 2: If NCO1 pulse width is greater than NCO1 overflow period, operation is undefined.

32.9 Register definitions: SPI

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	U-0			
SRMTIF	TCZIF	SOSIF	EOSIF	—	RXOIF	TXUIF	—			
bit 7							bit 0			
Legend:	L:1									
r = readable	DIL	vv = vvritable b	IL	U = Unimpl HS = Bit ca	n be set by har	au as u dware				
<u> </u>				2.00						
bit 7	SRMTIF: Shift	Register Empty	Interrupt Flag bi	it						
	Slave mode:									
	This bit is ignor	ed								
	Master mode:									
	1 = The data tra	ansfer is comple	ete							
	0 = Either no da	ata transfers hav	ve occurred or a	a data transfe	er is in progress	i				
bit 6	TCZIF: Transfe	r Counter is Zer	o Interrupt Flag	bit						
	1 = The transf decremented to	fer counter (as o zero	defined by BM	ODE in Reg	ister 32-7, TCN	NTH/L, and TW	/IDTH) has			
	0= No interrupt	pending								
bit 5	SOSIF: Start of	of Slave Select I	nterrupt Flag bit	t						
	1 = SS(in) trans	sitioned from fals	se to true							
	0 = No interrup	t pending								
bit 4	EOSIF: End of	Slave Select Int	errupt Flag bit							
	1 = SS(in) trans	sitioned from tru	e to false							
	0 = No interrup	t pending								
bit 3	Unimplemente	ed: Read as '0'								
bit 2	RXOIF: Receiv	er Overflow Inte	rrupt Flag bit							
	1 = Data transf	er completed wh	nen RXBF = $1 (e$	edge triggere	d) and RXR =	1				
	0 = No interrup	t pending								
bit 1	TXUIF: Transm	itter Underflow I	nterrupt Flag bi	t						
	1 = Slave Data	transfer started	when TXBE = 2	1 and TXR =	1					
	0 = No interrup	t pending								
bit 0	Unimplemente	ed: Read as '0'								

REGISTER 32-1: SPIXINTF: SPI INTERRUPT FLAG REGISTER

REGISTER 36-15: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
			CNT	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unkno			own	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	red						

bit 7-0 **CNT<7:0>**: ADC Repeat Count bits Counts the number of times that the ADC has been triggered and is used along with CNT to determine when the error threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table Table 36-2 for more details.

REGISTER 36-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
FLTR<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<15:8>**: ADC Filter Output Most Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 36-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
FLTR<7:0>										
bit 7							bit 0			
Logond										

Resets

bit 7-0 **FLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

© 2017 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	_	—	—	—		PCH<2:0>	
bit 7							bit 0
Leaend:							

REGISTER 38-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	PCH<2:0>: Comparator Non-Inverting Input Channel Select bits
	111 = V SS
	110 = FVR_Buffer2
	101 = DAC_Output
	100 = PCH not connected
	011 = PCH not connected
	010 = PCH not connected
	001 = CxIN1+
	000 = CxIN0+

REGISTER 38-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	_	—	—	—	—	C2OUT	C1OUT
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1 **C2OUT:** Mirror copy of C2OUT bit

bit 0 C1OUT: Mirror copy of C1OUT bit

TABLE 38-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMxCON0	EN	OUT	_	POL			HYS	SYNC	648
CMxCON1							INTP	INTN	649
CMxNCH						NCH<2:0>			649
CMxPCH						PCH<2:0>			650
CMOUT	_	_	_	-	_	_	C2OUT	C1OUT	650

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

		- •	0-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	_		SEL<	<3:0>	
bit 7							bit 0
·							

REGISTER 39-2: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits Refer to Table 44-14 for voltage detection limits.

TABLE 39-2: SUMMARY OF REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	-	OUT	RDY	-	-	INTH	INTL	657
HLVDCON1	-	-	-	-		658			

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

RRN	ICF	Rotate Right f (No Carry)						
Synta	ax:	RRNCF	f {,	d {,a}}				
Oper	ands:	0 ≤ f ≤ 2 d ∈ [0,1 a ∈ [0,1	255]]					
Oper	ation:	(f <n>) – (f<0>) –</n>	→ des → des	t <n 1<br="" –="">t<7></n>	>,			
Statu	is Affected:	N, Z						
Enco	oding:	0100	(0da	fff	f	ffff	
Description: The conter one bit to the is placed in placed bacd of 'a' is '0', ' selected (d value. If 'a' selected as of 'a' is '0' as set is enab in Indexed mode wher tion 41.2.3 Oriented In eral Offset				ents of register 'f' are rotated the right. If 'd' is '0', the result in W. If 'd' is '1', the result is ack in register 'f' (default). ', the Access Bank will be (default), overriding the BSR a' is '1', then the bank will be as per the BSR value. ' and the extended instruction abled, this instruction operates id Literal Offset Addressing tenever $f \le 95$ (5Fh). See Sec- 3 "Byte-Oriented and Bit- Instructions in Indexed Lit- tet Mode" for details.				
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read	۰F	Proce	ess	V dob	Vrite to	
		register	1	Dat	a	ue	Sunation	
Exan	<u>nple 1</u> :	RRNCF	RE	G, 1,	0			
	Before Instruc REG After Instructio REG	tion = 110 on = 111	1 01 0 10	11 11				
Exan	nple 2:	RRNCF	RE	G, 0,	0			
	Before Instruc	tion						
	W	= ?						
	REG After Instructio	= 110 on	1 01	11				
	₩ REG	= 111 = 110	0 10 1 01	11 11				

SET	F	Set f						
Svnta	ax:	SETF f{	a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Oper	ation:	$FFh\tof$	$FFh \to f$					
Statu	s Affected:	None	None					
Enco	ding:	0110	100a	fff	f	ffff		
Desc	ription:	The conter are set to F If 'a' is '0', ' If 'a' is '1', ' GPR bank. If 'a' is '0' a set is enab in Indexed mode when tion 41.2.3 Oriented I eral Offset	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- oral Offset Mode," for dotails					
Word	ls:	1						
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'		

Example:	SETF		REG,	1
Before Instruction	on			
REG	=	5Ah		
After Instruction				
REG	=	FFh		

	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
	3F3Ah	NCO1ACCU				AC	00				456	
	3F39h	NCO1ACCH				AC	00				455	
	3F38h	NCO1ACCL				AC	00				455	
	3F37h - 3F24h	—				Unimple	emented					
L	3F23h	SMT1WIN	—	—	—			WSEL			398	
L	3F22h	SMT1SIG	_	_	_			SSEL			399	
L	3F21h	SMT1CLK	_	—	_	_	— CSEL					
L	3F20h	SMT1STAT	CPRUP	CPWUP	RST	_	—	TS	WS	AS	396	
L	3F1Fh	SMT1CON1	GO	REPEAT	_	_		M	DDE		395	
L	3F1Eh	SMT1CON0	EN		STP	WPOL	SPOL	CPOL		PS	394	
L	3F1Dh	SMT1PRU				Р	R				403	
L	3F1Ch	SMT1PRH				Р	R				403	
L	3F1Bh	SMT1PRL				Р	R				403	
L	3F1Ah	SMT1CPWU				CF	PW				402	
L	3F19h	SMT1CPWH		CPW								
L	3F18h	SMT1CPWL		CPW								
L	3F17h	SMT1CPRU				CI	PR				401	
L	3F16h	SMT1CPRH				CI	PR				401	
L	3F15h	SMT1CPRL				CI	PR				401	
L	3F14h	SMT1TMRU		TMR								
L	3F13h	SMT1TMRH				TN	/IR				400	
L	3F12h	SMT1TMRL		TMR							400	
	3F11h - 3F00h	_		1		Unimple	emented					
L	3EFFh	ADCLK	—	—				CS			622	
L	3EFEh	ADACT	—	—	—		1	ACT			635	
L	3EFDh	ADREF		NRE	F	1		PI	REF		622	
L	3EFCh	ADSTAT	OV	UTHR	LTHR	MATH	_		STAT		621	
L	3EFBh	ADCON3	—		CALC		SOI		TMD		620	
L	3EFAh	ADCON2	PSIS		CRS		ACLR		MODE	1	619	
L	3EF9h	ADCON1	PPOL	IPEN	GPOL	—	—	_	—	DSEN	618	
L	3EF8h	ADCON0	ON	CONT	_	CS	I	M		GO	617	
L	3EF7h	ADPREH		_	—			PRE			624	
L	3EF6h	ADPREL				PF	RE				624	
L	3EF5h	ADCAP			—			ADCAP			626	
L	3EF4h	ADACQH	—	—	—			ACQ			625	
L	3EF3h	ADACQL				AC	CQ				625	
	3EF2h	—		Unimplemented								
	3EF1h	ADPCH	—	—			Α	DPCH			623	
	3EF0h	ADRESH				RI	ES				628	
	3EEFh	ADRESL				RI	=8				628	
	3EEEh	ADPREVH				PR	EV				630	
•	3EEDh	ADPREVL				PR	EV				630	
•	3EECh	ADRPT				RI	РТ 				626	
L	3EEBh	ADCNT				CI	NT				627	
L	3EEAh	ADACCU				AC	00				631	
	3EE9h	ADACCH				AC					631	

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

43.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

43.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

43.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

43.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 44-4: POWER-DOWN CURRENT (IPD)^(1,2)

PIC18LF26/45/46/55/56K42				Standard Operating Conditions (unless otherwise stated)					
PIC18F26/45/46/55/56K42				Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param.	am				Max.	Max.			Conditions
No.	Symbol	Device Characteristics	win.	тур.т	+85°C	+125°C	Units	VDD	Note
D200	IPD	IPD Base	—	0.07	2	6	μΑ	3.0V	
D200	IPD	IPD Base	_	0.4	4	8	μA	3.0V	
D200A				20	38	42	μΑ	3.0V	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	0.9	3.2	7	μA	3.0V	\bigcirc
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	1.1	3.2	9	μΑ	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.75	5	9	μΑ	3.0V	LP mode
D202	IPD_SOSC	Secondary Oscillator (SOSC)		1.0	6.5	10	/#A	3.0V	LP mode
D203	IPD_FVR	FVR		45	74	75 <	щA	3.0∀	FVRCON = 0x81 or 0x84
D203	IPD_FVR	FVR	_	40	70	76	\μÀ	∕3.0¥	FVRCON = 0x81 or 0x84
D204	IPD_BOR	Brown-out Reset (BOR)	_	9.4	14	_ 18	jųA ∨	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)		9.4	15 <	18	μÀ	\3.0∨	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.2	3	6	μΑ \	∕3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		9.5	14.8	-18	μA	3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		9.7	14.2 ~	17	μA	3.0V	
D207	IPD_ADCA	ADC - Non-Converting		Q.1	2	6	μΑ	3.0V	ADC not converting (4)
D207	IPD_ADCA	ADC - Non-Converting		0.1	A	8	μΑ	3.0V	ADC not converting (4)
D208	IPD_CMP	Comparator	$\overline{\langle}$	33	49	50	μΑ	3.0V	
D208	IPD_CMP	Comparator	_/	30	49	50	μΑ	3.0V	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base lop and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base lop or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

- 3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4: ADC clock source is FRC.

TABLE 44-27: TEMPERATURE INDICATOR REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic		Min.	Typ†	Max.	Units	Conditions
TS01*	ΤΑCQMIN	Minimum ADC Acquisition Time Delay			25	_	μs	
TS02*	M∨	Voltage Sensitivity	High Range	—	-3.684	_	mV/°C	TSRNG = 1
			Low Range	_	-2.456	_	mV/°C	TSRNG = 0

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A: REVISION HISTORY

Revision A (6/2017)

Initial release of the document.

Revision B (12/2017)

Standard operating conditions updated in Section 44.0, Electrical Specifications. Other minor corrections.