

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k42-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

eXtreme Low-Power (XLP) Features

- Sleep mode: 60 nA @ 1.8V, typical
- Windowed Watchdog Timer: 720 nA @ 1.8V, typical
- Secondary Oscillator: 580 nA @ 32 kHz
- Operating Current:
 - 5 uA @ 32 kHz, 1.8V, typical
 - 65 uA/MHz @ 1.8V, typical

Digital Peripherals

- Three 8-Bit Timers (TMR2/4/6) with Hardware Limit Timer (HLT)
 - Hardware monitoring and Fault detection
- Four 16-Bit Timers (TMR0/1/3/5)
- Four Configurable Logic Cell (CLC):
- Integrated combinational and sequential logic
- Three Complementary Waveform Generators (CWGs):
 - Rising and falling edge dead-band control
 - Full-bridge, half-bridge, 1-channel drive
 - Multiple signal sources
 - Programmable dead band
 - Fault-shutdown input
- Four Capture/Compare/PWM (CCP) modules
- Four 10-bit Pulse-Width Modulators (PWMs)
- Numerically Controlled Oscillator (NCO):
- Generates true linear frequency control
- High resolution using 20-bit accumulator and 20-bit increment values
- DSM: Data Signal Modulator
 - Multiplex two carrier clocks, with glitch prevention feature
 - Multiple sources for each carrier
- Programmable CRC with Memory Scan:
 - Reliable data/program memory monitoring for fail-safe operation (e.g., Class B)
 - Calculate CRC over any portion of program memory or data EEPROM
- Two UART Modules:
 - Modules are asynchronous and compatible with RS-232 and RS-485
 - One of the UART modules supports LIN Master and Slave, DMX-512 mode, DALI Gear and Device protocols
 - Automatic and user-timed BREAK period generation
 - DMA Compatible
 - Automatic checksums
 - Programmable 1, 1.5, and 2 Stop bits
 - Wake-up on BREAK reception

- One SPI module:
 - Configurable length bytes
 - Configurable length data packets
 - Receive-without-transmit option
 - Transmit-without-receive option
 - Transfer byte counter
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
- Two I²C modules, SMBus, PMBus™ compatible:
 - Supports Standard-mode (100 kHz), Fastmode (400 kHz) and Fast-mode plus (1 MHz) modes of operation
 - Dedicated Address, Transmit and Receive buffers
 - Bus Collision Detection with arbitration
 - Bus time-out detection and handling
 - Multi-Master mode
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
 - I²C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections
- Device I/O Port Features:
 - 24 I/O pins (PIC18(L)F2xK42)
 - 35 I/O pins (PIC18(L)F4xK42)
 - 43 I/O pins (PIC18(L)F5xK42)
 - One input-only pin (RE3)
 - Individually programmable I/O direction, open-drain, slew rate, weak pull-up control
 - Interrupt-on-change (on up to 25 I/O pins)
- Three External Interrupt Pins
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O
- Signal Measurement Timer (SMT):
 - 24-bit timer/counter with prescaler

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip application notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

PIC18(L)F26/27/45/46/47/55/56/57K42

R	R	R	R	R	R	R	R
1	0	1	0		MJRI	REV<5:2>	
bit 15				•			bit 8
R	R	R	R	R	R	R	R
MJRR	REV<1:0>			MNRR	EV<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	'1' = Bit is set		0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Read as '1010 These bits are	o' fixed with valu	e '1010' for a	Il devices in th	is family.		
bit 11-6	MJRREV<5:0 These bits are etc.) Revision A = 0	>: Major Revisi used to identif	on ID bits y a major revis	sion. A major re	evision is ind	icated by revision	i (A0, B0, C0,
bit 5-0	MNRREV<5:0	>: Minor Revis	ion ID bits				

REGISTER 5-12: REVISION ID: REVISION ID REGISTER

These bits are used to identify a minor revision.

Revision A0 = 0b00 0000

9.7.1 ABORTING INTERRUPTS

If the last instruction before the interrupt controller vectors to the ISR from main routine clears the GIE, PIE or PIR bit associated with the interrupt, the controller executes one force NOP cycle before it returns to the main routine.

Figure 9-10 illustrates the sequence of events when a peripheral interrupt is asserted and then cleared on the last executed instruction cycle.

If the GIE, PIE or PIR bit associated with the interrupt is cleared prior to vectoring to the ISR, then the controller continues executing the main routine.

FIGURE 9-10: INTERRUPT TIMING DIAGRAM - ABORTING INTERRUPTS

						Rev. 10-002269D 7/6/2018
		2	3	4	5	
Instruction Clock						
Program Counter	X	X+2	X+2	X+4	X+6	
Instruction Register		Inst @ X ⁽¹⁾	FNOP	Inst @ X+2	Inst @ X+4	
Interrupt						
Routine	MAII	N	FNOP	X MA	N	\rangle

Note 1: Inst @ X clears the interrupt flag, Example BCF INTCON0, GIE.

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	
—	—	—	—	—	—	CLC4IF	CCP4IF	
bit 7	pit 7						bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				as '0'			
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Res			ther Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set in hardware				
bit 7-2	bit 7-2 Unimplemented: Read as '0'							
bit 1	CLC4IF: CLC4 Interrupt Flag bit							
	1 = Interrupt has occurred (must be cleared by software)							
	0 = Interrupt event has not occurred							
bit 0	CCP4IF: CCP4 Interrupt Flag bit							
	1 = Interrupt	has occurred (i	must be cleare	ed by software)			

REGISTER 9-13: PIR10: PERIPHERAL INTERRUPT REGISTER 10⁽¹⁾

- 0 = Interrupt event has not occurred
- **Note 1:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

TABLE 15-6: EXAMPLE DMA USE CASE TABLE

Source Module	Source Register(s)	Destination Module	Destination Register(s)	DCHxSIRQ	Comment
Signal Measurement Timer	SMTxCPW[U:H:L]	GPR	GPR[x,y,z]	SMTxPWAIF	Store Captured Pulse-width values
(SMT)	SMTxCPR[U:H:L]			SMTxPRAIF	Store Captured Period values
GPR/SFR/Program Flash/Data EEPROM	MEMORY[x,y]	TMR0	TMR0[H:L]	TMR0IF	Use as a Timer0 reload for custom 16-bit value
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	TMR0	PR0	ANY	Update TMR0 frequency based on a specific trigger
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y]	TMR1	TMR1[H:L]	TMR1IF	Use as a Timer1 reload for custom 16-bit value
TMR1	TMR1[H:L]	GPR	GPR[x,y]	TMR1GIF	Use TMR1 Gate interrupt flag to read data out of TMR1 register
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	TMR2	PR2	TMR2IF	
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y,z]	TMR2 CCP or PWM	PR2 CCPR[H:L] or PWMDC[H:L]	ANY	Frequency generator with 50% duty cycle look up table
ССР	CCPR[H:L]	GPR	GPR[x,y]	CCPxIF	Move data from CCP 16b Capture
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y]	CCP	CCPR[H:L]	ANY	Load Compare value or PWM values into the CCP
GPR/SFR/ Program Flash/Data EEPROM	MEMORY [x,y,z,u,v,w]	CCPx CCPy CCPz	CCPxR[H:L] CCPyR[H:L] CCPzR[H:L]	ANY	Update multiple PWM values at the same time e.g. 3-phase motor control
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x,y,z]	NCO	NCOxINC[U:H:L]	ANY	Frequency Generator look-up table
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	DAC	DACxCON0	ANY	Update DAC values
GPR/SFR/ Program Flash/Data EEPROM	MEMORY[x]	OSCTUNE	OSCTUNE	ANY	Automated Frequency dithering

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 15-18: DMAxDSZL: DMAx DESTINATION SIZE LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DSZ<7:0>							
bit 7							bit 0
Logond							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 **DSZ<7:0>:** Destination Message Size bits

REGISTER 15-19: DMAxDSZH: DMAx DESTINATION SIZE HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		DSZ<1	11:8>	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged	

Dit 7-4 Unimplemented: Read as 0	bit 7-4	Unimplemented: Read as '0'
----------------------------------	---------	----------------------------

bit 3-0 DSZ<11:8>: Destination Message Size bits

REGISTER 15-20: DMAxDCNTL: DMAx DESTINATION COUNT LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
DCNT<7:0>							
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged	

bit 7-0 **DCNT<7:0>:** Current Destination Byte Count

© 2017 Microchip Technology Inc.

TABLE 16-11: SUMMARY OF REGISTERS ASSOCIATED WITH I/O (CONTINUED)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽⁵⁾	INLVLC3 ⁽⁵⁾	INLVLC2	INLVLC1	INLVLC0	270
INLVLD ⁽⁶⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1 ⁽⁵⁾	INLVLD0 ⁽⁵⁾	270
INLVLF ⁽⁷⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	270
INLVLE	_	_	_	– – INLVLE3 – – –		_	270		
RB1I2C	_	SLEW	PU<	1:0>	_	_	TH<1:0>		271
RB2I2C	_	SLEW	PU<	1:0>	_	_	TH<	:1:0>	271
RC3I2C	_	SLEW	PU<	1:0>	_	_	TH<1:0>		271
RC4I2C	_	SLEW	PU<	PU<1:0>		_	TH<1:0>		271
RD0I2C ⁽⁶⁾	_	SLEW	PU<	PU<1:0>		_	TH<1:0>		271
RD1I2C ⁽⁶⁾	_	SLEW	PU<	1:0>	_	_	TH<	:1:0>	271

Legend: - = unimplemented location, read as '0'. Shaded cells are not used by I/O Ports.

Note 1:

Bits RB6 and RB7 read '1' while in Debug mode. Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled). Bits RB6 and RB7 read '1' while in Debug mode. 2:

3:

4: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

5: Any peripheral using the I²C pins read the I²C ST inputs when enabled via RxyI2C.

Unimplemented in PIC18(L)F26/27K42. 6:

7: Unimplemented in PIC18(L)F26/27/45/46/47K42 parts.

TABLE 17-2: PPS OUTPUT REGISTER DETAILS

	Bin Brow Output Gaussia						Device	Configurati	on						
RXyPPS<5:0>	Pin Rxy Output Source	PIC	PIC18(L)F26/27K42 PIC18(L)F45/46/47K42					PIC18(L)F55/56/57K42							
0b01 0010 - 0b01 0001	Reserved														
0b01 0000	PWM8	А	_	С	Α	_	_	D	_	Α		—	D	_	—
0b00 1111	PWM7	А	—	С	A	—	С	—		—	—	С			F
0b00 1110	PWM6	А	_	С	А	-	-	D		А	_	—	D		—
0b00 1101	PWM5	А	_	С	А	-	С	-		А	_	—			F
0b00 1100	CCP4	—	В	С	-	В	—	D		—	В	—	D	-	—
0b00 1011	CCP3	—	В	С	_	В	—	D		—	В	—	D		—
0b00 1010	CCP2	—	В	С	_	В	С	—		—	—	С			F
0b00 1001	CCP1	—	В	С	_	В	С	—		—	—	С			F
0b00 1000	CWG1D	-	В	С	_	В	-	D		—	В	—	D		—
0b00 0111	CWG1C	-	В	С	_	В	-	D		—	В	—	D		—
0b00 0110	CWG1B	—	В	С	_	В	—	D		—	В	—	D		—
0b00 0101	CWG1A	—	В	С	_	В	С	—		—	В	С			—
0b00 0100	CLC4OUT	—	В	С	—	В	—	D	-	—	В	—	D	_	—
0b00 0011	CLC3OUT	—	В	С	_	В	—	D		—	В	—	D		—
0600 0010	CLC2OUT	A	_	С	A	_	С	_	_	A	_	—	_	_	F
0600 0001	CLC10UT	А	—	С	А	_	С	—	_	А	—	—	—	—	F
0600 0000	LATxy	А	В	С	A	В	С	D	E	Α	В	С	D	E	F

-							1
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BOI	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
-							
bit 7	NCO1MD: Di	isable NCO1 M	odule bit				
	1 = NCO1 m	nodule disabled					
	0 = NCO1 m	nodule enabled					
bit 6	TMR6MD: Di	sable Timer TM	IR6 bit				
	1 = TMR6 m	nodule disabled					
	0 = TMR6 m	nodule enabled					
bit 5	TMR5MD: Di	sable Timer TM	IR5 bit				
	1 = TMR5 m	nodule disabled					
	0 = TMR5 m	nodule enabled					
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit				
	1 = TMR4 m	nodule disabled					
	0 = TMR4 m	nodule enabled					
bit 3	TMR3MD: Di	sable Timer TM	IR3 bit				
	1 = TMR3 m	nodule disabled					
	0 = TMR3 m	nodule enabled					
bit 2	TMR2MD: Di	sable Timer TM	IR2 bit				
	1 = TMR2 m	odule disabled					
	0 = TMR2 m	odule enabled					
bit 1	TMR1MD: Di	sable Timer TM	IR1 bit				
	1 = TMR1 m	odule disabled					
hit O							
		sable limer IN	IKU DIL				
	$\perp = 1 \text{ MR0 m}$ 0 = TMR0 m						

REGISTER 19-2: PMD1: PMD CONTROL REGISTER 1

FIGURE 25-13:

GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

PIC18(L)F26/27/45/46/47/55/56/57K42

26.9 Dead-Band Jitter

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates jitter in the dead-band time delay. The maximum jitter is equal to one CWG clock period. Refer to Equation 26-1 for more details.

EQUATION 26-1: DEAD-BAND DELAY TIME CALCULATION

 $T_{DEAD-BAND_MIN} = \frac{1}{F_{CWG} CLOCK} \bullet DBx < 4:0>$ $T_{DEAD-BANDMAX} = \frac{1}{F_{CWG} CLOCK} \bullet DBx < 4:0>+1$ $T_{JITTER} = T_{DEAD-BAND_MAX} - T_{DEAD-BAND_MIN}$ $T_{JITTER} = \frac{1}{F_{CWG_CLOCK}}$ $T_{DEAD-BAND_MAX} = T_{DEAD-BAND_MIN} + T_{JITTER}$ EXAMPLE DBR < 4:0> = 0x0A = 10 $F_{CWG_CLOCK} = 8 MHz$ $T_{JITTER} = \frac{1}{8MHz} = 125 \text{ ns}$ $T_{DEAD-BAND_MIN} = 125 \text{ ns}*10 = 125 \text{ µs}$ $T_{DEAD-BAND_MAX} = 1.25 \text{ µs} + 0.125 \text{µs} = 1.37 \text{µs}$

FIGURE 26-14: CWG SHUTDOWN BLOCK DIAGRAM

PIC18(L)F26/27/45/46/47/55/56/57K42

29.10 Register Definitions: ZCD Control

R/W-0/0 U-0 R-x R/W-0/0 U-0 U-0 R/W-0/0 R/W SEN — OUT POL — — INTP IN bit 7								
SEN — OUT POL — — INTP IN bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1 = Zero-cross detect is enabled. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' bit 5 OUT: Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sinking current 0 = ZCD pin is sourcing current 0 = ZCD pin is sinking current bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is inverted 0 = ZCD logic output is inverted 0 = ZCD logic output is not inverted 0 = ZCD logic output is not inverted bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition 0 = ZCDIF bit is set on high-to-low ZCD_output transiti	R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1 = Zero-cross detect is enabled. 0 = Zero-cross detect is enabled. 0 = Zero-cross Detect Data Output bit <u>ZCDPOL bit = 0:</u> 1 = ZCD pin is sourcing current 0 = ZCD pin is not inverted bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is not inverted bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition	SEN	—	OUT	POL	—	_	INTP	INTN
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit x = Bit is unknown bit 6 Unimplemented: Read as '0' bit s ignored when ZCDSEN configuration bit is set. 1 = Zero-cross detect is enabled. o = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' bit 5 OUT: Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD logic output is inverted 5 = ZCD logic output is inverted bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is not inverted bit 3-2 Unimplemented: Read as '0' 5 bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition </td <td>bit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit (</td>	bit 7							bit (
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1 Zero-cross detect is enabled. 0 = Zero-cross detect is enabled. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' Vit Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current Vit Zero-Cross Detect Polarity bit bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is inverted Vit Zero-Cross Detect Polarity bit bit 3-2 Unimplemented: Read as '0' Vit Zero-Cross Detect Positive-Going Edge Interrupt Enable bit bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-how ZCD_output transition								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1 1 = Zero-cross detect is enabled. 0 2ero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' 0 3ero-cross Detect Data Output bit ZCDPOL bit = 0: 1 ZCD poin is sinking current 0 0 = ZCD pin is sinking current 0 2CD poin is sourcing current 0 = ZCD pin is sinking current 0 2CD poin is not inverted bit 4 POL: Zero-Cross Detect Polarity bit 1 1 = ZCD logic output is inverted 0 2CD logic output is inverted bit 3-2 Unimplemented: Read as '0' 1 bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 2CD_ID_UPUT bit 3-2 Unimplemented: Read as '0' 1 bit 1 INTP: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1	Legend:							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1 = Zero-cross detect is enabled. 0 = Zero-cross detect is enabled. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' bit 5 OUT: Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD logic output is inverted 0 = ZCD logic output is not inverted 0 = ZCD logic output is not inverted 0 = ZCD logic output is not inverted 0 = ZCDIF bit is set on low-to-high ZCD_output transition 	R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
bit 7 SEN: Zero-Cross Detect Software Enable bit This bit is ignored when ZCDSEN configuration bit is set. 1= Zero-cross detect is enabled. 0= Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls. bit 6 Unimplemented: Read as '0' bit 5 OUT: Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is soluting current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is inverted 0 = ZCD logic output is inverted 0 = ZCD logic output is not inverted bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition	-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 6 Unimplemented: Read as '0' bit 5 OUT: Zero-Cross Detect Data Output bit $\frac{ZCDPOL \ bit = 0:}{1 = ZCD \ pin \ is \ sourcing \ current} \\ 0 = ZCD \ pin \ is \ sourcing \ current} \\ 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ pin \ is \ sourcing \ current 0 = ZCD \ logic \ output \ is \ inverted 0 = ZCD \ logic \ output \ is \ inverted 0 = ZCD \ logic \ output \ is \ not \ inverted 0 = ZCD \ logic \ output \ is \ not \ inverted bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge \ Interrupt \ Enable \ bit 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 0 = ZCDIF \ bit \ is \ unaffected \ by \ low-to-high \ ZCD_output \ transition bit 0 INTN: Zero-Cross Detect \ Negative-Going \ Edge \ Interrupt \ Enable \ bit 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition bit 0 INTN: Zero-Cross \ Detect \ Negative-Going \ Edge \ Interrupt \ Enable \ bit 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition bit 0 INTN: Zero-Cross \ Detect \ Negative-Going \ Edge \ Interrupt \ Enable \ bit 1 = ZCDIF \ bit \ is \ set \ on \ high-to-low \ ZCD_output \ transition 1 = ZCDIF \ bit \ is \ set \ on \ low-to-low \ ZCD_output \ transition 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 1 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ is \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ set \ on \ low-to-high \ ZCD_output \ transition 2 = ZCDIF \ bit \ set \ on$	bit 7	SEN: Zero-Cr This bit is igno 1= Zero-cro	ross Detect So ored when ZCI oss detect is er	ftware Enable DSEN configu nabled.	bit ration bit is se	t.		rrole
bit 0 UT: Zero-Cross Detect Data Output bit $\frac{ZCDPOL \ bit = 0:}{1 = ZCD \ pin \ is \ sourcing \ current} \\ \frac{ZCDPOL \ bit = 1:}{0 = ZCD \ pin \ is \ sourcing \ current} \\ \frac{ZCDPOL \ bit = 1:}{1 = ZCD \ pin \ is \ sourcing \ current} \\ 0 = ZCD \ pin \ is \ sourcing \ current \\ 0 = ZCD \ pin \ is \ sourcing \ current \\ 0 = ZCD \ logic \ output \ is \ inverted \\ 0 = ZCD \ logic \ output \ is \ inverted \\ 0 = ZCD \ logic \ output \ is \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ not \ inverted \\ 0 = ZCD \ logic \ output \ is \ set \ on \ low-to-high \ ZCD_output \ transition \\ 0 = ZCD \ logic \ output \ is \ set \ on \ high-to-low \ ZCD_output \ transition \\ 0 = ZCD \ logic \ is \ set \ on \ high-to-low \ ZCD_output \ transition \\ 0 = ZCD \ logic \ is \ set \ on \ high-to-low \ ZCD_output \ transition \\ 0 = ZCD \ logic \ is \ set \ on \ high-to-low \ ZCD_output \ transition \\ 0 = ZCD \ logic \ is \ set \ on \ high-to-low \ ZCD_output \ transition \ inverted \ is \ set \ on \ high-to-low \ ZCD_output \ transition \ inverted \ set \ inverted \ inverted \ set \ se$	hit 6		tod: Read as '		on operates at			IOIS.
String ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sinking current bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is inverted 0 = ZCD logic output is inverted 0 = ZCD logic output is not inverted bit 3-2 bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition	bit 5		oss Detect Da	o ta Output bit				
bit 4 POL: Zero-Cross Detect Polarity bit 1 = ZCD logic output is inverted 0 = ZCD logic output is not inverted bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition		$\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$ $\frac{\text{ZCDPOL bit}}{1 = \text{ZCD pin is}}$ $0 = \text{ZCD pin is}$	 0: s sinking curre s sourcing curre 1: s sourcing curre s sinking curre 	nt rent rent nt				
1 = ZCD logic output is inverted 0 = ZCD logic output is not inverted bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition	bit 4	POL: Zero-Cr	oss Detect Po	larity bit				
bit 3-2 Unimplemented: Read as '0' bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition		1 = ZCD logic 0 = ZCD logic	output is inve output is not i	rted nverted				
bit 1 INTP: Zero-Cross Detect Positive-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition	bit 3-2	Unimplement	ted: Read as '	0'				
 1 = ZCDIF bit is set on low-to-high ZCD_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCD_output transition bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition 	bit 1	INTP: Zero-C	ross Detect Po	sitive-Going E	Edge Interrupt	Enable bit		
bit 0 INTN: Zero-Cross Detect Negative-Going Edge Interrupt Enable bit 1 = ZCDIF bit is set on high-to-low ZCD_output transition		1 = ZCDIF bit 0 = ZCDIF bit	is set on low-f is unaffected	o-high ZCD_c by low-to-high	output transitio ZCD_output t	n ransition		
0 = 2CDIF bit is unaffected by high-to-low 2CD_output transition	bit 0	INTN: Zero-C 1 = ZCDIF bit 0 = ZCDIF bit	ross Detect Ne is set on high- is unaffected	egative-Going -to-low ZCD_c by high-to-low	Edge Interrup output transitio ZCD_output t	t Enable bit n ransition		

REGISTER 29-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ZCDCON	SEN	—	OUT	POL	—	_	INTP	INTN	462

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

31.17.1 AUTO-BAUD DETECT

The UART module supports automatic detection and calibration of the baud rate in the 8-bit asynchronous and LIN modes. However, setting ABDEN to start autobaud detection is neither necessary, nor possible in LIN mode because that mode supports auto-baud detection automatically at the beginning of every data packet. Enabling auto-baud detect with the ABDEN bit applies to the asynchronous modes only.

Note:	In DALI Mode, ABDEN is ignored. The
	baud rate needs to be manually set to
	1200 using the BRG registers.

When Auto-Baud Detect (ABD) is active, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U"), which is the Sync character for the LIN bus. The unique feature of this character is that it has five falling edges, including the Start bit edge, five rising edges including the Stop bit edge.

In 8-bit Asynchronous mode, setting the ABDEN bit in the UxCON0 register enables the auto-baud calibration sequence. The first falling edge of the RX input after ABDEN is set will start the auto-baud calibration sequence. While the ABD sequence takes place, the UART state machine is held in idle. On the first falling edge of the receive line, the UxBRG begins counting up using the BRG counter clock as shown in Figure 31-12. The fifth falling edge will occur on the RX pin at the beginning of the bit 7 period. At that time, an accumulated value totaling the proper BRG period is left in the UxBRGH, UxBRGL register pair, the ABDEN bit is automatically cleared and the ABDIF interrupt flag is set. ABDIF must be cleared by software.

RXIDL indicates that the sync input is active. RXIDL will go low on the first falling edge and go high on the fifth rising edge.

The BRG auto-baud clock is determined by the BRGS bit as shown in Table 31-2. During ABD, the internal BRG register is used as a 16-bit counter. However, the UxBRGH and UxBRGL registers retain the previous BRG value until the auto-baud process is successfully completed. While calibrating the baud rate period, the internal BRG register is clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed and is transferred to the UxBRGH and UxBRGL registers when complete.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see <u>Sec-</u> tion <u>31.17.3</u> "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and UART baud rates are not possible.

TABLE 31-2: BRG COUNTER CLOCK RATES

BRGS	BRG Base Clock	BRG ABD Clock
1	Fosc/4	Fosc/32
0	Fosc/16	Fosc/128

FIGURE 31-12: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	0000h		001Ch
RX pin			-Edge #1 -Edge #2 -Edge #3 -Edge #4 Start bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6	Edge #5
BRG Clock		mm		
ABDEN bit	Set by User in 8-bit mode			Auto Cleared
RXIDL				
ABDIF bit (Interrupt)				
UxBRG			XXXXh	001Ch
Note 1:	Auto-baud is sur	ported in LIN a	nd 8-bit asynchronous modes only.	

32.8.3.4 Receiver Overflow and Transmitter Underflow Interrupts

The receiver overflow interrupt triggers if data is received when the RXFIFO is already full and RXR = 1. In this case, the data will be discarded and the RXOIF bit will be set. The receiver overflow interrupt flag is the RXOIF bit of SPIxINTF. The receiver overflow interrupt enable bit is the RXOIE bit of SPIxINTE.

The Transmitter Underflow interrupt flag triggers if a data transfer begins when the TXFIFO is empty and TXR = 1. In this case, the most recently received data will be transmitted and the TXUIF bit will be set. The transmitter underflow interrupt flag is the TXUIF bit of SPIxINTF. The transmitter underflow interrupt enable bit is the TXUIE bit of SPIxINTE.

Both of these interrupts will only occur in Slave mode, as Master mode will not allow the RXFIFO to overflow or the TXFIFO to underflow.

C18(L)F26/27/45/46/47/55/56/57K42

TABLE 41-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register
ACCESS	ACCESS = 0: RAM access bit symbol
BANKED	BANKED = 1: RAM access bit symbol
bbb	Bit address within an 8-bit file register (0 to 7)
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit; d = 0: store result in WREG, d = 1: store result in file register f.
dest	Destination either the WREG register or the specified register file location
f	8-bit Register file address (00h to FFh)
f _n	FSR Number (0 to 2)
f _s	12-bit Register file address (000h to FFFh). This is the source address.
fd	12-bit Register file address (000h to FFFh). This is the destination address.
Zs	7-bit literal offset for FSR2 to used as register file address (000h to FFFh). This is the source address.
zd	7-bit literal offset for FSR2 to used as register file address (000h to FFFh). This is the destination address.
k	Literal field, constant data or label (may be a 6-bit, 8-bit, 12-bit or a 20-bit value)
label	Label name
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions Only used with Table Read and Table Write instructions:
*	No Change to register (such as TBLPTR with Table reads and writes)
*+	Post-Increment register (such as TBLPTR with Table reads and writes)
*-	Post-Decrement register (such as TBLPTR with Table reads and writes)
+*	Pre-Increment register (such as TBLPTR with Table reads and writes)
n	The relative address (2's complement number) for relative branch instructions, or the direct address for Call/Branch and Return instructions
PRODH	Product of Multiply high byte
PRODL	Product of Multiply low byte
S	Fast Call / Return mode select bit. s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or Unchanged
W	W = 0: Destination select bit symbol
WREG	Working register (accumulator)
х	Don't care (0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a Program Memory location)
TABLAT	8-bit Table Latch
TOS	Top of Stack
PC	Program Counter
PCL	Program Counter Low Byte
PCH	Program Counter High Byte
PCLATH	Program Counter High Byte Latch
PCLATU	Program Counter Upper Byte Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer
TO	Time-out bit
PD	Power-down bit
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative
[]	Optional
()	Contents
\rightarrow	Assigned to
L	

PIC18(L)F26/27/45/46/47/55/56/57K42

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3FA1h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE			339
3FA0h	T4CON	ON		CKPS			OL	JTPS		338
3F9Fh	T4PR				PI	R4				337
3F9Eh	T4TMR				TM	R4				337
3F9Dh	T5CLK				С	S				335
3F9Ch	T5GATE				G	SS				316
3F9Bh	T5GCON	GE GPOL GTM GSPM GGO GVAL — —								314
3F9Ah	T5CON	_	_	CK	(PS	—	NOT_SYNC	RD16	ON	338
3F99h	TMR5H				TM	R5H		•		317
3F98h	TMR5L				TM	R5L				317
3F97h	T6RST	_	_	_			RSEL			336
3F96h	T6CLK	_	_	_	—		(CS		315
3F95h	T6HLT	PSYNC	CKPOL	CKSYNC		1	MODE			339
3F94h	T6CON	ON		CKPS			OL	ITPS		338
3F93h	T6PR				PI	76				337
3F92h	T6TMR				TN	R6				337
3F91h - 3F80h	-				Unimple	emented				
3F7Fh	CCP1CAP				C.	rs				352
3F7Eh	CCP1CON	EN	_	OUT	FMT		M	ODE		350
3F7Dh	CCPR1H		RH							
3F7Ch	CCPR1L		RL							
3F7Bh	CCP2CAP				C.	rs				352
3F7Ah	CCP2CON	EN	_	OUT	FMT		M	ODE		350
3F79h	CCPR2H				R	Н				353
3F78h	CCPR2L				R	L				352
3F77h	CCP3CAP				C.	rs				352
3F76h	CCP3CON	EN	_	OUT	FMT		M	ODE		350
3F75h	CCPR3H				R	Н				353
3F74h	CCPR3L				R	L				352
3F73h	CCP4CAP				C	rs				352
3F72h	CCP4CON	EN	_	OUT	FMT		M	ODE		350
3F71h	CCPR4H				R	Н				353
3F70h	CCPR4L				R	L				352
3F6Fh	—				Unimple	emented				
3F6Eh	PWM5CON	EN	_	OUT	POL	_	_		_	358
3F6Dh	PWM5DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F6Dh	PWM5DCH		•		D	C8	•			360
3F6Ch	PWM5DCL	DC1	DC0	_	—	—	_	—	_	360
3F6Ch	PWM5DCL	C)C	_	—	_	_	_	_	360
3F6Bh	_	Unimplemented								
3F6Ah	PWM6CON	EN	_	OUT	POL	_	_	_	_	358
3F69h	PWM6DCH	D	DC9 DC7 DC6 DC5 DC4 DC3 DC2							360
3F69h	PWM6DCH				D	С			1	360
3F68h	PWM6DCL	DC1	DC0	_	—	—	_	_	_	360
3F68h	PWM6DCL	C)C	_	_	_	_	_	_	360
3F67h	—				Unimple	emented	1			

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.