

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k42-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER S	-4: CONFI	GURATION	VORD 2H (3	su uuusn)			
R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
XINST	_	DEBUG	STVREN	PPS1WAY	ZCD	BORV	<1:0>(1)
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '1'	
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	XINST: Extend 1 = Extended 0 = Extended	ed Instruction instruction set instruction set	Set Enable bi and Indexed / and Indexed /	t Addressing moo Addressing moo	de are disable de are enable	d (Legacy mode d	e)
bit 6	Unimplemente	ed: Read as '1	,				
bit 5	DEBUG : Debu 1 = Backgrour 0 = Backgrour	gger Enable bind debugger is nd debugger is	t disabled enabled				
bit 4	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	k Overflow/Un rflow or Under rflow or Under	derflow Reset flow will cause flow will not ca	t Enable bit e a Reset ause a Reset			
bit 3	PPS1WAY: PP 1 = PPSLOCK cycle 0 = PPSLOCK	SLOCKED On ED bit can be o ED bit can be	e-Way Set Er cleared and se set and cleare	nable bit et only once; PP ed multiple time	S registers rer s (subject to t	main locked afte he unlock seque	r one clear/se ence)
bit 2	ZCD : Zero-Cro 1 = ZCD is dis 0 = ZCD is alw	oss Detect Ena abled; ZCD ca vays enabled	ble bit n be enabled	by setting the t	oit SEN of the	ZCDCON regis	ter
bit 1-0	BORV<1:0>: E <u>PIC18FXXK42</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou <u>PIC18LFXXK4</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou	Brown-out Rese <u>Devices:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag <u>2 Device:</u> It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag	et Voltage Sel e (VBOR) is se e (VBOR) is se	ection bits ⁽¹⁾ et to 2.45V et to 2.45V et to 2.7V et to 2.85V et to 1.90V et to 1.90V et to 2.45V et to 2.7V et to 2.85V			

Note 1: The higher voltage setting is recommended for operation at or above 16 MHz.

- - - - - - -

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	—
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EXTOEN: Ext	ternal Oscillato	r Manual Requ	uest Enable bit			
	1 = EXTOS(C is explicitly e	nabled, operat	ing as specified	d by FEXTOSC	;	
hit C			tor Monuel Do				
DILO					ied by OSCEP	O (Register 7)	5)
	0 = HFINTO	SC could be e	nabled by requ	lesting periphe	ral		5)
bit 5	MFOEN: MF	INTOSC (500	kHz/31.25 kHz	z) Oscillator M	Ianual Reques	t Enable bit (Derived from
	HFINTOSC)						
	1 = MFINTC	OSC is explicitly	enabled				
1.11.4			nabled by requ	lesting periphe			
Dit 4		NUSC (31 KHz	2) Uscillator Ma	anual Request	Enable bit		
	1 = LFINTO	SC is explicitly SC could be ei	nabled by requ	estina periphe	ral		
bit 3	SOSCEN: Se	condary Oscill	ator Manual R	equest Enable	bit		
	1 = Seconda	ary Oscillator is	explicitly enal	bled, operating	as specified by	y SOSCPWR	
	0 = Seconda	ary Oscillator c	ould be enable	ed by requestin	g peripheral		
bit 2	ADOEN: ADO	C Oscillator Ma	nual Request	Enable bit			
	1 = ADC oscillation	cillator is explic	itly enabled				
	0 = ADC osci	cillator could be	e enabled by re	equesting perip	neral		
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

FIGURE 21-2: TIMER1/3/5 16-BIT READ/ WRITE MODE BLOCK DIAGRAM From Timer1 Circuitry Set TMR1IF TMR1 TMR1L High Byte on Overflow . 8 Read TMR1L Write TMR1L 8 .8 TMR1H 8 Internal Data Bus

Block Diagram of Timer1 Example of TIMER1/3/5

21.6 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. See Figure 21-4 for timing details.

TABLE 21-2: TIMER1/3/5 GATE ENABLE SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

23.2 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the respective PIR register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

Figure 23-1 shows a simplified diagram of the capture operation.

23.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCPx pin is configured as an output,
	a write to the port can cause a capture
	condition.

The capture source is selected by configuring the CTS<2:0> bits of the CCPxCAP register. Refer to CCPxCAP register (Register 23-3) for a list of sources that can be selected.

23.2.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 21.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			WSEL<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7-5	Unimplemente	ed: Read as '0'					
bit 4-0	WSEL<4:0>: S	MT1 Window Se ∿ed	election bits				
	•						
	•						
	11011 = Reser	ved					
	11010 = CLC4	_out					
	11001 = CLC3	_out					
	10111 = CLC1	_out					
	10110 = ZCD1	_out					
	10101 = CMP2	2_out					
	10100 = CMP1	l_out					
	10011 = Reser	r_out					
	10001 = Reser	ved					
	10000 = PWM	8_out					
	01111 = PWM	7_out					
	01110 = PWM	6_out					
	01100 = CCP4	out					
	01011 = CCP3	_out					
	01010 = CCP2	_out					
	01001 = CCP1	_out					
	01000 = TMRC	posiscaled					
	00110 = TMR2	2 postscaled					
	00100 = CLKR	EF					
	00011 = SOSC						
	00010 = MFIN	105C/16 (32 kH	Z)				
	00000 = SMTx	WINPPS					

REGISTER 25-5: SMT1WIN: SMT1 WINDOW INPUT SELECT REGISTER

REGISTER 25-13: SMT1CPWL: SMT CAPTURED PULSE WIDTH REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMT1C	PW<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all oth			other Resets		

bit 7-0 SMT1CPW<7:0>: Significant bits of the SMT PW Latch – Low Byte

'0' = Bit is cleared

'1' = Bit is set

'1' = Bit is set

REGISTER 25-14: SMT1CPWH: SMT CAPTURED PULSE WIDTH REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	
			SMT1CF	/W<15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				

bit 7-0 SMT1CPW<15:8>: Significant bits of the SMT PW Latch – High Byte

'0' = Bit is cleared

REGISTER 25-15: SMT1CPWU: SMT CAPTURED PULSE WIDTH REGISTER - UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	
SMT1CPW<23:16>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1CPW<23:16>: Significant bits of the SMT PW Latch – Upper Byte

© 2017 Microchip Technology Inc.

-n/n = Value at POR and BOR/Value at all other Resets

q = Value depends on condition

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_		_			ISM<4:0>			
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

REGISTER 26-4: CWGxISM: CWGx INPUT SELECTION REGISTER

bit 7-5 Unimplemented Read as '0'

u = Bit is unchanged

'1' = Bit is set

bit 4-0 ISM<4:0>: CWG Data Input Selection Multiplexer Select bits

x = Bit is unknown

'0' = Bit is cleared

ICM (4:0)	CWG1	CWG2	CWG3
15101<4:0>	Input Selection	Input Selection	Input Selection
11111-10011	Reserved	Reserved	Reserved
10010	CLC4_out	CLC4_out	CLC4_out
10001	CLC3_out	CLC3_out	CLC3_out
10000	CLC2_out	CLC2_out	CLC2_out
01111	CLC1_out	CLC1_out	CLC1_out
01110	DSM_out	DSM_out	DSM_out
01101	CMP2OUT	CMP2OUT	CMP2OUT
01100	CMP1OUT	CMP10UT	CMP1OUT
01011	NCO10UT	NCO10UT	NCO10UT
01010-01001	Reserved	Reserved	Reserved
01000	PWM8OUT	PWM8OUT	PWM8OUT
00111	PWM7OUT	PWM7OUT	PWM7OUT
00110	PWM6OUT	PWM6OUT	PWM6OUT
00101	PWM5OUT	PWM5OUT	PWM5OUT
00100	CCP4_out	CCP4_out	CCP4_out
00011	CCP3_out	CCP3_out	CCP3_out
00010	CCP2_out	CCP2_out	CCP2_out
00001	CCP1_out	CCP1_out	CCP1_out
00000	Pin selected by CWG1PPS	Pin selected by CWG2PPS	Pin selected by CWG3PPS

27.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

27.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 27-2. Data inputs in the figure are identified by a generic numbered input name.

Table 27-1 correlates the generic input name to the actual signal for each CLC module. The column labeled 'DyS<4:0> Value' indicates the MUX selection code for the selected data input. DyS is an abbreviation for the MUX select input codes: D1S<4:0> through D4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 27-3 through Register 27-6).

Note: Data selections are undefined at power-up.

29.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The OUT bit of the ZCDCON register is set when the current sink is active, and cleared when the current source is active. The OUT bit is affected by the polarity bit, even if the module is disabled.

The OUT signal can also be used as input to other modules. This is controlled by the registers of the corresponding module. OUT can be used as follows:

- Gate source for TMR1/3/5
- Clock source for TMR2/4/6
- Reset source for TMR2/4/6

29.3 ZCD Logic Polarity

The POL bit of the ZCDCON register inverts the OUT bit relative to the current source and sink output. When the POL bit is set, a OUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The POL bit affects the ZCD interrupts.

FIGURE 30-2:	On Off Keying	(OOK) Synchron	ization		
Carrier Low (CARL)		<u>.</u>			
Carrier High (CARH)					
Modulator (BIT)	Ż	j	<u>\</u>	<u>/</u>	
CHSYNC = 1 CLSYNC = 0					
CHSYNC = 1 CLSYNC = 1					
CHSYNC = 0 CLSYNC = 0		/_/		X/_/	
CHSYNC = 0 CLSYNC = 1		<u>`</u>		į́_/_/	

FIGURE 30-3: No Synchronization (CHSYNC = 0, CLSYNC = 0)

Carrier High Synchronization (CHSYNC = 1, CLSYNC = 0)

31.2.1.8 Asynchronous Transmission Setup

- Initialize the UxBRGH, UxBRGL register pair and the BRGS bit to achieve the desired baud rate (see Section 31.17 "UART Baud Rate Generator (BRG)").
- 2. Set the MODE<3:0> bits to the desired asynchronous mode.
- 3. Set TXPOL bit if inverted TX output is desired.
- 4. Enable the asynchronous serial port by setting the ON bit.
- 5. Enable the transmitter by setting the TXEN control bit. This will cause the UxTXIF interrupt flag to be set.
- 6. If the device has PPS, configure the desired I/O pin RxyPPS register with the code for TX output.
- 7. If interrupts are desired, set the UxTXIE interrupt enable bit in the respective PIE register. An interrupt will occur immediately provided that the GIE bits in the INTCON0 register are also set.
- 8. Write one byte of data into the UxTXB register. This will start the transmission.
- 9. Subsequent bytes may be written when the UxTXIF bit is '1'.

FIGURE 31-3: ASYNCHRONOUS TRANSMISSION

31.6 DALI Mode (UART1 only)

DALI is a protocol used for intelligent lighting control for building automation. The protocol consists of Control Devices and Control Gear. A Control Device is an application controller that sends out commands to the light fixtures. The light fixture itself is termed as a Control Gear. The communication is done using Manchester encoding, which is performed by the UART hardware.

Manchester encoding consists of the clock and data in a single bit stream. A high-to-low or a low-to-high transition always occurs in the middle of the bit period and is not guaranteed to occur at the bit period boundaries. When the consecutive bits in the bit stream are of the same value i.e. consecutive '1's or consecutive '0's, a transition occurs at the bit boundary. However, when the bit value changes, there is no transition at the bit boundary. According to the standard, a half-bit time is typically 416.7 µs long. A double half-bit time or a single bit is typically 833.3 µs.

The protocol is inherently half-duplex. Communication over the bus occurs in the form of forward and backward frames. Wait times between the frames are defined in the standard to prevent collision between the frames.

A Control Device transmission is termed as the forward frame. In the DALI 2.0 standard, a forward frame can be two or three bytes in length. The two-byte forward frame is used for communication between Control Device and Control Gear whereas the three-byte forward frame is used for communication between Control Devices on the bus. The first byte in the forward frame is the control byte and is followed by either one or two data bytes. The transaction begins when the Control Device starts a transmission. Unlike other protocols, each byte in the frame is transmitted MSB first. Typical frame timing is as shown in Figure 31-8.

During communication between two Control Devices, three bytes are required to be transmitted. In this case, the software must write the third byte to UxTXB as soon as UxTXIF goes True and before the output shifter becomes empty. This ensures that the three bytes of the forward frame are transmitted back-to-back without any interruption.

All Control Gear on the bus receive the forward frame. If the forward frame requires a reply to be sent, one of the Control Gear may respond with a single byte, called the backward frame. The 2.0 standard requires the Control Gear to begin transmission of the backward frame between 5.5 ms to 10.5 ms (~14 to 22 half-bit times) after reception of the forward frame. Once the backward frame is received by the Control Device, it is required to wait a minimum of 2.4 ms (~6 half-bit times). After this wait time, the Control Device is free to transmit another forward frame (see Figure 31-9). A start bit is used to indicate the start of the forward and backward frames. The receiver bit rate is determined by the BRG register. The low period of the start bit is measured and is used as the timing reference for all data bits in the forward and backward frames. The ABDOVF bit is set if the start bit low period causes the measurement counter to overflow. All the bits following the start bit are data bits. The bit stream terminates when no transition is detected in the middle of a bit period (see Figure 31-7).

Forward and backward frames are terminated by two Idle bit periods or Stop bits. Normally, these start in the first bit period of a byte. If both Stop bits are valid, the byte reception is terminated.

If either of the Stop bits is invalid, the frame is tagged as invalid by saving it as a null byte and setting the framing error in the receive FIFO.

A framing error also occurs when no transition is detected on the bus in the middle of a bit period when the byte reception is not complete. In such a scenario, the byte will be saved with the FERIF bit.

31.6.1 CONTROL DEVICE

Control Device mode is configured with the following settings:

- MODE = 0b1000
- TXEN = 1
- RXEN = 1
- UxP1 = Forward frames are held for transmission with this number of half-bit periods after the completion of a forward or backward frame.
- UxP2 = Forward/backward frame threshold delimiter. Any reception that starts this number of half bit periods after the completion of a forward or backward frame is detected as forward frame and sets the PERIF flag of the corresponding received byte.
- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- STP = 0b10 for two Stop bits
- RxyPPS = TX pin selection code
- TX pin TRIS control = 0
- ON = 1.

A forward frame is initiated by writing the control byte to the UxTXB register. After sending the control byte, each data byte must be written to the UxTXB register as soon as UxTXIF goes true. It is necessary to perform every write after UxTXIF goes true, to ensure that the transmit buffer is ready to accept the byte. Each write must also occur before the TXMTIF bit goes true, to ensure that the bit stream of forward frame is generated without an interruption.

REGISTER 36-18: ADRESH: ADC RESULT REGISTER HIGH, FM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRES	S<11:4>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 **ADRES<11:4>**: ADC Result Register bits Upper eight bits of 12-bit conversion result.

REGISTER 36-19: ADRESL: ADC RESULT REGISTER LOW, FM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
	ADRES	6<3:0>		—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 ADRES<3:0>: ADC Result Register bits. Lower four bits of 12-bit conversion result.

bit 3-0 Reserved

FIGURE 38-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

ΒZ		Branch i	Branch if Zero						
Synta	ax:	BZ n							
Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$						
Oper	ation:	if ZERO bi (PC) + 2 +	if ZERO bit is '1' (PC) + 2 + 2n \rightarrow PC						
Statu	is Affected:	None							
Enco	oding:	1110	0000	nnr	nn nnnn				
Description: If the ZERO bit is '1', then the progravity will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is ther 2-cycle instruction.									
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q C If Ju	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	Read literal 'n'	Proc Da	ess ta	Write to PC				
	No operation	No operation	N opera	o ation	No operation				
lf No	o Jump:								
	Q1	Q2	Q	3	Q4				
	Decode	Read literal 'n'	Proc Da	ess ta	No operation				
<u>Exan</u>	nple:	HERE	BZ	Jump					
	Before Instruc PC After Instructio If ZERO PC If ZERO	tion = a on = 1; = a = 0;	ddress ddress	(HERE) (Jump)					
	PC	= a	Juless	HERE	+ 2)				

CAL	CALL Subroutine Call							
Synta	ax:	CALL k {,	s}					
Oper	ands:	$\begin{array}{l} 0 \leq k \leq 104 \\ s \in [0,1] \end{array}$	8575					
Oper	ation:	$\begin{array}{l} (PC) + 4 \to TOS, \\ k \to PC{<}20{:}1{>}, \\ if s = 1 \\ (W) \to WS, \\ (Status) \to STATUSS, \\ (BSR) \to BSRS \end{array}$						
Statu	is Affected:	None						
Enco 1st w 2nd v	oding: /ord (k<7:0>) word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kk kkkl	.k kkkk ₀ k kkkk ₈			
	memory range. First, return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, Status and BS registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1							
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'<7:0>,	PUSH F stac	PC to k	Read literal 'k'<19:8>, Write to PC			
	No	No	No)	No			
	operation	operation	operation operation		operation			
Exan	Example: HERE CALL THERE, 1							

Before Instruction PC

After Instruction

PC TOS WS BSRS

=

=

=

= = STATUSS = address (HERE)

address (THERE)

Status

address (HERE + 4) W BSR

© 2017 Microchip Technology Inc.

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
Ľ.	388Dh	FSR2L_SHAD				FSF	R2L				125
Ľ.	388Ch	FSR1H_SHAD	_	_			F	SR1H			125
Ľ.	388Bh	FSR1L_SHAD		FSR1L — FSR0H FSR0L — — PCU					125		
Ľ.	388Ah	FSR0H_SHAD	_	_			F	SR0H			125
Ľ.	3889h	FSR0H_SHAD — — FSR0H FSR0L_SHAD FSR0L FSR0L PCLATU_SHAD — — PCLATH_SHAD — PCH						125			
Ľ.	3888h	PCLATU_SHAD	_	_	_			PCU			125
Ľ.	3887h	PCLATH_SHAD		PCH							125
Ľ.	3886h	BSR_SHAD	_	_	BSR						
Ľ.	3885h	WREG_SHAD			WREG						
Ľ.	3884h	STATUS_SHAD	_	TO	PD	Ν	OV	Z	DC	С	125
	3883h	SHADCON	_	_	_	_	_	—	—	SHADLO	168
Ľ.	3882h	BSR_CSHAD	_	_				BSR			57
Ľ.	3881h	WREG_CSHAD				WR	EG				57
I	3880h	STATUS_C- SHAD	_	TO	PD	Ν	OV	Z	DC	С	57
	387Fh - 3800h	_				Unimple	menteds				

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-9: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

d Operating								
Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
cillator								
F _{ECL}	Clock Frequency	—	_	500	kHz			
T _{ECL_DC}	Clock Duty Cycle	40	—	60	%			
ECM Oscillator								
F _{ECM}	Clock Frequency	—		8	MHz			
T _{ECM_DC}	Clock Duty Cycle	40 [°]		60	%			
cillator				$\overline{}$				
F _{ECH}	Clock Frequency	$- \nu$	<u> </u>	64	MHz			
T _{ECH_DC}	Clock Duty Cycle	40	$\langle - \rangle$	60	%			
lator		$\int \mathcal{A}$	$\overline{\ }$					
F _{LP}	Clock Frequency	\langle / \rangle		100	kHz	Note 4		
lator			>					
F _{XT}	Clock Frequency	<u> </u>	_	4	MHz	Note 4		
llator	\sim	$\overline{}$						
F _{HS}	Clock Frequency	_	_	20	MHz	Note 4		
Secondary Oscillator								
F_{SEC}	Clock Frequency	32.4	32.768	33.1	kHz			
Oscillator								
F _{OSC}	System Clock Frequency	—	—	64	MHz	(Note 2, Note 3)		
	Operating Sym. iillator F _{ECL} T _{ECL_DC} cillator F _{ECM} T _{ECM_DC} cillator F _{ECH} T _{ECM_DC} cillator F _{ECH} T _{ECH_DC} lator F _{LP} lator F _{HS} rry Oscillator F _{SEC} Oscillator F _{SEC}	Sym. Characteristic iillator F_{ECL} Clock Frequency T_{ECL_DC} Clock Duty Cycle cillator F_{ECM} Clock Frequency T_{ECM_DC} Clock Duty Cycle cillator F_{ECM} Clock Frequency T_{ECM_DC} Clock Duty Cycle cillator F_{ECH} Clock Frequency T_{ECH_DC} Clock Duty Cycle cillator F_{LP} Clock Frequency F_{LP} Clock Frequency lator F_{XT} Clock Frequency lator F_{XT} Clock Frequency lator F_{HS} Clock Frequency ory Oscillator F_{SEC} Clock Frequency F_{SEC} Clock Frequency $Oscillator$	Sym. Characteristic Min. Sillator FECL Clock Frequency — TECL_DC Clock Duty Cycle 40 Cillator FECM Clock Frequency — TECM_DC Clock Frequency — — TECM_DC Clock Frequency — — TECM_DC Clock Frequency — — TECH_DC Clock Frequency — — FECH Clock Frequency — — FECH Clock Frequency — — FECH_DC Clock Duty Cycle 40 Iator — — — FLP Clock Frequency — — Iator — — — — FXT Clock Frequency — — — Iator — — — — — FHS Clock Frequency — — — — Istor — — — — — — SEC Clock Frequency —	Sym. Characteristic Min. Typ† iillator F _{ECL} Clock Frequency — — T _{ECL_DC} Clock Duty Cycle 40 — cillator FECM Clock Frequency — — T _{ECL_DC} Clock Duty Cycle 40 — — cillator FECM Clock Duty Cycle 40 — T _{ECM_DC} Clock Duty Cycle 40 — — cillator FECH Clock Frequency — — rECH_DC Clock Duty Cycle 40 — — cillator FLP Clock Frequency — — fLP Clock Frequency — — — lator — — — — fLator — — — — lator — — — — rsgc Clock Frequency — — — rsgc Clock Frequency 32.4 32.768 Oscillator Fosc System Clock Frequency —	Operating Conditions (unless otherwise stated)Sym.CharacteristicMin.Typ†Max.iillator F_{ECL} Clock Frequency 60 T_{ECL_DC} Clock Duty Cycle40- 60 cillator F_{ECM} Clock Frequency 8 T_{ECM_DC} Clock Duty Cycle40- 60 cillator 8 7_{ECM_DC} Clock Duty CyclefecHClock Frequency 64 T_{ECH_DC} Clock Duty Cycle40- 60 cillator 64 - 60 cillator 64 T_{ECH_DC} Clock Duty Cycle40- 60 lator20 F_{LP} Clock Frequency 20 ry Oscillator20ry Oscillator 64 FoscSystem Clock Frequency	Operating Conditions (unless otherwise stated)Sym.CharacteristicMin.Typ†Max.UnitsFECLClock Frequency 500 kHzTECL_DCClock Duty Cycle40- 60 %Clock Frequency8MHZTECM_DCClock Duty Cycle40- 60 %Clock Duty Cycle40- 60 %Clock Duty Cycle40- 60 %Clock Duty Cycle40- 60 %Clock Duty Cycle40- 60 %Ilator 64 MHzFECHClock Frequency 40 FLPClock Frequency 40 FLPClock Frequency 4 Iator 4 MHzIator20MHzIator20MHzFHSClock Frequency 20 MHzIator 20 MHzFrequency 20 MHzIator 20 MHzFSECClock Frequency 64 MHzOscillator 64 MHz		

These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 44.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 10.0 "Power-Saving Operation Modes".

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-156A Sheet 1 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP] With Thermal Tab

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	0.50 BSC			
Optional Center Tab Width	X2		3.50	
Optional Center Tab Length	Y2		3.50	
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2183A