

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k42t-i-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

eXtreme Low-Power (XLP) Features

- Sleep mode: 60 nA @ 1.8V, typical
- Windowed Watchdog Timer: 720 nA @ 1.8V, typical
- Secondary Oscillator: 580 nA @ 32 kHz
- Operating Current:
 - 5 uA @ 32 kHz, 1.8V, typical
 - 65 uA/MHz @ 1.8V, typical

Digital Peripherals

- Three 8-Bit Timers (TMR2/4/6) with Hardware Limit Timer (HLT)
 - Hardware monitoring and Fault detection
- Four 16-Bit Timers (TMR0/1/3/5)
- Four Configurable Logic Cell (CLC):
- Integrated combinational and sequential logic
- Three Complementary Waveform Generators (CWGs):
 - Rising and falling edge dead-band control
 - Full-bridge, half-bridge, 1-channel drive
 - Multiple signal sources
 - Programmable dead band
 - Fault-shutdown input
- Four Capture/Compare/PWM (CCP) modules
- Four 10-bit Pulse-Width Modulators (PWMs)
- Numerically Controlled Oscillator (NCO):
- Generates true linear frequency control
- High resolution using 20-bit accumulator and 20-bit increment values
- DSM: Data Signal Modulator
 - Multiplex two carrier clocks, with glitch prevention feature
 - Multiple sources for each carrier
- Programmable CRC with Memory Scan:
 - Reliable data/program memory monitoring for fail-safe operation (e.g., Class B)
 - Calculate CRC over any portion of program memory or data EEPROM
- Two UART Modules:
 - Modules are asynchronous and compatible with RS-232 and RS-485
 - One of the UART modules supports LIN Master and Slave, DMX-512 mode, DALI Gear and Device protocols
 - Automatic and user-timed BREAK period generation
 - DMA Compatible
 - Automatic checksums
 - Programmable 1, 1.5, and 2 Stop bits
 - Wake-up on BREAK reception

- One SPI module:
 - Configurable length bytes
 - Configurable length data packets
 - Receive-without-transmit option
 - Transmit-without-receive option
 - Transfer byte counter
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
- Two I²C modules, SMBus, PMBus™ compatible:
 - Supports Standard-mode (100 kHz), Fastmode (400 kHz) and Fast-mode plus (1 MHz) modes of operation
 - Dedicated Address, Transmit and Receive buffers
 - Bus Collision Detection with arbitration
 - Bus time-out detection and handling
 - Multi-Master mode
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
 - I²C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections
- Device I/O Port Features:
 - 24 I/O pins (PIC18(L)F2xK42)
 - 35 I/O pins (PIC18(L)F4xK42)
 - 43 I/O pins (PIC18(L)F5xK42)
 - One input-only pin (RE3)
 - Individually programmable I/O direction, open-drain, slew rate, weak pull-up control
 - Interrupt-on-change (on up to 25 I/O pins)
- Three External Interrupt Pins
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O
- Signal Measurement Timer (SMT):
 - 24-bit timer/counter with prescaler

TABLE 4-2: PROGRAM FLASH MEMORY PARTITION

		Partition ⁽³⁾					
Region	Address	BBEN = 1 SAFEN = 1	<u>BBEN</u> = 1 SAFEN = 0	<u>BBEN</u> = 0 SAFEN = 1	BBEN = 0 SAFEN = 0		
	00 0000h • • • Last Boot Block Memory Address			BOOT BLOCK	BOOT BLOCK		
Program Flash Memory	Last Boot Block Memory Address ⁽¹⁾ + 1 • • • Last Program Memory Address ⁽²⁾ - 100h	APPLICATION BLOCK	BLOCK	APPLICATION	APPLICATION BLOCK		
	Last Program Memory Address ⁽²⁾ – FEh ⁽⁴⁾ ••• Last Program Memory Address ⁽²⁾		STORAGE AREA FLASH	BLOCK	STORAGE AREA FLASH		

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0>, see Table 5-1.

2: For Last Program Memory Address, see Table 4-1.

3: Refer to Register 5-7: Configuration Word 4L for BBEN and SAFEN definitions.

4: Storage area Flash is implemented as the last 128 Words of User Flash.

4.3 Register Definitions: Stack Pointer

REGISTER 4-1: TOSU: TOP OF STACK UPPER BYTE

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TOS<20:16>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bi		bit	U = Unimplem	nented	C = Clearable	e only bit	
-n = Value at P	t POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 TOS<20:16>: Top of Stack Location bits

REGISTER 4-2: TOSH: TOP OF STACK HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	TOS<15:8>						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TOS<15:8>: Top of Stack Location bits

REGISTER 4-3: TOSL: TOP OF STACK LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	TOS<7:0>						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	C = Clearable only bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TOS<7:0>:** Top of Stack Location bits

		<u> </u>					
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMROIE: TMI	R0 Interrupt Er	able bit				
	1 = Enabled	I					
bit 6		l Interrunt Enal	ole hit				
	1 = Enabled						
	0 = Disabled	l					
bit 5	U1EIE: UAR	T1 Framing Err	or Interrupt Er	nable bit			
	1 = Enabled						
L:1 4				- 1-14			
DIT 4		R11 Transmit Ir	iterrupt Enable	e bit			
	0 = Disabled	l					
bit 3	U1RXIE: UA	RT1 Receive Ir	iterrupt Enable	e bit			
	1 = Enabled						
	0 = Disabled						
bit 2	12C1EIE: 1 ² C	1 Error Interrup	ot Enable bit				
	1 = Enabled	I					
hit 1		Interrunt Enab	le hit				
bit i	1 = Enabled						
	0 = Disabled	l					
bit 0	12C1TXIE: 1 ² 0	C1 Transmit Int	errupt Enable	bit			
	1 = Enabled						
	0 = Disabled						

REGISTER 9-17: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

14.12 Register Definitions: CRC and Scanner Control

Long bit name prefixes for the CRC and Scanner peripherals are shown below. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

Peripheral	Bit Name Prefix	
CRC	CRC	

REGISTER 14-1: CRCCON0: CRC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R-0	R/W-0/0	U-0	U-0	R/W-0/0	R-0
EN	GO	BUSY	ACCM	—	_	SHIFTM	FULL
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: CRC Enable bit 1 = CRC module is enabled 0 = CRC is disabled
bit 6	GO: CRC Go bit 1 = Start CRC serial shifter 0 = CRC serial shifter turned off
bit 5	BUSY: CRC Busy bit 1 = Shifting in progress or pending 0 = All valid bits in shifter have been shifted into accumulator
bit 4	ACCM: Accumulator Mode bit 1 = Data is concatenated with zeros 0 = Data is not concatenated with zeros
bit 3-2	Unimplemented: Read as '0'
bit 1	SHIFTM: Shift Mode bit 1 = Shift right (LSb) 0 = Shift left (MSb)
bit 0	FULL: Data Path Full Indicator bit 1 = CRCDATH/L registers are full 0 = CRCDATH/L registers have shifted their data into the shifter

REGISTER 14-2: CRCCON1: CRC CONTROL REGISTER 1

Denotes the length of the polynomial -1 (See Example 14-1)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	DLEN	\< 3:0>			PLEN	<3:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value at	POR and BOR/	/alue at all other	Resets	
'1' = Bit is set '0' = Bit is cleared							
bit 7-4	DLEN<3:0>: [Data Length bits					
	Denotes the le	ength of the data	word -1 (See Ex	kample 14-1)			
bit 3-0	PLEN<3:0>: Polynomial Length bits						

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
LADR<7:0>(1, 2)										
bit 7							bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 14-14: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER

bit 7-0 LADR<7:0>: Scan Start/Current Address bits^(1, 2) Least Significant bits of the current address to be fetched from, value increments on each fetch of memory

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-15: SCANHADRU: SCAN HIGH ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
—	—		HADR<21:16>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

on plenented. Read as 0

bit 5-0 HADR<21:16>: Scan End Address bits^(1, 2)

Upper bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

15.9.2 DESTINATION STOP

When the Destination Stop bit is set (DSTP = 1) and the DMAxDCNT register reloads, the DMA clears the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMAxDCNTIF flag.

	0	11/-/						5 11							,	001		T	
	(1)	2	3	4	(5)	6	0	8	0	10	11	12	13	14	15	16	1)	18	Rav. 10
Instruction Clock																			nn
EN																			
SIRQEN																			
Source Hardware																			
DGO																			
DMAxSPTR			0x100	1) 0x	101	Χ		0x100		X	0x10	1)			0x100)	
DMAxDPTR	\langle		0x200	1) 0x	201	Χ		0x202		Х	0x20	3			0x200)	
DMAxSCNT	\langle		2			Χ	1	χ		2		X	1				2		
DMAxDCNT	$\langle $		4			Χ	3	Χ		2		X	1				4		
DMA STATE		IDLE		SR ⁽¹⁾	DW ⁽²⁾) SR ⁽¹⁾	DW ⁽²⁾	(IDLE		SR ⁽¹⁾) DW ⁽²⁾	SR ⁽¹⁾	DW ⁽²⁾			IDLE		
DMAxSCNTIF																			
DMAxDCNTIF																			
_																			
DMAxSSA 0x100 DMAxDSA 0x200																			
DMAxSSZ 0x2 DMAxDSZ 0x4																			
Note 4. Cr		uraa [Jood																
NOTE 1: SP	r - 301	urce F	kead																
2: D\	W - De	estinat	tion \	Nrite	•														

15.9.3 CONTINUOUS TRANSFER

Г

When the Source or the Destination stop bit is cleared (SSTP, DSTP = 0), the transactions continue unless cleared by the user. The DMAxSCNTIF and DMAxDCNTIF flags are set whenever the respective counter registers are reloaded.

	FIGURE 15-7:	GPR-GPR TRANSACTIONS WITH HARDWARE TRIGGERS, SSTP, DSTP =	0
--	--------------	---	---

Instruction Clock		0 0 0 100000000000000000000000000000000						2) 29 111111		Rev. 16-00075D 9/15/2015
EN										
SIRQEN Source Hardware										
Trigger DGO										
DMAxSPTR	0x100	0x101	0x100	0×101	0x100	0×101	0x100	0x101	0x100	1
DMAxDPTR	0x200	0x201	0x202	0x203	0x200	0x201	0x202	0x203	0x202	
DMAxSCNT	2	1	2	1	2) 1 (2	1	2	1
DMAxDCNT	4	3	2	1	4	3	2	1)	2	
DMA STATE		V ⁽²⁾ SR ⁽¹⁾ DW ⁽²⁾	IDLE SR ⁽¹⁾ DW ⁽¹⁾	² SR ⁽¹⁾ DW ⁽²		2 SR ⁽¹⁾ DW ⁽²⁾		² SR ⁽¹⁾ DW ⁽²	IDLE	
DMAxSCNTIF_			1							
DMAxDCNTIF _										
DMAxSSA 0x100 DMAxDSA 0x200										
	DMAxSSZ 0x2 DMAxDSZ 0x4									
Note 1:	: SR - Source	Read								
2:	DW - Destin	ation Writ	e							

31.2.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error flag bit. A framing error indicates that the Stop bit was not seen at the expected time. The framing error flag is accessed via the FERIF bit in the UxERRIR register. The FERIF bit represents the frame status of the top unread character of the receive FIFO. Therefore, the FERIF bit must be read before reading UxRXB.

The FERIF bit is read-only and only applies to the top unread character of the receive FIFO. A framing error (FERIF = 1) does not preclude reception of additional characters. It is neither necessary nor possible to clear the FERIF bit directly. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERIF bit is cleared when the character at the top of the FIFO does not have a framing error or when all bytes in the receive FIFO have been read. Clearing the ON bit resets the receive FIFO, thereby also clearing the FERIF bit.

A framing error will generate a summary UxERR interrupt when the FERIE bit in the UxERRIE register is set. The summary error is reset when the FERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When FERIE is set, UxRXIF interrupts are suppressed when FERIF is '1'.

31.2.2.5 Receiver Parity Modes

Even and odd parity is automatically detected when the MODE<3:0> bits are set to '0011' and '0010', respectively. Parity modes receive eight data bits and one parity bit for a total of nine bits for each character. The PERIF bit in the UXERRIR register represents the parity error of the top unread character of the receive FIFO rather than the parity bit itself. The parity error must be read before reading the UXRXB register advances the FIFO.

A parity error will generate a summary UxERR interrupt when the PERIE bit in the UxERRIE register is set. The summary error is reset when the PERIF bit of the top of the FIFO is '0' or when all FIFO characters have been retrieved.

When PERIE is set, UxRXIF interrupts are suppressed when PERIF is '1'.

31.2.2.6 Receive FIFO Overflow

When more characters are received than the receive FIFO can hold, the RXFOIF bit in the UxERRIR register is set. The character causing the overflow condition is discarded. The RUNOVF bit in the UxCON2 register determines how the receive circuit responds to characters while the overflow condition persists. When RUNOVF is set, the receive shifter stays synchronized to the incoming data stream by responding to Start, data, and Stop bits. However, all received bytes not already in the FIFO are discarded. When RUNOVF is cleared, the receive shifter ceases operation and Start. data, and Stop bits are ignored. The receive overflow condition is cleared by reading the UxRXB register and clearing the RXFOIF bit. If the UxRXB register is not read to open a space in the FIFO, the next character received will be discarded and cause another overflow condition.

A receive overflow error will generate a summary UxEIF interrupt when the RXFOIE bit in the UxERRIE register is set.

31.2.2.7 Asynchronous Reception Setup

- Initialize the UxBRGH, UxBRGL register pair and the BRGS bit to achieve the desired baud rate (see Section 31.17 "UART Baud Rate Generator (BRG)").
- 2. Configure the RXPPS register for the desired RX pin
- 3. Clear the ANSEL bit for the RX pin (if applicable).
- 4. Set the MODE<3:0> bits to the desired asynchronous mode.
- 5. Set the RXPOL bit if the data stream is inverted.
- 6. Enable the serial port by setting the ON bit.
- 7. If interrupts are desired, set the UxRXIE bit in the PIEx register and the GIE bits in the INTCON0 register.
- 8. Enable reception by setting the RXEN bit.
- 9. The UxRXIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the UxRXIE interrupt enable bit is also set.
- 10. Read the UxERRIR register to get the error flags.
- 11. Read the UxRXB register to get the received byte.
- 12. If an overrun occurred, clear the RXFOIF bit.

31.3 Asynchronous Address Mode

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems.

When Asynchronous Address mode is enabled, all data is transmitted and received as 9-bit characters. The 9th bit determines whether the character is an address or data. When the 9th bit is set, the eight Least Significant bits are the address. When the 9th bit is clear, the Least Significant bits are data. In either case, the 9th bit is stored in PERIF when the byte is written to the receive FIFO. When PERIE is also set, the RXIF will be suppressed, thereby suspending DMA transfers allowing software to process the received address.

An address character will enable all receivers that match the address and disable all other receivers. Once a receiver is enabled, all non-address characters will be received until an address character is received that does not match.

31.3.1 ADDRESS MODE TRANSMIT

The UART transmitter is enabled for asynchronous address operation by configuring the following control bits:

- TXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RxyPPS = code for desired output pin
- ON = 1

Addresses are sent by writing to the UxP1L register. This transmits the written byte with the 9th bit set, which indicates that the byte is an address.

Data is sent by writing to the UxTXB register. This transmits the written byte with the 9th bit cleared, which indicates that the byte is data.

To send data to a particular device on the transmission bus, first transmit the address of the intended device. All subsequent data will be accepted only by that device until an address of another device is transmitted.

Writes to UxP1L take precedence over writes to UxTXB. When both the UxP1L and UxTXB registers are written while the TSR is busy, the next byte to be transmitted will be from UxP1L.

To ensure that all data intended for one device is sent before the address is changed, wait until the TXMTIF bit is high before writing UxP1L with the new address.

31.3.2 ADDRESS MODE RECEIVE

The UART receiver is enabled for asynchronous address operation by configuring the following control bits:

- RXEN = 1
- MODE<3:0> = 0100
- UxBRGH:L = desired baud rate
- RXPPS = code for desired input pin
- Input pin ANSEL bit = 0
- UxP2L = receiver address
- UxP3L = address mask
- ON = 1

In Address mode, no data will be transferred to the input FIFO until a valid address is received. This is the default state. Any of the following conditions will cause the UART to revert to the default state:

- ON = 0
- RXEN = 0
- · Received address does not match

When a character with the 9th bit set is received, the Least Significant eight bits of that character will be qualified by the values in the UxP2L and UxP3L registers.

The byte is XOR'd with UxP2L then AND'd with UxP3L. A match occurs when the result is 0h, in which case, the unaltered received character is stored in the receive FIFO, thereby setting the UxRXIF interrupt bit. The 9th bit is stored in the corresponding PERIF bit, identifying this byte as an address.

An address match also enables the receiver for all data such that all subsequent characters without the 9th bit set will be stored in the receive FIFO.

When the 9th bit is set and a match does not occur, the character is not stored in the receive FIFO and all subsequent data is ignored.

The UxP3L register mask allows a range of addresses to be accepted. Software can then determine the subaddress of the range by processing the received address character.

PIC18(L)F26/27/45/46/47/55/56/57K42

U-0	U-0	U-0	U-0	U-0 U-0		U-0	R/W-0/0			
_	—	—	—	—	—	—	P2<8>			
bit 7							bit C			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is se	et	'0' = Bit is cle	ared							
bit 7-6	bit 7-6 Unimplemented: Read as '0'									
hit O	D2 40 - Most Cignificant Dit of December 2									

REGISTER 31-14: UxP2H: UART PARAMETER 2 HIGH REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 0	P2<8>: Most Significant Bit of Parameter 2
	DMX mode:
	Most Significant bit of first address of receive block
	DALI mode:
	Most Significant bit of number of half-bit periods of idle time in Forward Frame detection threshold
	Other modes:
	Not used

REGISTER 31-15: UxP2L: UART PARAMETER 2 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| P2<7:0> | | | | | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

P2<7:0>: Least Significant Bits of Parameter 2

 DMX mode:

 Least Significant Byte of first address of receive block

 LIN Slave mode:

 Number of data bytes to transmit

 DALI mode:

 Least Significant Byte of number of half-bit periods of idle time in Forward Frame detection threshold

 Asynchronous Address mode:

 Receiver address

 Other modes:

 Not used

REGISTER 31-18: UxTXCHM	UART TRANSMIT CHECKSUM RESULT	REGISTER
-------------------------	-------------------------------	----------

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			TXCH	K<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-0	TXCHK<7:0	>: Checksum ca	lculated from	TX bytes					

Dit 7-0	IXCHK<7:U>: Checksum calculated from TX bytes
	LIN mode and COEN = 1:
	Sum of all transmitted bytes including PID
	LIN mode and COEN = 0:
	Sum of all transmitted bytes except PID
	All other modes and C0EN = 1:
	Sum of all transmitted bytes since last clear
	All other modes and COEN = 0:
	Not used

REGISTER 31-19: UxRXCHK: UART RECEIVE CHECKSUM RESULT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
RXCHK<7:0>									
bit 7 bit									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	RXCHK<7:0>: Checksum calculated from RX bytes						
	LIN mode and COEN = 1:						
	Sum of all received bytes including PID						
	LIN mode and COEN = 0:						
	Sum of all received bytes except PID						
	All other modes and C0EN = 1:						
	Sum of all received bytes since last clear						
	All other modes and C0EN = 0:						
	Not used						

33.1 I²C Features

- Inter-Integrated Circuit (I²C) interface supports the following modes in hardware:
 - Master mode
 - Slave mode with byte NACKing
 - Multi-Master mode
- · Dedicated Address, Receive and Transmit buffers
- · Up to four Slave addresses matching
- General Call address matching
- 7-bit and 10-bit addressing with masking
- Start, Restart, Stop, Address, Write, and ACK Interrupts
- Clock Stretching hardware for:
 - RX Buffer Full
 - TX Buffer Empty
 - After Address, Write, and ACK
- Bus Collision Detection with arbitration
- Bus Timeout Detection
- SDA hold time selection
- I²C, SMBus 2.0, and SMBus 3.0 input level selections

33.2 I²C Module Overview

The I²C module provides a synchronous interface between the microcontroller and other I²C-compatible devices using the two-wire I²C serial bus. Devices communicate in a master/slave environment. The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one. Every transaction on the I²C bus has to be initiated by the Master.

Figure 33-2 shows a typical connection between a master and more than one slave.

FIGURE 33-2: I²C MASTER/SLAVE CONNECTIONS

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTE	R 33-6: I2CxS	TATO: PC ST	ATUS REGI	STER 0					
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0		
BFRE ⁽³	sma	MMA	R ^(1, 2)	D	_	_	_		
bit 7	·						bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets		
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are set HC =	Hardware clea	r		
bit 7	 bit 7 BFRE: Bus Free Status bit⁽³⁾ 1 = Indicates the I²C bus is idle Both SCL and SDA have been high for time-out selected by I2CCON2<bfret<1:0>> bits. I2CCLK must select a valid clock source for this bit to function.</bfret<1:0> 0 = Bus not idle (When no I2CCLK is selected, this bit remains clear) 								
bit 6	SMA: Slave M 1 = Set after Set after Set after after a p 0 = Cleared b Cleared	 SMA: Slave Module Active Status bit 1 = Set after the 8th falling SCL edge of a received matching 7-bit slave address Set after the 8th falling SCL edge of a received matching 10-bit slave low address Set after the 8th falling SCL edge of a received matching 10-bit slave low address, only after a previous matching high and low w/ write. 0 = Cleared by any Restart/Stop detected on the bus Cleared by BTOLE and BCL is conditions. 							
bit 5	MMA: Master 1 = Master M Set when 0 = Master s Cleared y Cleared y	 MMA: Master Module Active Status bit 1 = Master Mode state machine is active Set when master state machine asserts a Start on bus 0 = Master state machine is idle Cleared when BCLIF is set Cleared when Stop is shifted out by master. 							
bit 4	R: Read Information bit ^(1, 2) 1 = Indicates the last matching received (high) address was a Read request 0 = Indicates the last matching received (high) address was a Write								
bit 3	D: Data bit 1 = Indicates 0 = Indicates	the last byte re the last byte re	eceived or tra eceived or tra	nsmitted was d nsmitted was a	lata in address				
bit 2-0	Unimplemen	ted: Read as 1	' b0						
Note 1: 2: 3:	This bit holds the F the Master or appe Clock requests and Software must use	R bit information earing on the bit d input from I20 the EN bit to fi	n following the us without a n CxCLK registe orce Master c	e last received natch do not af er are disabled or Slave hardwa	address match. fect this bit. in Slave modes are to idle.	Addresses tra	nsmitted by		

Mnemonic,		Description	Quality	16-	Bit Inst	ruction	Status	Natas	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	INSTRU	CTIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	1
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	1
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	1
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	1
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	1
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	1
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	1
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	1
CALL	n, s	Call subroutine 1st word	2	1110	110s	nnnn	nnnn	None	2
		2nd word		1111	nnnn	nnnn	nnnn		
GOTO	n	Go to address 1st word	2	1110	1111	nnnn	nnnn	None	2
	—	2nd word		1111	nnnn	nnnn	nnnn		
CALLW	—	W -> PCL and Call subroutine	2	0000	0000	0001	0100	None	1
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	1
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	None	1
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	1
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	1
INHERENT	INSTRU	CTIONS							
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	None	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation	1	1111	XXXX	XXXX	XXXX	None	2
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	None	

TABLE 41-2: INSTRUCTION SET (CONTINUED)

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is executed as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

3: f_s and f_d do not cover the full memory range. 2 MSBs of bank selection are forced to 'b00 to limit the range of these instructions to lower 4k addressing space.

PIC18(L)F26/27/45/46/47/55/56/57K42

RCALL	Relative C	Call		RESET	Reset				
Syntax:	RCALL n			Syntax:	RESET	RESET			
Operands:	-1024 ≤ n ≤	1023		Operands:	None				
Operation:	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC			Operation:	Reset all re affected by	egi <u>sters a</u> nd fla a MCLR Rese	gs that are et.		
Status Affected:	None	None			All				
Encoding:	1101	1nnn nni	nn nnnn	Encoding:	0000	0000 111	11 1111		
Description:	Description: Subroutine call with a jump up to 1K from the current location. First, return		Description:	This instruction execute a l	tion provides a MCLR Reset b	a way to y software.			
	address (PC + 2) is pushed onto the			Words:	1				
	number '2n	, add the $2 s c$ to the PC. Sir	complement	Cycles:	1				
	have increm	nented to fetch	n the next	Q Cycle Activity	:				
	instruction,	the new addre	ess will be	Q1	Q2	Q3	Q4		
	2-cycle inst	ruction.	lion is a	Decode	Start	No	No		
Words:	1				Reset	operation	operation		
Cycles:	2			Example:	סדפדת				
Q Cvcle Activity:				<u>Example</u> .	RESEI				
Q1	Q2	Q3	Q4	After Instruc Registe	rtion ers = Reset \	on s = Reset Value			
Decode	Read literal 'n'	Process Data	Write to PC	Flags*	= Reset \	/alue			
	PUSH PC to stack								
No	No	No	No						
operation	operation	operation	operation						

Example: HERE RCALL Jump

> Before Instruction PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

© 2017 Microchip Technology Inc.

Preliminary

PIC18(L)F26/27/45/46/47/55/56/57K42

SUBULNK Subtract Literal from FSR2 and Return

Synta	ax: S	SUBULNK k							
Oper	ands: 0	$0 \le k \le 63$							
Oper	ation: F	$FSR2 - k \rightarrow FSR2$							
	($TOS) \rightarrow P$	С						
Statu	s Affected: N	lone							
Enco	ding:	1110	100)1	11kk	kkkk			
Desc	Description: The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary (11')); it operates only on FSP2								
Word	ls: 1								
Cycle	es: 2								
QC	ycle Activity:								
	Q1	Q2			Q3	Q4			
	Decode	Rea	d er 'f'	Pro	ocess Data	Write to destination			
	No	No			No	No			

Example: SUBULNK 23h

Operation

Operation

Operation

Operation

Before Instruction								
FSR2	=	03FFh						
PC	=	0100h						
After Instruction	on							
FSR2	=	03DCh						
PC	=	(TOS)						

TABLE 44-15: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

<mark>Operating Conditions (unless otherwise stated)</mark> VDD = 3.0V, TA = 25°C, TAD = 1μs									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution	—		12	bit	\land		
AD02	EIL	Integral Error	_	±0.1	±2.0	LSb	ADCREF+ = 3.0V, ADCREF- $\neq 0$		
AD03	Edl	Differential Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= ρV		
AD04	EOFF	Offset Error	_	0.5	6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD05	Egn	Gain Error	_	±0.2	±6.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V			
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V			
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	1	—	kΩ			
AD09	RVREF	ADC Voltage Reference Ladder Impedance	_	50	_	kΩ	Note 3		

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B