

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k42-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 7-9: FSCM BLOCK DIAGRAM

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 7-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the FRQ bits and the NDIV/CDIV bits. The bit flag OSFIF of the respective PIR register is set. Setting this flag will generate an interrupt if the OSFIE bit of the respective PIR register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

9.8 Interrupt Setup Procedure

1. When using interrupt priority levels, set the IPEN bit in INTCON0 register and then select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPRx Control register.

Note:	At a device	e Rese	et, the	IPF	Rx regi	isters are		
	initialized,	such	that	all	user	interrupt		
	sources are assigned to high priority.							

- 2. Clear the Interrupt Flag Status bit associated with the peripheral in the associated PIRx Status register.
- 3. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate PIEx Control register.
- If the vector table is used (MVECEN = 1), then setup the start address for the Interrupt Vector Table using the IVTBASE register. See Section 9.2.2 "Interrupt Vector Table Contents".
- 5. Once the IVTBASE is written to, set the Interrupt enable bits in INTCON0 register.
- 6. An example of setting up interrupts and ISRs using assembly and C can be found in Examples 9-3 and 9-4.

9.9 External Interrupt Pins

The PIC18(L)F26/27/45/46/47/55/56/57K42 devices have three external interrupt sources which can be assigned to any pin on different ports based on the PPS settings. Refer Section 17.0 "Peripheral Pin Select (PPS) Module" for possible rerouting options. The external interrupt sources are edge-triggered. If the corresponding INTxEDG bit in the INTCON0 register is set (= 1), the interrupt is triggered by a rising edge. If the bit is clear, the trigger is on the falling edge.

When a valid edge appears on the INTx pin, the corresponding flag bit, INTxF in the PIRx registers, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit, INTxF, must be cleared by software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE/GIEH, is set, the processor will branch to the interrupt vector following wake-up. Interrupt priority is determined by the value contained in the interrupt priority bits, INT0IP, INT1IP and INT2IP of the IPRx registers.

9.10 Wake-up from Sleep

The interrupt controller provides a wake-up request to the CPU whenever an interrupt event occurs, if the interrupt event is enabled. This occurs regardless of whether the part is in Run, Idle/Doze or Sleep modes. The status of the GIEH/GIEL bits has no effect on the wake-up request. The wake-up request will be asynchronous to all clocks.

9.11 Interrupt Compatibility

When the MVECEN bit in Configuration Word 2L is cleared (Register 5-3), the Interrupt Vector Table feature is disabled and interrupts are compatible with previous high performance 8-bit PIC18 microcontroller devices. In this mode, the Interrupt Vector Table priority has no effect.

When the IPEN bit is also cleared, the interrupt priority feature is disabled and interrupts are compatible with PIC[®]16 microcontroller mid-range devices. All interrupts branch to address 0008h since the interrupt priority is disabled.

FIGURE 13-8: TABLE WRITES TO PROGRAM FLASH MEMORY

13.1.6.1 Program Flash Memory Write Sequence

The sequence of events for programming an internal program memory location should be:

- 1. Read appropriate number of bytes into RAM. Refer to Table 5-4 for Write latch size.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the n-byte block into the holding registers with auto-increment. Refer to Table 5-4 for Write latch size.
- 7. Set REG<1:0> bits to point to program memory.
- 8. Clear FREE bit and set WREN bit in NVMCON1 register.
- 9. Disable interrupts.
- 10. Execute the unlock sequence (see Section 13.1.4 "NVM Unlock Sequence").
- 11. WR bit is set in NVMCON1 register.
- 12. The CPU will stall for the duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 13-4.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

14.2 CRC Functional Overview

The CRC module can be used to detect bit errors in the program memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 14-1: CRC EXAMPLE

22.7 Register Definitions: Timer2/4/6 Control

Long bit name prefixes for the Timer2/4/6 peripherals are shown in Table 22-2. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 22-2: OPERATING MODES

Peripheral	Bit Name Prefix
Timer2	T2
Timer4	T4
Timer6	Т6

REGISTER 22-1: TxCLK: TIMERx CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		CS<	3:0>	
bit 7							bit 0

Legend:

-		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CS<3:0>: Timerx Clock Selection bits

00 (0.0)	T2TMR	TMR4	TMR6
CS<3:0>	Clock Source	Clock Source	Clock Source
1111	Reserved	Reserved	Reserved
1110	CLC4_out	CLC4_out	CLC4_out
1101	CLC3_out	CLC3_out	CLC3_out
1100	CLC2_out	CLC2_out	CLC2_out
1011	CLC1_out	CLC1_out	CLC1_out
1010	ZCD_OUT	ZCD_OUT	ZCD_OUT
1001	NCO10UT	NCO10UT	NCO10UT
1000	CLKREF_OUT	CLKREF_OUT	CLKREF_OUT
0111	SOSC	SOSC	SOSC
0110	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)
0101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
0100	LFINTOSC	LFINTOSC	LFINTOSC
0011	HFINTOSC	HFINTOSC	HFINTOSC
0010	Fosc	Fosc	Fosc
0001	Fosc/4	Fosc/4	Fosc/4
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS

	-			-			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CKPOL	CKSYNC			MODE<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared				
bit 7	PSYNC: Time	erx Prescaler S	ynchronizatio	n Enable bit ^{(1, 2}	2)		
	1 = TxTMR	Prescaler Outpu	ut is synchroni	zed to Fosc/4	- / 4		
1.1.0		Prescaler Outpi	ut is not synch		C/4		
DIT 6	1 = Falling e	erx Clock Polar	ity Selection t	ol[(°)			
	0 = Rising e	dge of input clo	ck clocks time	r/prescaler			
bit 5	CKSYNC: Ti	merx Clock Syr	hchronization I	Enable bit ^(4, 5)			
	1 = ON regis	ster bit is synch	ronized to T21	MR_clk input			
	0 = ON regis	ster bit is not sy	nchronized to	T2TMR_clk inp	but		
bit 4-0	MODE<4:0>	: Timerx Contro	I Mode Select	ion bits ^(6,7)			
	See Table 22-	-1 for all operatir	ng modes.				
Note 1:	Setting this bit er	nsures that read	ling TxTMR w	ill return a valid	l data value.		
2:	When this bit is '	1', Timer2 cann	ot operate in S	Sleep mode.			
3:	CKPOL should n	ot be changed	while ON = 1.				
4:	Setting this bit er	nsures glitch-fre	e operation w	hen the ON is e	enabled or disa	bled.	
5:	When this bit is s set.	et then the time	er operation wi	Il be delayed by	y two TxTMR ir	put clocks afte	er the ON bit is
6:	Unless otherwise affecting the value	e indicated, all ie of TxTMR).	modes start u	upon ON = 1 a	nd stop upon (ON = 0 (stops	occur without

REGISTER 22-6: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		CSEL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Reset			
'1' = Bit is set '0' = Bit is cleared q = Value depends on				pends on condi	tion		
bit 7-3	Unimplemen	ted: Read as '	0'				

REGISTER 25-4: SMT1CLK: SMT CLOCK SELECTION REGISTER

bit 2-0	CSEL<2:0>: SMT Clock Selection bits
	111 = Reference Clock Output
	110 = SOSC
	101 = MFINTOSC/16 (32 kHz)
	100 = MFINTOSC (500 kHz)

011 = LFINTOSC

010 = HFINTOSC 16 MHz

001 = Fosc

000 = Fosc/4

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	pends on condit	ion	
bit 7	OVRD: Steer	ring Data D bit					
bit 6	OVRC: Steer	ring Data C bit					
bit 5	OVRB: Steer	ring Data B bit					
bit 4	OVRA: Steer	ring Data A bit					
bit 3	STRD: Steer	ing Enable bit D)(2)				
	1 = CWGxD	output has the	CWG data inp	ut waveform wi	th polarity contr	ol from POLD I	oit
	0 = CWGxD	output is assigr	ned to value of	OVRD bit			
bit 2	STRC: Steer	ing Enable bit C	₎ (2)				
	1 = CWGxC	output has the	CWG data inp	ut waveform wi	th polarity contr	ol from POLC I	oit
	0 = CWGxC	output is assigr	ned to value of	OVRC bit			
bit 1	STRB: Steer	ing Enable bit E	3(2)				
	1 = CWGxB	output has the (CWG data inpu	ut waveform wi	th polarity contr	ol from POLB b	bit
	0 = CWGxB	output is assign	ed to value of	OVRB bit			
bit 0	STRA: Steer	ing Enable bit A	(2)				
	1 = CWGxA	output has the (CWG data inpu	ut waveform wi	th polarity contr	ol from POLA b	pit
	0 = CWGxA	output is assign	ed to value of	OVRA bit			
Note 1: Th	ne bits in this reg	gister apply only	when MODE	<2:0> = 00x (F	Register 26-1, St	eering modes)	

REGISTER 26-5: CWGxSTR⁽¹⁾: CWG STEERING CONTROL REGISTER

2: This bit is double-buffered when MODE<2:0> = 001.

27.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

27.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 27-2. Data inputs in the figure are identified by a generic numbered input name.

Table 27-1 correlates the generic input name to the actual signal for each CLC module. The column labeled 'DyS<4:0> Value' indicates the MUX selection code for the selected data input. DyS is an abbreviation for the MUX select input codes: D1S<4:0> through D4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 27-3 through Register 27-6).

Note: Data selections are undefined at power-up.

31.5 LIN Modes (UART1 only)

LIN is a protocol used primarily in automotive applications. The LIN network consists of two kinds of software processes: a Master process and a Slave process. Each network has only one Master process and one or more Slave processes.

From a physical layer point of view, the UART on one processor may be driven by both a Master and a Slave process, as long as only one Master process exists on the network.

A LIN transaction consists of a Master process followed by a Slave process. The Slave process may involve more than one Slave where one is transmitting and the other(s) are receiving. The transaction begins by the following Master process transmission sequence:

- 1. Break
- 2. Delimiter bit
- 3. Sync Field
- 4. PID byte

The PID determines which Slave processes are expected to respond to the Master. When the PID byte is complete, the TX output remains in the Idle state. One or more of the Slave processes may respond to the Master process. If no one responds within the interbyte period, the Master is free to start another transmission. The inter-byte period is timed by software using a means other than the UART.

The Slave process follows the Master process. When the Slave software recognizes the PID then that Slave process responds by either transmitting the required response or by receiving the transmitted data. Only Slave processes send data. Therefore, Slave processes receiving data are receiving that of another Slave process.

When a Slave sends data, the Slave UART automatically calculates the checksum for the transmitted bytes as they are sent and appends the inverted checksum byte to the slave response.

When a Slave receives data, the checksum is accumulated on each byte as it is received using the same algorithm as the sending process. The last byte, which is the inverted checksum value calculated by the sending process, is added to the locally calculated checksum by the UART. The check passes when the result is all '1's, otherwise the check fails and the CERIF bit is set.

Two methods for computing the checksum are available: legacy and enhanced. The legacy checksum includes only the data bytes. The enhanced checksum includes the PID and the data. The C0EN control bit in the UxCON2 register determines the checksum method. Setting C0EN to '1' selects the enhanced method. Software must select the appropriate method before the Start bit of the checksum byte is received.

31.5.1 LIN MASTER/SLAVE MODE

The LIN Master mode includes capabilities to generate Slave processes. The Master process stops at the PID transmission. Any data that is transmitted in Master/ Slave mode is done as a Slave process. LIN Master/ Slave mode is configured by the following settings:

- MODE<3:0> = 1100
- **TXEN =** 1
- RXEN = 1
- UxBRGH:L = Value to achieve desired baud rate
- TXPOL = 0 (for high Idle state)
- STP = desired Stop bits selection
- C0EN = desired checksum mode
- RxyPPS = TX pin selection code
- TX pin TRIS control = 0
- ON = 1

Note: The TXEN bit must be set before the Master process is received and remain set while in LIN mode whether or not the slave process is a transmitter.

39.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 39-1. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 39-1:

Peripheral	Bit Name Prefix		
HLVD	HLVD		

REGISTER 39-1: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	—	OUT	RDY	—	—	INTH	INTL
bit 7	•						bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 EN: High/Low-voltage Detect Power Enable bit 1 = Enables HLVD, powers up HLVD circuit and supporting reference circuitry 0 = Disables HLVD, powers down HLVD and supporting circuitry
bit 6	Unimplemented: Read as '0'
bit 5	OUT: HLVD Comparator Output bit
	 1 = Voltage ≤ selected detection limit (HLVDL<3:0>) 0 = Voltage ≥ selected detection limit (HLVDL<3:0>)
bit 4	RDY: Band Gap Reference Voltages Stable Status Flag bit
	 1 = Indicates HLVD Module is ready and output is stable 0 = Indicates HLVD Module is not ready
bit 3-2	Unimplemented: Read as '0'
bit 1	INTH: HLVD Positive going (High Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≥ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set
bit 0	INTL: HLVD Negative going (Low Voltage) Interrupt Enable
	 1 = HLVDIF will be set when voltage ≤ selected detection limit (SEL<3:0>) 0 = HLVDIF will not be set

bit 7	bit 0

REGISTER 39-2: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits Refer to Table 44-14 for voltage detection limits.

TABLE 39-2: SUMMARY OF REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	-	OUT	RDY	-	-	INTH	INTL	657
HLVDCON1	-	-	-	-		658			

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

AN	DWF	AND W w	ith f		В	•	Branch if			
Synt	tax:	ANDWF	f {,d {,a}}		Sy	ntax:	BC n			
Ope	rands:	$0 \leq f \leq 255$			Op	erands:	-128 ≤ n ≤ 1	127		
		$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$			Op	peration:	if CARRY b (PC) + 2 +	it is '1' 2n → PC		
Ope	ration:	(W) .AND. ((f) \rightarrow dest		Sta	atus Affected:	None			
Stat	us Affected:	N, Z			En	codina:	1110	0010 nn	nn nnnn	
Enc	oding:	0001	01da ff:	ff ffff	De	scription.	If the CARE	Y hit is '1' the	en the program	
Des	cription:	The conten register 'f'. I in W. If 'd' is in register 'f If 'a' is '0', tt If 'a' is '1', tt GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 41.2.3 Oriented Ir eral Offset	e contents of W are AND'ed with jister 'f'. If 'd' is '0', the result is stored N. If 'd' is '1', the result is stored back register 'f' (default). a' is '0', the Access Bank is selected. a' is '1', the BSR is used to select the 'R bank. a' is '0' and the extended instruction t is enabled, this instruction operates Indexed Literal Offset Addressing ode whenever f \leq 95 (5Fh). See Sec- in 41.2.3 "Byte-Oriented and Bit- iented Instructions in Indexed Lit- al Offset Mode" for details		Wa Cy Q If	ords: cles: Cycle Activity: Jump: Q1	 will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2) Q2 Q3 Q4 			
Wor	ds:	1				Decode	read literal	Data	write to PC	
Cycl	es:	1				No	No	No	No	
QC	Cycle Activity:					operation	operation	operation	operation	
	Q1	Q2	Q3	Q4	lf 1	No Jump: Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process Data	Write to destination		Decode	Read literal 'n'	Process Data	No operation	
<u>Exa</u>	mple: Before Instruc W REG After Instructio W	ANDWF ettion = $17h$ = $C2h$ on = $02h$ - $C2h$	REG, 0, 0		Ex	ample: Before Instruc PC After Instructi If CARR PC If CARR	HERE ction = ad on Y = 1; Y = 0	BC 5 dress (HERE dress (HERE) + 12)	
	REG	= C2n				PC	= 0, = ad	dress (HERE	+ 2)	

RRN	ICF	Rotate Right f (No Carry)							
Synta	ax:	RRNCF	f {,	d {,a}}					
Oper	ands:	0 ≤ f ≤ 2 d ∈ [0,1 a ∈ [0,1	255]]						
Oper	ation:	(f <n>) – (f<0>) –</n>	→ des → des	t <n 1<br="" –="">t<7></n>	>,				
Statu	is Affected:	N, Z							
Enco	oding:	0100	(0da	fff	f	ffff		
Desc	sription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected (default), overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.							
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2		Q3			Q4		
	Decode	Read	۰F	Proce	ess	V dob	Vrite to		
		register	1	Dat	a	ue	Sunation		
Exan	<u>nple 1</u> :	RRNCF	RE	G, 1,	0				
	Before Instruc REG After Instructio REG	tion = 110 on = 111	1 01 0 10	11 11					
Exan	nple 2:	RRNCF	RE	G, 0,	0				
	Before Instruc	tion							
	W	= ?							
	REG After Instructio	= 110 on	1 01	11					
	₩ REG	= 111 = 110	0 10 1 01	11 11					

SET	F	Set f							
Svnta	ax:	SETF f{	SETE f(a)						
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$0 \le f \le 255$ $a \in [0,1]$						
Oper	ation:	$FFh\tof$							
Statu	s Affected:	None	None						
Enco	ding:	0110	100a	fff	f	ffff			
Desc	ription:	The conter are set to F If 'a' is '0', ' If 'a' is '1', ' GPR bank. If 'a' is '0' a set is enab in Indexed mode when tion 41.2.3 Oriented I eral Offset	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- oral Offset Mode" for details						
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3		Q4			
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'			

Example:	SETF		REG,	1
Before Instruction	on			
REG	=	5Ah		
After Instruction				
REG	=	FFh		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3F66h	PWM7CON	EN	_	OUT	POL	—	—	—	—	358
3F65h	PWM7DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F65h	PWM7DCH				D	С				360
3F64h	PWM7DCL	DC1	DC0	—	—	—	—	—	—	360
3F64h	PWM7DCL	DC		—	—	—	—	—	—	360
3F63h	—				Unimple	emented				
3F62h	PWM8CON	EN	_	OUT	POL	—	—	—	—	358
3F61h	PWM8DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F61h	PWM8DCH				D	С				360
3F60h	PWM8DCL	DC1	DC0	—	—	—	—	_	—	360
3F60h	PWM8DCL	D	С	_	_	_	—		_	360
3F5Fh	CCPTMRS1	P8T	SEL	P7T	SEL	P6	TSEL	P5	TSEL	359
3F5Eh	CCPTMRS0	C4T	SEL	C3T	SEL	C2 ⁻	TSEL	C1	TSEL	359
3F5Dh - 3F5Bh	—				Unimple	emented				
3F5Ah	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F59h	CWG1AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F58h	CWG1AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F57h	CWG1CON1	—		IN	—	POLD	POLC	POLB	POLA	425
3F56h	CWG1CON0	EN	LD	—	—	—		MODE		424
3F55h	CWG1DBF	—	_				DBF			431
3F54h	CWG1DBR	—	_				DBR			431
3F53h	CWG1ISM	—	_	—	—			IS		427
3F52h	CWG1CLK	—	_	—	—	—	—	—	CS	426
3F51h	CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F50h	CWG2AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F4Fh	CWG2AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F4Eh	CWG2CON1	—		IN	—	POLD	POLC	POLB	POLA	425
3F4Dh	CWG2CON0	EN	LD	—	—	—		MODE		424
3F4Ch	CWG2DBF	—	_				DBF			431
3F4Bh	CWG2DBR	—	_				DBR			431
3F4Ah	CWG2ISM	—	_	—	—			IS		427
3F49h	CWG2CLK	—	_	—	_	_	_		CS	426
3F48h	CWG3STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F47h	CWG3AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F46h	CWG3AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F45h	CWG3CON1	—	_	IN	—	POLD	POLC	POLB	POLA	425
3F44h	CWG3CON0	EN	LD	—	—	—		MODE		424
3F43h	CWG3DBF	—					DBF			431
3F42h	CWG3DBR	—					DBR			431
3F41h	CWG3ISM	—		—	_			IS		427
3F40h	CWG3CLK	—	—	—	—	—	—	—	CS	426
3F3Fh	NCO1CLK		PWS		—		0	CKS		454
3F3Eh	NCO1CON	EN	_	OUT	POL	—	—	—	PFM	453
3F3Dh	NCO1INCU				IN	IC				457
3F3Ch	NCO1INCH				IN	IC				456
3F3Bh	NCO1INCL				IN	IC				456

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 45-1: High Range Temperature Indicator Voltage Sensitivity Across Temperature

FIGURE 45-2: Low Range Temperature Indicator Voltage Sensitivity Across Temperature

FIGURE 45-3: Temperature Indicator Performance Over Temperature

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N		44		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2