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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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7.4 Fail-Safe Clock Monitor
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM is enabled by setting the FCMEN bit in the
Configuration Words. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, ECL/M/H and
Secondary Oscillator).

FIGURE 7-9: FSCM BLOCK DIAGRAM 

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 7-9. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the external
clock goes low.

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the
COSC bits to select HFINTOSC (3'b110). The
frequency of HFINTOSC would be determined by the
previous state of the FRQ bits and the NDIV/CDIV bits.
The bit flag OSFIF of the respective PIR register is set.
Setting this flag will generate an interrupt if the OSFIE
bit of the respective PIR register is also set. The device
firmware can then take steps to mitigate the problems
that may arise from a failed clock. The system clock will
continue to be sourced from the internal clock source
until the device firmware successfully restarts the
external oscillator and switches back to external
operation, by writing to the NOSC and NDIV bits of the
OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the NOSC
and NDIV bits of the OSCCON1 register. When
switching to the external oscillator or PLL, the OST is
restarted. While the OST is running, the device
continues to operate from the INTOSC selected in
OSCCON1. When the OST times out, the Fail-Safe
condition is cleared after successfully switching to the
external clock source. The OSCFIF bit should be
cleared prior to switching to the external clock source.
If the Fail-Safe condition still exists, the OSCFIF flag
will again become set by hardware.External
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9.8 Interrupt Setup Procedure
1. When using interrupt priority levels, set the IPEN

bit in INTCON0 register and then select the
user-assigned priority level for the interrupt
source by writing the control bits in the
appropriate IPRx Control register.

2. Clear the Interrupt Flag Status bit associated
with the peripheral in the associated PIRx Status
register.

3. Enable the interrupt source by setting the
interrupt enable control bit associated with the
source in the appropriate PIEx Control register.

4. If the vector table is used (MVECEN = 1), then
setup the start address for the Interrupt Vector
Table using the IVTBASE register. See Section
9.2.2 “Interrupt Vector Table Contents”.

5. Once the IVTBASE is written to, set the Interrupt
enable bits in INTCON0 register.

6. An example of setting up interrupts and ISRs
using assembly and C can be found in
Examples 9-3 and 9-4.

9.9 External Interrupt Pins
The PIC18(L)F26/27/45/46/47/55/56/57K42 devices
have three external interrupt sources which can be
assigned to any pin on different ports based on the PPS
settings. Refer Section 17.0 “Peripheral Pin Select
(PPS) Module” for possible rerouting options. The
external interrupt sources are edge-triggered. If the
corresponding INTxEDG bit in the INTCON0 register is
set (= 1), the interrupt is triggered by a rising edge. If
the bit is clear, the trigger is on the falling edge.

When a valid edge appears on the INTx pin, the
corresponding flag bit, INTxF in the PIRx registers, is
set. This interrupt can be disabled by clearing the
corresponding enable bit, INTxE. Flag bit, INTxF, must
be cleared by software in the Interrupt Service Routine
before re-enabling the interrupt.

All external interrupts (INT0, INT1 and INT2) can wake-
up the processor from Idle or Sleep modes if bit INTxE
was set prior to going into those modes. If the Global
Interrupt Enable bit, GIE/GIEH, is set, the processor
will branch to the interrupt vector following wake-up.
Interrupt priority is determined by the value contained
in the interrupt priority bits, INT0IP, INT1IP and INT2IP
of the IPRx registers.

9.10 Wake-up from Sleep
The interrupt controller provides a wake-up request to
the CPU whenever an interrupt event occurs, if the
interrupt event is enabled. This occurs regardless of
whether the part is in Run, Idle/Doze or Sleep modes.
The status of the GIEH/GIEL bits has no effect on the
wake-up request. The wake-up request will be
asynchronous to all clocks.

9.11 Interrupt Compatibility
When the MVECEN bit in Configuration Word 2L is
cleared (Register 5-3), the Interrupt Vector Table
feature is disabled and interrupts are compatible with
previous high performance 8-bit PIC18 microcontroller
devices. In this mode, the Interrupt Vector Table priority
has no effect.

When the IPEN bit is also cleared, the interrupt priority
feature is disabled and interrupts are compatible with
PIC®16 microcontroller mid-range devices. All
interrupts branch to address 0008h since the interrupt
priority is disabled.

Note: At a device Reset, the IPRx registers are
initialized, such that all user interrupt
sources are assigned to high priority.
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FIGURE 13-8: TABLE WRITES TO PROGRAM FLASH MEMORY 

13.1.6.1 Program Flash Memory Write 
Sequence

The sequence of events for programming an internal
program memory location should be:

1. Read appropriate number of bytes into RAM.
Refer to Table 5-4 for Write latch size.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the block erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write the n-byte block into the holding registers
with auto-increment. Refer to Table 5-4 for Write
latch size.

7. Set REG<1:0> bits to point to program memory.

8. Clear FREE bit and set WREN bit in NVMCON1
register.

9. Disable interrupts.

10. Execute the unlock sequence (see Section
13.1.4 “NVM Unlock Sequence”).

11. WR bit is set in NVMCON1 register.

12. The CPU will stall for the duration of the write
(about 2 ms using internal timer).

13. Re-enable interrupts.

14. Verify the memory (table read).

This procedure will require about 6 ms to update each
write block of memory. An example of the required code
is given in Example 13-4.

TABLAT 

TBLPTR = xxxxYY(1)TBLPTR = xxxx01TBLPTR = xxxx00

Write Register

TBLPTR = xxxx02

Program   Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note 1: Refer to Table 5-4 for number of holding registers (e.g., YY = 3F for 64 holding registers).

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
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14.2 CRC Functional Overview
The CRC module can be used to detect bit errors in the
program memory using the built-in memory scanner or
through user input RAM memory. The CRC module can
accept up to a 16-bit polynomial with up to a 16-bit seed
value. A CRC calculated check value (or checksum)
will then be generated into the CRCACC<15:0>
registers for user storage. The CRC module uses an
XOR shift register implementation to perform the
polynomial division required for the CRC calculation.

EXAMPLE 14-1: CRC EXAMPLE      
Rev. 10-000206A

1/8/2014

CRC-16-ANSI

x16 + x15 + x2 + 1 (17 bits)

CRCXORH = 0b10000000
CRCXORL = 0b0000010- (1)

Standard 16-bit representation = 0x8005

Data Sequence:
0x55, 0x66, 0x77, 0x88

Check Value (ACCM = 1):

SHIFTM = 0: 0x32D6
CRCACCH = 0b00110010
CRCACCL = 0b11010110

SHIFTM = 1: 0x6BA2
CRCACCH = 0b01101011
CRCACCL = 0b10100010

DLEN = 0b0111
PLEN = 0b1111

Data entered into the CRC:
SHIFTM = 0:

01010101 01100110 01110111 10001000

SHIFTM = 1:
10101010 01100110 11101110 00010001

Note 1:    Bit 0  is unimplemented. The LSb of any 
CRC polynomial is always ‘1’ and will always 
be treated as a ‘1’ by the CRC for calculating 
the CRC check value. This bit will be read in 
software as a ‘0’. 
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22.7 Register Definitions: Timer2/4/6 

Control
Long bit name prefixes for the Timer2/4/6 peripherals
are shown in Table 22-2. Refer to Section
1.3.2.2 “Long Bit Names” for more information.

 

TABLE 22-2: OPERATING MODES
Peripheral Bit Name Prefix

Timer2 T2

Timer4 T4

Timer6 T6

REGISTER 22-1: TxCLK: TIMERx CLOCK SELECTION REGISTER
U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — CS<3:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 CS<3:0>: Timerx Clock Selection bits

CS<3:0>
T2TMR TMR4 TMR6

Clock Source Clock Source Clock Source

1111 Reserved Reserved Reserved

1110 CLC4_out CLC4_out CLC4_out

1101 CLC3_out CLC3_out CLC3_out

1100 CLC2_out CLC2_out CLC2_out

1011 CLC1_out CLC1_out CLC1_out

1010 ZCD_OUT ZCD_OUT ZCD_OUT

1001 NCO1OUT NCO1OUT NCO1OUT

1000 CLKREF_OUT CLKREF_OUT CLKREF_OUT

0111 SOSC SOSC SOSC

0110 MFINTOSC (32 kHz) MFINTOSC (32 kHz) MFINTOSC (32 kHz)

0101 MFINTOSC (500 kHz) MFINTOSC (500 kHz) MFINTOSC (500 kHz)

0100 LFINTOSC LFINTOSC LFINTOSC

0011 HFINTOSC HFINTOSC HFINTOSC

0010 FOSC FOSC FOSC

0001 FOSC/4 FOSC/4 FOSC/4

0000 Pin selected by T2INPPS Pin selected by T4INPPS Pin selected by T6INPPS
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 335
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REGISTER 22-6: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

PSYNC CKPOL CKSYNC MODE<4:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 PSYNC: Timerx Prescaler Synchronization Enable bit(1, 2)

1 = TxTMR Prescaler Output is synchronized to Fosc/4
0 = TxTMR Prescaler Output is not synchronized to Fosc/4

bit 6 CKPOL: Timerx Clock Polarity Selection bit(3)

1 = Falling edge of input clock clocks timer/prescaler
0 = Rising edge of input clock clocks timer/prescaler

bit 5 CKSYNC: Timerx Clock Synchronization Enable bit(4, 5)

1 = ON register bit is synchronized to T2TMR_clk input
0 = ON register bit is not synchronized to T2TMR_clk input

bit 4-0 MODE<4:0>: Timerx Control Mode Selection bits(6, 7)

See Table 22-1 for all operating modes.

Note 1: Setting this bit ensures that reading TxTMR will return a valid data value.

2: When this bit is ‘1’, Timer2 cannot operate in Sleep mode.

3: CKPOL should not be changed while ON = 1.

4: Setting this bit ensures glitch-free operation when the ON is enabled or disabled.

5: When this bit is set then the timer operation will be delayed by two TxTMR input clocks after the ON bit is
set.

6: Unless otherwise indicated, all modes start upon ON = 1 and stop upon ON = 0 (stops occur without
affecting the value of TxTMR).

7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 339
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FIGURE 23-4: SIMPLIFIED PWM BLOCK DIAGRAM     

Rev. 10-000157D
9/13/2016

CCPRxH
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10-bit Latch(2)
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Comparator
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TMR2 Module
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CCPx_out
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R

S

Q
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Notes: 1. 8-bit timer is concatenated with two bits generated by Fosc or two bits of the internal prescaler to 
                     create 10-bit time-base.

2. The alignment of the 10 bits from the CCPR register is determined by the CCPxFMT bit.
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REGISTER 25-4: SMT1CLK: SMT CLOCK SELECTION REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — CSEL<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 CSEL<2:0>: SMT Clock Selection bits

111 = Reference Clock Output
110 = SOSC
101 = MFINTOSC/16 (32 kHz)
100 = MFINTOSC (500 kHz)
011 = LFINTOSC
010 = HFINTOSC 16 MHz
001 = FOSC

000 = FOSC/4
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 397
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REGISTER 26-5: CWGxSTR(1): CWG STEERING CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

OVRD OVRC OVRB OVRA STRD(2) STRC(2) STRB(2) STRA(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 OVRD: Steering Data D bit

bit 6 OVRC: Steering Data C bit

bit 5 OVRB: Steering Data B bit

bit 4 OVRA: Steering Data A bit

bit 3 STRD: Steering Enable bit D(2)

1 = CWGxD output has the CWG data input waveform with polarity control from POLD bit

0 = CWGxD output is assigned to value of OVRD bit

bit 2 STRC: Steering Enable bit C(2)

1 = CWGxC output has the CWG data input waveform with polarity control from POLC bit

0 = CWGxC output is assigned to value of OVRC bit

bit 1 STRB: Steering Enable bit B(2)

1 = CWGxB output has the CWG data input waveform with polarity control from POLB bit

0 = CWGxB output is assigned to value of OVRB bit

bit 0 STRA: Steering Enable bit A(2)

1 = CWGxA output has the CWG data input waveform with polarity control from POLA bit

0 = CWGxA output is assigned to value of OVRA bit

Note 1: The bits in this register apply only when MODE<2:0> = 00x (Register 26-1, Steering modes).

2: This bit is double-buffered when MODE<2:0> = 001.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 428
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FIGURE 27-1: CLCx SIMPLIFIED BLOCK DIAGRAM    

27.1 CLCx Setup
Programming the CLCx module is performed by
configuring the four stages in the logic signal flow. The
four stages are:

• Data selection

• Data gating

• Logic function selection

• Output polarity

Each stage is setup at run time by writing to the
corresponding CLCx Special Function Registers. This
has the added advantage of permitting logic
reconfiguration on-the-fly during program execution.

27.1.1 DATA SELECTION

There are 32 signals available as inputs to the
configurable logic. Four 32-input multiplexers are used
to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated
on the left side of Figure 27-2. Data inputs in the figure
are identified by a generic numbered input name.

Table 27-1 correlates the generic input name to the
actual signal for each CLC module. The column labeled
‘DyS<4:0> Value’ indicates the MUX selection code for
the selected data input. DyS is an abbreviation for the
MUX select input codes: D1S<4:0> through D4S<4:0>.

Data inputs are selected with CLCxSEL0 through
CLCxSEL3 registers (Register 27-3 through
Register 27-6).

Note 1: See Figure 27-2: Input Data Selection and Gating

2: See Figure 27-3: Programmable Logic Functions.
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Note: Data selections are undefined at power-up.
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FIGURE 31-6: DMX TRANSMIT SEQUENCE

31.5 LIN Modes (UART1 only)
LIN is a protocol used primarily in automotive
applications. The LIN network consists of two kinds of
software processes: a Master process and a Slave
process. Each network has only one Master process
and one or more Slave processes.

From a physical layer point of view, the UART on one
processor may be driven by both a Master and a Slave
process, as long as only one Master process exists on
the network. 

A LIN transaction consists of a Master process followed
by a Slave process. The Slave process may involve
more than one Slave where one is transmitting and the
other(s) are receiving. The transaction begins by the
following Master process transmission sequence:

1. Break

2. Delimiter bit

3. Sync Field

4. PID byte

The PID determines which Slave processes are
expected to respond to the Master. When the PID byte
is complete, the TX output remains in the Idle state.
One or more of the Slave processes may respond to
the Master process. If no one responds within the inter-
byte period, the Master is free to start another
transmission. The inter-byte period is timed by software
using a means other than the UART. 

The Slave process follows the Master process. When
the Slave software recognizes the PID then that Slave
process responds by either transmitting the required
response or by receiving the transmitted data. Only
Slave processes send data. Therefore, Slave
processes receiving data are receiving that of another
Slave process.

When a Slave sends data, the Slave UART
automatically calculates the checksum for the
transmitted bytes as they are sent and appends the
inverted checksum byte to the slave response.

When a Slave receives data, the checksum is
accumulated on each byte as it is received using the
same algorithm as the sending process. The last byte,
which is the inverted checksum value calculated by the
sending process, is added to the locally calculated
checksum by the UART. The check passes when the
result is all ‘1’s, otherwise the check fails and the
CERIF bit is set.

Two methods for computing the checksum are
available: legacy and enhanced. The legacy checksum
includes only the data bytes. The enhanced checksum
includes the PID and the data. The C0EN control bit in
the UxCON2 register determines the checksum
method. Setting C0EN to ‘1’ selects the enhanced
method. Software must select the appropriate method
before the Start bit of the checksum byte is received.

31.5.1 LIN MASTER/SLAVE MODE

The LIN Master mode includes capabilities to generate
Slave processes. The Master process stops at the PID
transmission. Any data that is transmitted in Master/
Slave mode is done as a Slave process. LIN Master/
Slave mode is configured by the following settings:

• MODE<3:0> = 1100
• TXEN = 1
• RXEN = 1
• UxBRGH:L = Value to achieve desired baud rate
• TXPOL = 0 (for high Idle state)
• STP = desired Stop bits selection
• C0EN = desired checksum mode
• RxyPPS = TX pin selection code
• TX pin TRIS control = 0
• ON = 1

Write to UxTXB

TX pin

TXMTIF bit
(Transmit Shift

Reg. Empty Flag)

Start Code Byte 1

softwareStart Code byte 1

UxTXIF bit
(Transmit Buffer

Reg. Empty Flag)

byte 2
MAB(1)

Break Start CodeMAB

delay

Byte 2 Byte 3 Byte n Start Code Byte 1

Break byte n

TXEN bit
(optional 

synchronization)

Note 1: The MAB period is fixed at 3-bits period.

Note: The TXEN bit must be set before the
Master process is received and remain set
while in LIN mode whether or not the slave
process is a transmitter.
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39.10 Register Definitions: HLVD Control
Long bit name prefixes for the HLVD peripheral is
shown in Table 39-1. Refer to Section 1.3.2.2 “Long
Bit Names” for more information.

TABLE 39-1:

Peripheral Bit Name Prefix

HLVD HLVD

REGISTER 39-1: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0
R/W-0/0 U-0 R-x R-x U-0 U-0 R/W-0/0 R/W-0/0

EN — OUT RDY — — INTH INTL

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EN: High/Low-voltage Detect Power Enable bit

1 = Enables HLVD, powers up HLVD circuit and supporting reference circuitry
0 = Disables HLVD, powers down HLVD and supporting circuitry

bit 6 Unimplemented: Read as ‘0’

bit 5 OUT: HLVD Comparator Output bit

1 = Voltage  selected detection limit (HLVDL<3:0>)
0 = Voltage  selected detection limit (HLVDL<3:0>)

bit 4 RDY: Band Gap Reference Voltages Stable Status Flag bit

1 = Indicates HLVD Module is ready and output is stable
0 = Indicates HLVD Module is not ready

bit 3-2 Unimplemented: Read as ‘0’

bit 1 INTH: HLVD Positive going (High Voltage) Interrupt Enable

1 = HLVDIF will be set when voltage  selected detection limit (SEL<3:0>)
0 = HLVDIF will not be set

bit 0 INTL: HLVD Negative going (Low Voltage) Interrupt Enable

1 = HLVDIF will be set when voltage   selected detection limit (SEL<3:0>)
0 = HLVDIF will not be set
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REGISTER 39-2: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1
U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — SEL<3:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared u = Bit is unchanged

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits

Refer to Table 44-14 for voltage detection limits.

TABLE 39-2: SUMMARY OF REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT 
MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

HLVDCON0 EN — OUT RDY — — INTH INTL 657

HLVDCON1 — — — — SEL<3:0> 658

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module.
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ANDWF AND W with f

Syntax: ANDWF      f {,d {,a}}

Operands: 0  f  255
d [0,1]
a [0,1]

Operation: (W) .AND. (f)  dest

Status Affected: N, Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are AND’ed with 
register ‘f’. If ‘d’ is ‘0’, the result is stored 
in W. If ‘d’ is ‘1’, the result is stored back 
in register ‘f’ (default). 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: ANDWF REG, 0, 0

Before Instruction

W = 17h
REG = C2h

After Instruction

W = 02h
REG = C2h

BC Branch if Carry

Syntax: BC    n

Operands: -128  n  127

Operation: if CARRY bit is ‘1’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the CARRY bit is ‘1’, then the program 
will branch.
The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If CARRY = 1;

PC = address (HERE + 12)
If CARRY = 0;

PC = address (HERE + 2)
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RRNCF Rotate Right f (No Carry)

Syntax: RRNCF    f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n – 1>,
(f<0>)  dest<7>

Status Affected: N, Z

Encoding: 0100 00da ffff ffff

Description: The contents of register ‘f’ are rotated 
one bit to the right. If ‘d’ is ‘0’, the result 
is placed in W. If ‘d’ is ‘1’, the result is 
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank will be 
selected (default), overriding the BSR 
value. If ‘a’ is ‘1’, then the bank will be 
selected as per the BSR value.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example 1: RRNCF   REG, 1, 0

Before Instruction
REG = 1101 0111

After Instruction
REG = 1110 1011

Example 2: RRNCF   REG, 0, 0

Before Instruction

W = ?
REG = 1101 0111

After Instruction

W = 1110 1011
REG = 1101 0111

register f

SETF Set f

Syntax: SETF    f {,a}

Operands: 0  f  255
a [0,1]

Operation: FFh  f

Status Affected: None

Encoding: 0110 100a ffff ffff

Description: The contents of the specified register 
are set to FFh. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’ 

Example: SETF REG, 1

Before Instruction
REG = 5Ah

After Instruction
REG = FFh
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58
60
60
60
60

58
60
60
60
60
59
59

28
30
29
25
24
31
31
27
26
28
30
29
25
24
31
31
27
26
28
30
29
25
24
31
31
27
26
54
53
57
56
56

gister 
 page
3F66h PWM7CON EN — OUT POL — — — — 3
3F65h PWM7DCH DC9 DC8 DC7 DC6 DC5 DC4 DC3 DC2 3
3F65h PWM7DCH DC 3
3F64h PWM7DCL DC1 DC0 — — — — — — 3
3F64h PWM7DCL DC — — — — — — 3
3F63h — Unimplemented

3F62h PWM8CON EN — OUT POL — — — — 3
3F61h PWM8DCH DC9 DC8 DC7 DC6 DC5 DC4 DC3 DC2 3
3F61h PWM8DCH DC 3
3F60h PWM8DCL DC1 DC0 — — — — — — 3
3F60h PWM8DCL DC — — — — — — 3
3F5Fh CCPTMRS1 P8TSEL P7TSEL P6TSEL P5TSEL 3
3F5Eh CCPTMRS0 C4TSEL C3TSEL C2TSEL C1TSEL 3
3F5Dh - 
3F5Bh

— Unimplemented

3F5Ah CWG1STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F59h CWG1AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F58h CWG1AS0 SHUTDOWN REN LSBD LSAC — — 4
3F57h CWG1CON1 — — IN — POLD POLC POLB POLA 4
3F56h CWG1CON0 EN LD — — — MODE 4
3F55h CWG1DBF — — DBF 4
3F54h CWG1DBR — — DBR 4
3F53h CWG1ISM — — — — IS 4
3F52h CWG1CLK — — — — — — — CS 4
3F51h CWG2STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F50h CWG2AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F4Fh CWG2AS0 SHUTDOWN REN LSBD LSAC — — 4
3F4Eh CWG2CON1 — — IN — POLD POLC POLB POLA 4
3F4Dh CWG2CON0 EN LD — — — MODE 4
3F4Ch CWG2DBF — — DBF 4
3F4Bh CWG2DBR — — DBR 4
3F4Ah CWG2ISM — — — — IS 4
3F49h CWG2CLK — — — — — — — CS 4
3F48h CWG3STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F47h CWG3AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F46h CWG3AS0 SHUTDOWN REN LSBD LSAC — — 4
3F45h CWG3CON1 — — IN — POLD POLC POLB POLA 4
3F44h CWG3CON0 EN LD — — — MODE 4
3F43h CWG3DBF — — DBF 4
3F42h CWG3DBR — — DBR 4
3F41h CWG3ISM — — — — IS 4
3F40h CWG3CLK — — — — — — — CS 4
3F3Fh NCO1CLK PWS — CKS 4
3F3Eh NCO1CON EN — OUT POL — — — PFM 4
3F3Dh NCO1INCU INC 4
3F3Ch NCO1INCH INC 4
3F3Bh NCO1INCL INC 4

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES 

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Re
on

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.
3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.
4: Unimplemented in PIC18(L)F45/55K42.
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Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 45-1: High Range Temperature 
Indicator Voltage Sensitivity Across Temperature 

FIGURE 45-2: Low Range Temperature 
Indicator Voltage Sensitivity Across Temperature 

FIGURE 45-3: Temperature Indicator 
Performance Over Temperature
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For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

Note:

Number of Pins

Overall Height

Terminal Width

Overall Width

Overall Length

Terminal Length

Exposed Pad Width

Exposed Pad Length

Terminal Thickness

Pitch

Standoff

Units
Dimension Limits

A1
A

b

D
E2

D2

A3

e

L

E

N
0.65 BSC

0.20 REF

6.25

6.25

0.30
0.20

0.80
0.00

0.30

8.00 BSC

0.40

6.45

6.45

0.90
0.02

8.00 BSC

MILLIMETERS
MIN NOM

44

6.60

6.60

0.50
0.35

1.00
0.05

MAX

K -0.20 -

REF: Reference Dimension, usually without tolerance, for information purposes only.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

1.
2.
3.

Notes:
Pin 1 visual index feature may vary, but must be located within the hatched area.
Package is saw singulated
Dimensioning and tolerancing per ASME Y14.5M

Terminal-to-Exposed-Pad

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]
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