

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k42-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	LL 9-3. 3L1	TING OF VECTORED IN	
TOD TWO	O. CODE	0.2900	· ISB code at 0x08C0 in DEM
ISK_IMP	DANKCEI		, ISK code at 0x00c0 III FrM
	DANKSEL	PIRU DID2 ENDOID	Charles THEOLER
	BCF.	PIR3, TMRUIF	; Clear TMRUIF
	BTG	LATC, 0, ACCESS	; Code to execute in ISR
	RETFIE	1	; Return from ISR
Interru	ptInit:		
	BANKSEL	INTCON0	; Select bank for INTCON0
	BSF	INTCONO, GIEH	: Enable high priority interrupts
	BGE	INTCONO CIEI	· Enable low priority interrupts
	DOL	INTCONO, CILL	 Enable interrupt priority
	DOF	INICONO, IFEN_INICONO	, Enable incertape priority
	BANKSEL	PIEO	; Select bank for PIEU
	BSF	PIE3, TMROIE	; Enable TMR0 interrupt
	BSF	PIE4, TMR1IE	; Enable TMR1 interrupt
	BCF	IPR3, TMR0IP	; Make TMR0 interrupt low priority
	RETURN	1	
Vector	ableInit:		
	: Set IVTRASE	(optional - default is (0x000008)
	MOVIN		· This is optional
	MOVINE	IVEDACELL ACCECC	, THIS IS OPCIONAL
	MOVWE	IVIBASEU, ACCESS	; II not included, then the
	MOVLW	0x40	; hardware default value of
	MOVWF	IVTBASEH, ACCESS	; 0x0008 will be taken.
	MOVLW	0x08	
	MOVWF	IVTBASEL, ACCESS	
	; TMR0 vector	at IVTBASE + 2*(TMR0 vec	ctor number i.e. 31) = 0x4046
	MOVLW	0x00	; Load TBLPTR with the
	MOVWF	TBLPTRU, ACCESS	; PFM memory location to be
	MOVLW	0x40	; written to.
	MOVWF	TBLETRH, ACCESS	•
	MOVIW	0x46	
	MOVWE	TRIPTRI ACCESS	
	110 VW1		
	· Write the co	ntonto of TMPO wootor lo	action
	; WIILE LHE CO	DEAG >> 2 - 0-0000 >> 2	
	; ISR_TMRU_ADD	$RESS >> 2 = 0 \times 08 C 0 >> 2$	= 0x0230
	MOVLW	0x30	; Low byte first
	MOVWF	TABLAT, ACCESS	
	TBLWT*+		; Write to temp table latch
	MOVLW	0x02	; High byte next
	MOVWF	TABLAT, ACCESS	
	TBLWT*+		; Write to temp table latch
	; Write to PFM	now using NVMCON	
	BANKSEL	NVMCON1	; Select bank for NVMCON1
	MOVLW	0x84	; Setting to write to PFM
	MOVWF	NVMCON1	
	MOVIW	0x55	: Required unlock sequence
	MOVWE	NVMCON2	,
	MOVITE	0	
	MOVEW	UXAA NUMGONO	
	MOVWF.	NVMCON2	
	BSF	NVMCON1, WR	; Start writing to PFM
	BTFSC	NVMCON1, WR	; Wait for write to complete
	GOTO	\$-2	
	RETURN	1	

EXAMPLE 9-3: SETTING UP VECTORED INTERRUPTS USING MPASM

				-			
R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
IOCIP	CRCIP	SCANIP	NVMIP	CSWIP	OSFIP	HLVDIP	SWIP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	IOCIP: Interru	upt-on-Change	Priority bit				
	1 = High prio	prity					
hit C		Illy Interrupt Drier	ity bit				
DILO	1 = High prior	anterrupt Phot					
	0 = Low prior	rity					
bit 5	SCANIP: Me	mory Scanner	Interrupt Prior	ity bit			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 4	NVMIP: NVM	I Interrupt Prior	ity bit				
	1 = High prio	ority rity					
hit 3		hty k Switch Intorr	unt Priority bit				
DIL 3	1 = High prior	rity	upt Friority bit				
	0 = Low prior	rity					
bit 2	OSFIP: Oscil	lator Fail Interr	upt Priority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit 1	HLVDIP: HLV	D Interrupt Pri	ority bit				
	1 = High prio	rity					
bit 0	SWID: Softwa	nny Dra Intarrunt Dr	iority hit				
DIL U	1 = High prior	are interrupt Fi pritv					
	0 = Low prior	rity					

REGISTER 9-25: IPR0: PERIPHERAL INTERRUPT PRIORITY REGISTER 0

FIGURE 10-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	 	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKIN ⁽¹⁾			, 					
CLKOUT ⁽²⁾	\/	ļ	, , ,	Tost(3)		,///	,/	
Interrupt flag		1 1 		· · · ·	Interrupt Laten	cy ⁽⁴⁾		
GIE bit (INTCON reg.)		'	Processor in					
Instruction Flow		ا ا	, \/			, {	ا ا	, <u> </u>
PC)	(<u>PC</u>	X <u>PC+1</u>	<u>Х РС</u>	<u>+2</u>	PC + 2	<u>X PC+2</u>	<u> </u>	X <u>0005h</u>
Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1	1	Inst(PC + 2)	1	Inst(0004h)	Inst(0005h)
Instruction {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: E	External clock. Hig	h. Medium. Low m	node assume	d.				

2: CLKOUT is shown here for timing reference.

3: TOST = 1024 TOSC. This delay does not apply to EC and INTOSC Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

10.2.3 LOW-POWER SLEEP MODE

The PIC18F26/27/45/46/47/55/56/57K42 device family contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC18F26/27/45/46/47/55/56/57K42 devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register.

10.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

13.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- PFM Row Erase
- Write of PFM write latches to PFM memory
- Write of PFM write latches to User IDs
- Write to Data EEPROM Memory
- Write to Configuration Words

The unlock sequence consists of the following steps and must be completed in order:

- Write 55h to NVMCON2
- Write AAh to NMVCON2
- · Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

BCF BANKSEL	INTCON0,GIE	; Recommended so sequence is not interrupted
BSF	NVMCON1, WREN	; Enable write/erase
MOVLW	55h	; Load 55h
MOVWF	NVMCON2	; Step 1: Load 55h into NVMCON2
MOVLW	AAh	; Step 2: Load W with AAh
MOVWF	NVMCON2	; Step 3: Load AAh into NVMCON2
BSF	INTCON1,WR	; Step 4: Set WR bit to begin write/erase
BSF	INTCON0,GIE	; Re-enable interrupts
Note 1: Sec sho will	quence begins when NVMCO wm. If the timing of the steps 1 not take place.	N2 is written; steps 1-4 must occur in the cycle-accurate order to 4 is corrupted by an interrupt or a debugger Halt, the action

2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

EXAMPLE 13-2: NVM UNLOCK SEQUENCE

15.9.6 ABORT TRIGGER, MESSAGE COMPLETE

Г

The AIRQEN needs to be set in order for the DMA to sample Abort Interrupt sources. When an abort interrupt is received the SIRQEN bit is cleared and the AIRQEN bit is cleared to avoid receiving further abort triggers.

FIGURE 15-10:	ABORT AT THE END OF MESSAGE

	(j (j (j (j (j (j (j (j (j (k)))))))) (j (j (j (j (k)))))) (k) (k) (k) (k) (k) (k) (k) (k
Instruction Clock	NNNNNNNNNN
EN	
SIRQEN	
AIRQEN	
Source Hardware Trigger	
Abort Hardware	
DGO	
DMAxSPTR	Ox3EEF Ox3EF0
DMAxDPTR	0x100 0x101 () 0x109 0x10A () 0x100 ()
DMAxSCNT	$\langle 2 \rangle \langle 1 \rangle \langle 5 \rangle 2 \rangle \langle 1 \rangle \langle 2 \rangle \rangle$
DMAxDCNT	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
DMA STATE	$ \left(\text{IDLE} \right) \left(SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) SR^{(1)} \right) DW^{(2)} \left(SR^{(1)} \right) DW^{(2)} \left(DUE \right) $
DMAxSCNTIF	
DMAxDCNTIF -	<u>_</u>
DMAxAIF -	<u>}</u>
	DMAxSSA 0x3EEF DMAxDSA 0x100
	DMAxSSZ 0x2 DMAxDSZ 0xA
Note 1:	SR - Source Read
2:	DW - Destination Write

REGISTER 21-3: TxCLK: TIMERx CLOCK REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			CS<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **CS<4:0>:** Timerx Clock Source Selection bits

	Timer1	Timer3	Timer5
CS	Clock Source	Clock Source	Clock Source
11111-10001	Reserved	Reserved	Reserved
10000	CLC4	CLC4	CLC4
01111	CLC3	CLC3	CLC3
01110	CLC2	CLC2	CLC2
01101	CLC1	CLC1	CLC1
01100	TMR5 overflow	TMR5 overflow	Reserved
01011	TMR3 overflow	Reserved	TMR3 overflow
01010	Reserved	TMR1 overflow	TMR1 overflow
01001	TMR0 overflow	TMR0 overflow	TMR0 overflow
01000	CLKREF	CLKREF	CLKREF
00111	SOSC	SOSC	SOSC
00110	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)
00101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
00100	LFINTOSC	LFINTOSC	LFINTOSC
00011	HFINTOSC	HFINTOSC	HFINTOSC
00010	Fosc	Fosc	Fosc
00001	Fosc/4	Fosc/4	Fosc/4
00000	T1CKIPPS	T3CKIPPS	T5CKIPPS

22.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the T2TMR and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TxPR	Timer2 Module Period Register								320*
TxTMR	Holding Register for the 8-bit T2TMR Register								320*
TxCON	ON		CKPS<2:0>			OUTP	S<3:0>		338
TxCLK	_	_	—	_		— CS<2:0>			335
TxRST		_	—	_	RSEL<3:0>				336
TxHLT	PSYNC	CPOL	CSYNC		MODE<4:0>				

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

REGISTER 25-7: SMT1TMRL: SMT TIMER REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
SMT1TMR<7:0>										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	ared							

bit 7-0 SMT1TMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 25-8: SMT1TMRH: SMT TIMER REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMT1TM | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMT1TMR<15:8>: Significant bits of the SMT Counter – High Byte

REGISTER 25-9: SMT1TMRU: SMT TIMER REGISTER – UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SMT1TM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged $x = Bit is unknown$		nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets	

bit 7-0 SMT1TMR<23:16>: Significant bits of the SMT Counter – Upper Byte

'0' = Bit is cleared

© 2017 Microchip Technology Inc.

'1' = Bit is set

FIGURE 33-19:

33.5.11 MASTER TRANSMISSION IN 10-BIT ADDRESSING MODE

This section describes the sequence of events for the I^2C module configured as an I^2C master in 10-bit Addressing mode and is transmitting data. Figure 33-21 is used as a visual reference for this description

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be transmitted in one sequence in I2CxCNT, high address byte of slave address in I2CxADB1 with R/W = 0, low address byte in I2CxADB0 and the first byte of data in I2CxTXB. Master software has to set the Start (S) bit to initiate communication.

If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be transmitted in one sequence in I2CxCNT and the high address byte of the slave address with R/W = 0 into the I2CxTXB register. Writing to the I2CxTXB will assert the start condition on the bus and sets the S bit. Software writes to the S bit are ignored in this case.

- 2. Master hardware waits for BFRE bit to be set; then shifts out the start and high address and waits for acknowledge.
- 3. If NACK, master hardware sends Stop.
- 4. If ABD = 0; i.e., Address buffer are enabled

If ACK, master hardware sends the low address byte from I2CxADB0.

If ABD = 1; i.e., Address buffer are disabled

If ACK, master hardware sets TXIF and MDR bits and the software has to write the low address byte into I2CxTXB. Writing to I2CxTXB sends the low address on the bus.

- If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and MDR bits are set. Clock is stretched on 8th falling SCL edge until master software writes next data byte to I2CxTXB.
- Master hardware sends ninth SCL pulse for ACK from slave and loads the shift register from I2CxTXB. I2CxCNT is decremented.
- 7. If slave sends a NACK, master hardware sends Stop and ends transmission.
- If slave sends an ACK, master hardware outputs data in the shift register on SDA. I2CxCNT value is checked on the 8th falling SCL edge. If I2CxCNT = 0; master hardware sends 9th SCL pulse for ACK and CNTIF is set.
- 9. If I2CxCNT! = 0; go to step 5.

bit 3	 MDR: Master Data Request (Master pause) 1 = Master state mechine pauses until data is read/written to proceed (SCL is output held low) 0 = Master clocking of data is enabled.
	<u>MMA = 1 & RXBF = 1</u> pause_for_rx - Set by hardware on 7th falling SCL edge - User must read from I2CRXB to release SCL <u>MMA = 1 & TXBE = 1 & I2CCNT!= 0</u> pause_for_tx - Set by hardware on 8th falling SCL edge - User must write to I2CTXB to release SCL <u>ADB = 1</u> - I2CCNT is ignored for the high and low address in 10-bit mode pause_for_restart - Set by hardware on 9th falling SCL edge <u>RSEN = 1 & MMA = 1 & I2CCNT = 0 ACKSTAT = 1</u>
bit 2-0	$\begin{aligned} \text{MODE<2:0>:} \ \text{I}^2\text{C} \text{ Mode Select bits} \\ 111 = \ \text{I}^2\text{C} \text{ Muti-Master mode (SMBus 2.0 Host), } ^{(5)} \\ \text{Works as both mode<2:0> = 001 and mode<2:0> = 100} \\ 110 = \ \text{I}^2\text{C} \text{ Muti-Master mode (SMBus 2.0 Host), } ^{(5)} \\ \text{Works as both mode<2:0> = 000 and mode<2:0> = 100} \\ 101 = \ \text{I}^2\text{C} \text{ Master mode, 10-bit address} \\ 100 = \ \text{I}^2\text{C} \text{ Master mode, 10-bit address} \\ 101 = \ \text{I}^2\text{C} \text{ Slave mode, one 10-bit address with masking} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, two 10-bit address} \\ 011 = \ \text{I}^2\text{C} \text{ Slave mode, two 7-bit address with masking} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, two 7-bit address with masking} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 010 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 000 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} \text{ Slave mode, four 7-bit address} \\ 00 = \ \text{I}^2\text{C} Slave mode, four 7-bit $
Note 1: 2: 3: 4:	SDA and SCL pins must be configured for open-drain with internal or external pull-up SDA and SCL pins must be selected as both input and output in PPS CSTR can be set by more than one hardware source, all sources must be addressed by user software before the SCL line is released. CSTR is a module status bit, and does not show the true bus state. SMA is set on the same SCL edge as CSTR for a matching received address

- 5: In this mode, ADRIE should be set, this allows an interrupt to clear the BCLIF condition and allow the ACK of matching address.
- 6: In 10-bit Slave mode, when ADB = 1, CSTR will set when the high address has not been read out of I2CxRXB before the low address is shifted in.

36.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 36-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), refer to Figure 36-4. Refer to Parameter AD08 mentioned in Table 44-15 for the maximum recommended impedance for analog sources. If the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 36-1 may be used. This equation assumes that 1/2 LSb error is used (4,096 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 36-1: ACQUISITION TIME EXAMPLE

mptions: Temperature = 50°C and external impedance of
$$1k\Omega 5.0V VDD$$

 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25°C)(0.05\mu s/°C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TG}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED}$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{l}{(2^{n+1}) - l}\right) \quad \text{; combining [1] and [2]}$$

Note: Where n = number of bits of the ADC.

Solving for TC:

Therefore:

Assu

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/8191)$$

= -28pF(1k\Omega + 7k\Omega + 1k\Omega) ln(0.0001221)
= 2.27\mus
TACQ = 2\mus + 2.27\mus + [(50°C- 25°C)(0.05\mus/°C)]

 $= 5.52 \mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is mentioned in Parameter AD08 in Table 44-15. This is required to meet the pin leakage specification.

37.6 Register Definitions: DAC Control

Long bit name prefixes for the DAC peripheral is shown below. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

Peripheral	Bit Name Prefix
DAC1	DAC1

REGISTER 37-1: DAC1CON0: DAC CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	_	OE1	OE2	PSS	5<1:0>	—	NSS
bit 7							bit 0

I

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 EN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled⁽¹⁾
bit 6	Unimplemented: Read as '0'
bit 5	 OE1: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin
bit 4	 OE2: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin
bit 3-2	<pre>PSS<1:0>: DAC Positive Source Select bit 11 = Reserved 10 = FVR buffer 2 01 = VREF+ 00 = VDD</pre>
bit 1	Unimplemented: Read as '0'
bit 0	NSS: DAC Negative Source Select bit 1 = VREF- 0 = Vss
Note 1:	DAC1OUTx output pins are still active.

38.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 38-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 38-2) contains Control bits for the following:

• Interrupt on positive/negative edge enables

The CMxPCH and CMxNCH registers are used to select the positive and negative input channels, respectively.

38.2.1 COMPARATOR ENABLE

Setting the EN bit of the CMxCON0 register enables the comparator for operation. Clearing the EN bit disables the comparator resulting in minimum current consumption.

38.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the CxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 17-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

38.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the POL bit of the CMxCON0 register. Clearing the POL bit results in a noninverted output.

 Table 38-1
 shows
 the output
 state
 versus
 input

 conditions, including polarity control.

 <t

TABLE 38-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	POL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	_	—	—	—		PCH<2:0>	
bit 7							bit 0
Leaend:							

REGISTER 38-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	PCH<2:0>: Comparator Non-Inverting Input Channel Select bits
	111 = V SS
	110 = FVR_Buffer2
	101 = DAC_Output
	100 = PCH not connected
	011 = PCH not connected
	010 = PCH not connected
	001 = CxIN1+
	000 = CxIN0+

REGISTER 38-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	_	—	—	—	—	C2OUT	C1OUT
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1 **C2OUT:** Mirror copy of C2OUT bit

bit 0 C1OUT: Mirror copy of C1OUT bit

TABLE 38-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMxCON0	EN	OUT	_	POL			HYS	SYNC	648
CMxCON1							INTP	INTN	649
CMxNCH						NCH<2:0>			649
CMxPCH						PCH<2:0>			650
CMOUT	_	_	_	-	_	_	C2OUT	C1OUT	650

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

RET	URN	Return from Subroutine						
Synta	ax:	RETURN	{s}					
Oper	ands:	s ∈ [0,1]	s ∈ [0,1]					
Oper	ation:	$(TOS) \rightarrow P0$ if s = 1 $(WS) \rightarrow W$, (STATUSS) $(BSRS) \rightarrow 1$ PCLATU, P	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU. PCLATH are unchanged					
Statu	is Affected:	None						
Enco	oding:	0000	0000	0001	001s			
		's'= 1, the c registers, W are loaded registers, W 's' = 0, no u occurs (defa	ontents ontents /S, STAT into their /, Status update of ault).	ogrand Co of the sl USS ar corresp and BS these r	hadow had BSRS, ponding R. If egisters			
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	}	Q4			
	Decode	No operation	Proce Dat	ess a	POP PC from stack			
	No	No	No		No			
	operation	operation	opera	tion	operation			
<u>Exan</u>	nple:	RETURN						
	After Instructio	on:						

PC = TOS

RLC	F	Rotate L	Rotate Left f through Carry						
Synta	ax:	RLCF	f {,d {,a}}						
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:		$(f < n >) \rightarrow (f < 7 >) \rightarrow (f < 7 >) \rightarrow (C) \rightarrow des$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$						
Statu	is Affected:	C, N, Z	C, N, Z						
Enco	oding:	0011	01da	ffff	ffff				
Desc	ription:	The conter one bit to flag. If 'd' W. If 'd' is in register If 'a' is '0', selected. select the If 'a' is '0' set is ena operates i Addressin $f \le 95$ (5F 41.2.3 "By ented Ins Offset Mo	one bit to the left through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal Offset Mode" for details.						
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
Decode		Read register 'f'	Proce Data	ss a d	Write to destination				
Example:		RLCF	RLCF REG, 0, 0						
$\begin{array}{rcl} REG &=& 1110 & 0110 \\ C &=& 0 \\ \hline & & \\ After Instruction \\ REG &=& 1110 & 0110 \\ \hline & & \\ W &=& 1100 & 1100 \\ C &=& 1 \\ \hline \end{array}$									

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2