

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k42-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-4: DMA2PR: DMA2 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-1/1
—	—	—	—	_	[DMA2PR<2:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMA2PR<2:0>: DMA2 Priority Selection bits

REGISTER 3-5: SCANPR: SCANNER PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
—	—	—	_	—		SCANPR<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 SCANPR<2:0>: Scanner Priority Selection bits

REGISTER 3-6: PRLOCK: PRIORITY LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PRLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-1 Unimplemented: Read as '0'

bit 0 PRLOCKED: PR Register Lock bit^(1, 2)

0 = Priority Registers can be modified by write operations; Peripherals do not have access to the memory

1 = Priority Registers are locked and cannot be written; Peripherals have access to the memory

- Note 1: The PRLOCKED bit can only be set or cleared after the unlock sequence.
 - 2: If PR1WAY = 1, the PRLOCKED bit cannot be cleared after it has been set. A device Reset will clear the bit and allow one more set.

TABLE 4-7: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 60

3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh		3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	—
3CFEh	MD1CARH	3CDEh	—	3CBEh	—	3C9Eh	—	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	—	3C1Eh	_
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	—	3C1Dh	_
3CFCh	MD1SRC	3CDCh	—	3CBCh	_	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	—	3C1Ch	—
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	—	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	—	3C1Bh	_
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	—	3C1Ah	—
3CF9h	—	3CD9h	—	3CB9h	—	3C99h	—	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	—	3C19h	_
3CF8h	—	3CD8h	—	3CB8h	—	3C98h	—	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	—	3C18h	_
3CF7h	—	3CD7h	—	3CB7h	—	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	—	3C17h	_
3CF6h	—	3CD6h	—	3CB6h	—	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	—	3C16h	_
3CF5h	—	3CD5h	—	3CB5h	—	3C95h	—	3C75h	CLC1POL	3C55h		3C35h	—	3C15h	_
3CF4h	—	3CD4h	—	3CB4h	—	3C94h	—	3C74h	CLC1CON	3C54h		3C34h	—	3C14h	—
3CF3h	_	3CD3h	_	3CB3h	_	3C93h	_	3C73h	CLC2GLS3	3C53h	_	3C33h	_	3C13h	_
3CF2h	_	3CD2h	_	3CB2h	_	3C92h	_	3C72h	CLC2GLS2	3C52h	_	3C32h	_	3C12h	_
3CF1h	_	3CD1h	_	3CB1h	_	3C91h	_	3C71h	CLC2GLS1	3C51h	_	3C31h	_	3C11h	_
3CF0h	_	3CD0h	_	3CB0h	_	3C90h	_	3C70h	CLC2GLS0	3C50h	_	3C30h	_	3C10h	_
3CEFh	_	3CCFh	_	3CAFh	_	3C8Fh	_	3C6Fh	CLC2SEL3	3C4Fh	_	3C2Fh	_	3C0Fh	_
3CEEh	_	3CCEh	_	3CAEh	_	3C8Eh	_	3C6Eh	CLC2SEL2	3C4Eh	_	3C2Eh	_	3C0Eh	_
3CEDh	_	3CCDh	_	3CADh	_	3C8Dh	_	3C6Dh	CLC2SEL1	3C4Dh	_	3C2Dh	_	3C0Dh	_
3CECh	_	3CCCh	_	3CACh	_	3C8Ch	_	3C6Ch	CLC2SEL0	3C4Ch	_	3C2Ch	_	3C0Ch	_
3CEBh	_	3CCBh	_	3CABh	_	3C8Bh	_	3C6Bh	CLC2POL	3C4Bh	_	3C2Bh	_	3C0Bh	_
3CEAh	_	3CCAh	_	3CAAh	_	3C8Ah	_	3C6Ah	CLC2CON	3C4Ah	_	3C2Ah	_	3C0Ah	_
3CE9h	_	3CC9h	_	3CA9h	_	3C89h	_	3C69h	CLC3GLS3	3C49h	_	3C29h	_	3C09h	_
3CE8h	_	3CC8h	_	3CA8h	_	3C88h	_	3C68h	CLC3GLS2	3C48h	_	3C28h	_	3C08h	_
3CE7h	_	3CC7h	_	3CA7h	_	3C87h	_	3C67h	CLC3GLS1	3C47h	_	3C27h	_	3C07h	_
3CE6h	CLKRCLK	3CC6h	_	3CA6h	_	3C86h	_	3C66h	CLC3GLS0	3C46h	_	3C26h	_	3C06h	_
3CE5h	CLKRCON	3CC5h	_	3CA5h	_	3C85h	_	3C65h	CLC3SEL3	3C45h	_	3C25h	_	3C05h	_
3CE4h	—	3CC4h	—	3CA4h	—	3C84h	—	3C64h	CLC3SEL2	3C44h	—	3C24h	—	3C04h	—
3CE3h	—	3CC3h	—	3CA3h	—	3C83h	—	3C63h	CLC3SEL1	3C43h	—	3C23h	_	3C03h	—
3CE2h	—	3CC2h	—	3CA2h	—	3C82h	—	3C62h	CLC3SEL0	3C42h	_	3C22h	—	3C02h	_
3CE1h	—	3CC1h	—	3CA1h	—	3C81h	—	3C61h	CLC3POL	3C41h	—	3C21h	—	3C01h	—
3CE0h	—	3CC0h		3CA0h	—	3C80h	—	3C60h	CLC3CON	3C40h	—	3C20h	—	3C00h	—

Legend: Unimplemented data memory locations and registers, read as '0'.

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

REGISTER	S-4: CONFI	GURATION	WORD 2H (3	30 0003h)				
R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
XINST	—	DEBUG	STVREN	PPS1WAY	ZCD	BORV	<1:0> ⁽¹⁾	
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '1'		
-n = Value fo	or blank device	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7		instruction set	and Indexed	t Addressing mod Addressing mod			e)	
bit 6	Unimplemente	ed: Read as '1	,					
bit 5	it 5 DEBUG : Debugger Enable bit 1 = Background debugger is disabled 0 = Background debugger is enabled							
bit 4	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	rflow or Under	flow will cause	e a Reset				
bit 3	cycle	ED bit can be	cleared and se	nable bit et only once; PP ed multiple time	C			
bit 2	ZCD : Zero-Cro 1 = ZCD is dis 0 = ZCD is alv	abled; ZCD ca		by setting the b	oit SEN of the 2	ZCDCON regis	ter	
bit 1-0	BORV<1:0>: E <u>PIC18FXXK42</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou <u>PIC18LFXXK4</u> 11 = Brown-ou 10 = Brown-ou 01 = Brown-ou 00 = Brown-ou	Devices: It Reset Voltag It Reset Voltag It Reset Voltag It Reset Voltag <u>2 Device:</u> It Reset Voltag It Reset Voltag It Reset Voltag	le (VBOR) is se le (VBOR) is se	et to 2.45V et to 2.45V et to 2.7V et to 2.85V et to 1.90V et to 2.45V et to 2.7V				

Note 1: The higher voltage setting is recommended for operation at or above 16 MHz.

REGISTER 5	-7: CONF	GURATION V	VORD 4L (3	0 0006h)				
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
WRTAPP (1)	— — SAFEN ⁽¹⁾			BBEN ⁽¹⁾	(1) BBSIZE<2:0> (2)			
bit 7		·					bit C	
[
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '1'		
-n = Value for blank device		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown	
bit 7	1 = Applicat	plication Block ion Block is NO ion Block is writ	T write-protec					
bit 6-5	Unimplemen	ted: Read as '1	, -					
bit 4 SAFEN: Storage Area Flash Enable bit ⁽¹⁾ 1 = SAF is disabled 0 = SAF is enabled								
bit 3	bit 3 BBEN: Boot Block Enable bit ⁽¹⁾ 1 = Boot Block disabled 0 = Boot Block enabled							

bit 2-0 BBSIZE<2:0>: Boot Block Size Selection bits⁽²⁾ Refer to Table 5-1.

- Note 1: Bits are implemented as sticky bits. Once protection is enabled through ICSP[™] or a self-write, it can only be reset through a Bulk Erase.
 - 2: BBSIZE<2:0> bits can only be changed when BBEN = 1. Once BBEN = 0, BBSIZE<2:0> can only be changed through a Bulk Erase.

BBEN	BBSIZE<2:0>	Boot Block Size	END_ADDRESS_BOOT	Device Size ⁽¹⁾			
DDEN	BB3IZE Z.02	(words)	END_ADDRESS_BOOT	16k	32k	64k	
1	XXX	0	_	Х	Х	Х	
0	111	512	00 03FFh	Х	Х	Х	
0	110	1024	00 07FFh	Х	Х	Х	
0	101	2048	00 0FFFh	Х	Х	Х	
0	100	4096	00 1FFFh	Х	Х	Х	
0	011	8192	00 3FFFh	Х	Х	Х	
0	010	16384	00 7FFFh	_	Х	Х	
0	001	32768	00 FFFFh		Note 2	Х	
0	000	32768	00 FFFFh	_	_	_	

TABLE 5-1: BOOT BLOCK SIZE BITS

Note 1: For each device, the quoted device size specification is listed in Table 4-1.

2: The maximum boot block size is half the user program memory size. All selections higher than the maximum size default to maximum boot block size of half PFM. For example, all settings of BBSIZE = 000 through BBSIZE = 010, default to a boot block size of 16 kW on a 32 kW device.

5.7 Device Information Area

The Device Information Area (DIA) is a dedicated region in the Program memory space. The DIA contains the calibration data for the internal temperature indicator module, stores the Microchip Unique Identifier words and the Fixed Voltage Reference voltage readings measured in mV.

The complete DIA table is shown in Table 5-3: Device Information Area, followed by a description of each region and its functionality. The data is mapped from 3F0000h to 3F003Fh in the PIC18(L)F26/27/45/46/47/55/56/57K42 family. These locations are read-only and cannot be erased or modified by the user. The data is programmed into the device during manufacturing.

Address Range	Name of Region	Standard Device Information					
	MUI0						
	MUI1						
3F0000h-3F000Bh	MUI2	Microchip Unique Identifier (6 Words)					
3F000011-3F000B11	MUI3	Microchip Onique Identiner (8 Words)					
	MUI4						
	MUI5						
3F000Ch-3F000Fh	MUI6	Jnassigned (2 Words)					
3F000CII-3F000FII	MUI7	Chassigned (2 Words)					
	EUI0						
	EUI1						
	EUI2						
	EUI3						
3F0010h-3F0023h	EUI4	Optional External Unique Identifier (10 Marda)					
3F001011-3F002311	EUI5	Optional External Unique Identifier (10 Words)					
	EUI6						
	EUI7						
	EUI8						
	EUI9						
3F0024h-3F0025h		Reserved (1 Word)					
3F0026h-3F0027h	TSLR2	Temperature Indicator ADC reading at @ 90°C (low range setting)					
3F0028h-3F0029h		Reserved (1 Word)					
3F002Ah-3F002Bh		Reserved (1 Word)					
3F002Ch-3F002Dh	TSHR2	Temperature Indicator ADC reading at @ 90°C (high range setting)					
3F002Eh-3F002Fh		Reserved (1 Word)					
3F0030h-3F0031h	FVRA1X	ADC FVR1 Output voltage for 1x setting (in mV)					
3F0032h-3F0033h	FVRA2X	ADC FVR1 Output Voltage for 2x setting (in mV)					
3F0034h-3F0035h	FVRA4X	ADC FVR1 Output Voltage for 4x setting (in mV)					
3F0036h-3F0037h	FVRC1X	Comparator FVR2 output voltage for 1x setting (in mV)					
3F0038h-3F0039h	FVRC2X	Comparator FVR2 output voltage for 2x setting (in mV)					
3F003Ah-3F003Bh	FVRC4X ⁽¹⁾	Comparator FVR2 output voltage for 4x setting (in mV)					
3F003Ch-3F003Fh		Unassigned (2 Words)					

TABLE 5-3: DEVICE INFORMATION AREA

Note 1: Value not present on LF devices.

5.7.1 MICROCHIP UNIQUE IDENTIFIER (MUI)

The PIC18(L)F26/27/45/46/47/55/56/57K42 devices are individually encoded during final manufacturing with a Microchip Unique Identifier, or MUI. The MUI cannot be user-erased. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a required. It may also be used by the application manufacturer for a number of functions that require unverified unique identification, such as:

- · Tracking the device
- Unique serial number

The MUI consists of six program words. When read together, these fields form a unique identifier. The MUI is stored in nine read-only locations, located between 3F0000h to 3F000Fh in the DIA space. Table 5-3 lists the addresses of the identifier words.

Note:	For applications that require verified
	unique identification, contact your
	Microchip Technology sales office to
	create a Serialized Quick Turn
	Programming ^{sм} option.

5.7.2 EXTERNAL UNIQUE IDENTIFIER (EUI)

The EUI data is stored at locations 3F0010h to 3F0023h in the Program Memory region. This region is an optional space for placing application specific information. The data is coded per customer requirements during manufacturing.

Note: Data is stored in this address range on receiving a request from the customer. The customer may contact the local sales representative, or Field Applications Engineer, and provide them the unique identifier information that is supposed to be stored in this region.

5.7.3 ANALOG-TO-DIGITAL CONVERSION DATA OF THE TEMPERATURE SENSOR

The purpose of the Temperature Sensor module is to provide a temperature-dependent voltage that can be measured by an analog module, see Section 35.0 "Temperature Indicator Module".

The DIA table contains the internal ADC measurement values of the Temperature sensor for Low and High range at fixed points of reference. The values are measured during test and are unique to each device. The measurement data is stored in the DIA memory region as hexadecimal numbers corresponding to the ADC conversion result. The calibration data can be used to plot the approximate sensor output voltage, VTSENSE vs. Temperature curve without having to make calibration measurements in the application. For more information on the operation of the Temperature Sensor, refer to Section 35.0 "Temperature Indicator Module".

- **TSLR2**: Address 3F0026h to 3F0027h store the measurements for the low-range setting of the Temperature Sensor at VDD = 3V.
- **TSHR2**: Address 3F002Ch to 3F002Dh store the measurements for the High Range setting of the Temperature Sensor at VDD = 3V.
- The stored measurements are made by the device ADC using the internal VREF = 2.048V.

7.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 7.3 "Clock Switching" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O, provided that FEXTOSC is configured to 'oscillator is not enabled'. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates from 1 to 64 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

7.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 64 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (Fosc = 1 MHz) or '000' (Fosc = 64 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 7.3 "Clock Switching" for more information.

The HFINTOSC frequency can be selected by setting the FRQ<3:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

7.2.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	U2MD	U1MD	—	SPI1MD	I2C2MD	I2C1MD
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOF	R/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared	q = Value dep	ends on conditi	on	
bit 7-6	Unimpleme	nted: Read as '0)'				
bit 5	U2MD: Disa	ble UART2 bit					
1 = UART2 module disabled							
	0 = UART2	module enabled					
bit 4		ble UART1 bit					
	-	module disabled					
L:1 0		module enabled					
bit 3	-	nted: Read as '0					
bit 2		sable SPI1 Modu	ile bit				
	-	odule disabled					
		odule enabled					
bit 1		sable I ² C2 Modu	le bit				
$1 = I^2C2$ module disabled 0 = I^2C2 module enabled							
bit 0	-	sable I ² C1 Modu	le bit				
		odule disabled					
	0 = 1 - 0.1 m	odule enabled					

REGISTER 19-6: PMD5: PMD CONTROL REGISTER 5

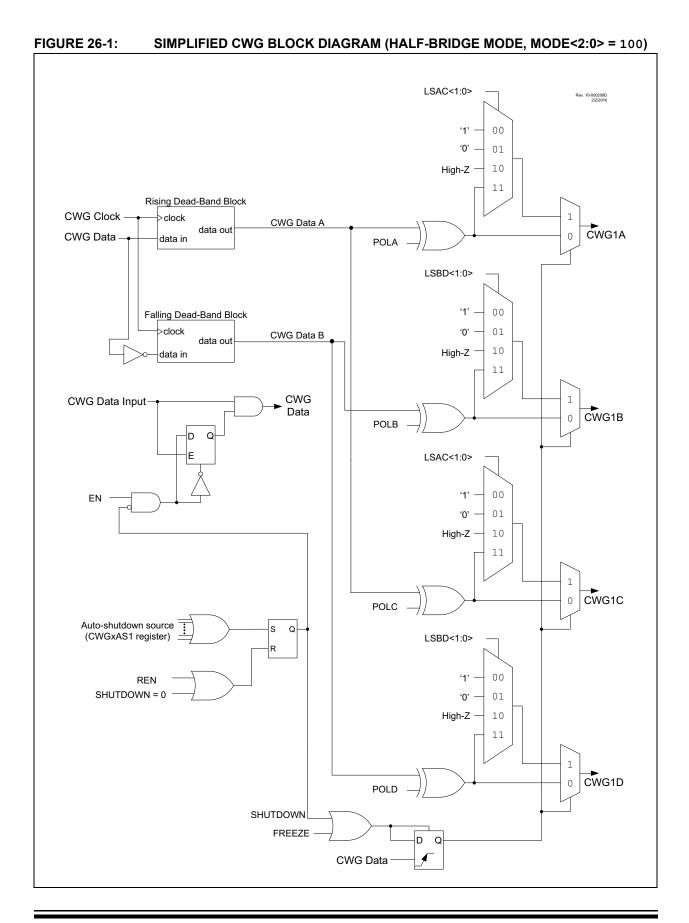
REGISTER 20-3: TMR0L: TIMER0 COUNT REGISTER

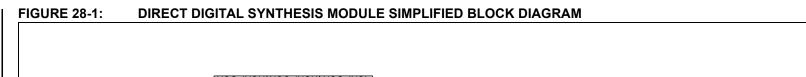
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMRC)L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

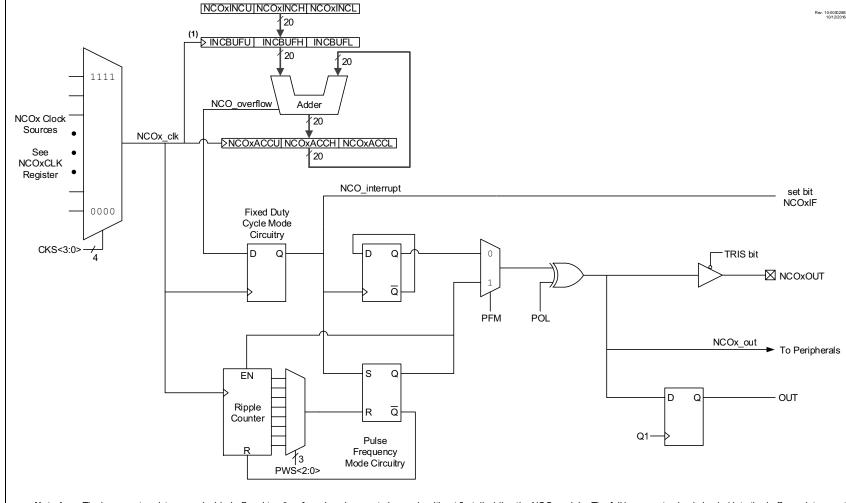
bit 7-0 TMR0L<7:0>: TMR0 Counter bits <7:0>

REGISTER 20-4: TMR0H: TIMER0 PERIOD REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | TMR0H | 1<15:8> | | | |
| bit 7 | | | | | | | bit 0 |


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-0 When MD16 = 0 **PR0<7:0>:**TMR0 Period Register Bits <7:0> When MD16 = 1 **TMR0H<15:8>:** TMR0 Counter bits <15:8>


TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T0CON0	EN	—	OUT	MD16	OUTPS<3:0>				301
T0CON1		CS<2:0>		ASYNC	CKPS<3:0>				302
TMR0L		TMR0L<7:0>							303
TMR0H				TMR0H<15:8>					

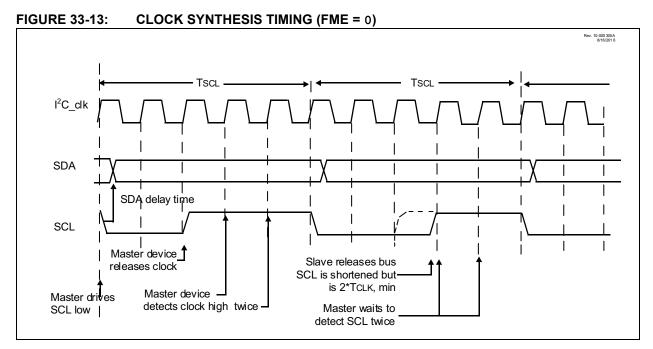
Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Timer0.

Note 1: The increment registers are double-buffered to allow for value changes to be made without first disabling the NCO module. The full increment value is loaded into the buffer registers on the second rising edge of the NCOx_clk signal that occurs immediately after a write to NCOxINCL register. The buffers are not user-accessible and are shown here for reference.

31.12.3 XON/XOFF FLOW CONTROL

XON/XOFF flow control is selected by setting the FLO<1:0> bits to '01'.

XON/XOFF is a data based flow control method. The signals to suspend and resume transmission are special characters sent by the receiver to the transmitter The advantage is that additional hardware lines are not needed.

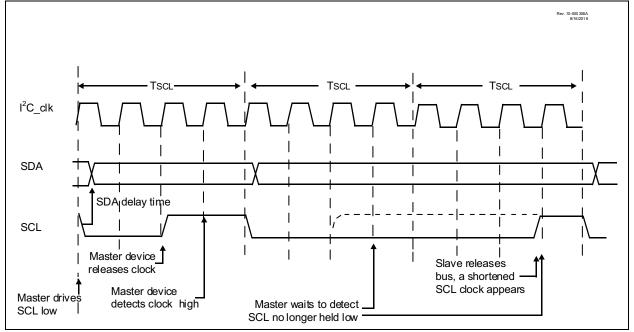

XON/XOFF flow control requires full duplex operation because the transmitter must be able to receive the signal to suspend transmitting while the transmission is in progress. Although XON and XOFF are not defined in the ASCII code, the generally accepted values are 13h for XOFF and 11h for XON. The UART uses those codes.

The transmitter defaults to XON, or transmitter enabled. This state is also indicated by the read-only XON bit in the UxFIFO register.

When an XOFF character is received, the transmitter stops transmitting after completing the character actively being transmitted. The transmitter remains disabled until an XON character is received.

XON will be forced on when software toggles the TXEN bit.

When the RUNOVF bit in the UxCON2 register is set then XON and XOFF characters continue to be received and processed without the need to clear the input FIFO by reading the UxRXB. However, if the RUNOVF bit is clear then the UxRXB must be read to avoid a receive overflow which will suspend flow control when the receive buffer overflows.



33.5.4.2 Clock Timing with FME = 1

One TSCL, consists of four clocks of the I²C clock input. The first clock is used to drive SCL low, the third releases SCL high, and the fourth is used to detect if the clock is, in fact, high or being stretched by a slave.

If a slave is clock stretching, the hardware waits; checking SCL on each successive l^2C clock, proceeding only after detecting SCL high. Figure 33-14 shows the clock synthesis timing when FME = 1.

36.5.2 PRECHARGE CONTROL

The precharge stage is an optional period of time that brings the external channel and internal sample and hold capacitor to known voltage levels. Precharge is enabled by writing a non-zero value to the ADPRE register. This stage is initiated when an ADC conversion begins, either from setting the GO bit, a special event trigger, or a conversion restart from the computation functionality. If the ADPRE register is cleared when an ADC conversion begins, this stage is skipped.

During the precharge time, CHOLD is disconnected from the outer portion of the sample path that leads to the external capacitive sensor and is connected to either VDD or VSS, depending on the value of the PPOL bit of ADCON1. At the same time, the port pin logic of the selected analog channel is overridden to drive a digital high or low out, in order to precharge the outer portion of the ADC's sample path, which includes the external sensor. The output polarity of this override is also determined by the PPOL bit of ADCON1. The amount of time that this charging receives is controlled by the ADPRE register.

- **Note 1:** The external charging overrides the TRIS setting of the respective I/O pin.
 - **2:** If there is a device attached to this pin, Precharge should not be used.

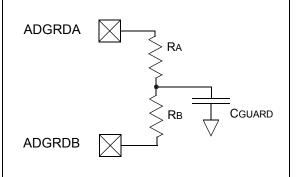
36.5.3 ACQUISITION CONTROL

The Acquisition stage is an optional time for the voltage on the internal sample and hold capacitor to charge or discharge from the selected analog channel. This acquisition time is controlled by the ADACQ register. If PRE = 0, acquisition starts at the beginning of conversion. When PRE = 1, the acquisition stage begins when precharge ends.

At the start of the acquisition stage, the port pin logic of the selected analog channel is overridden to turn off the digital high/low output drivers so they do not affect the final result of the charge averaging. Also, the selected ADC channel is connected to CHOLD. This allows charge averaging to proceed between the precharged channel and the CHOLD capacitor.

Note: When PRE! = 0, acquisition time cannot be '0'. In this case, setting ADACQ to '0' will set a maximum acquisition time (8191 ADC clock cycles). When precharge is disabled, setting ADACQ to '0' will disable hardware acquisition time control.

36.5.4 GUARD RING OUTPUTS


Figure 36-8 shows a typical guard ring circuit. CGUARD represents the capacitance of the guard ring trace placed on the PCB board. The user selects values for RA and RB that will create a voltage profile on CGUARD, which will match the selected acquisition channel.

The purpose of the guard ring is to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It also can be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478, "*mTouch*TM Sensing Solution Acquisition Methods Capacitive Voltage Divider" (DS01478).

The ADC has two guard ring drive outputs, ADGRDA and ADGRDB. These outputs can be routed through PPS controls to I/O pins (see Section **17.0 "Peripheral Pin Select (PPS) Module**" for details) and the polarity of these outputs are controlled by the ADGPOL and ADIPEN bits of ADCON1.

At the start of the first precharge stage, both outputs are set to match the ADGPOL bit of ADCON1. Once the acquisition stage begins, ADGRDA changes polarity, while ADGRDB remains unchanged. When performing a double sample conversion, setting the ADIPEN bit of ADCON1 causes both guard ring outputs to transition to the opposite polarity of ADGPOL at the start of the second precharge stage, and ADGRDA toggles again for the second acquisition. For more information on the timing of the guard ring output, refer to Figure 36-8 and Figure 36-9.

BCF	Bit Clear f	BN	Branch if Negative
Syntax:	BCF f, b {,a}	Syntax:	BN n
Operands:	$0 \leq f \leq 255$	Operands:	$-128 \le n \le 127$
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	Operation:	if NEGATIVE bit is '1' (PC) + 2 + 2n \rightarrow PC
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None
Status Affected:	None	Encoding:	1110 0110 nnnn nnnn
Encoding: Description:	1001bbbaffffffffBit 'b' in register 'f' is cleared.If 'a' is '0', the Access Bank is selected.If 'a' is '1', the BSR is used to select theGPR bank.If 'a' is '0' and the extended instructionset is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever $f \le 95$ (5Fh). See Section 41.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literations	Description: Words: Cycles:	If the NEGATIVE bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)
Words:	eral Offset Mode" for details.	Q Cycle Activity: If Jump:	
Cycles:	1	Q1	Q2 Q3 Q4
Q Cycle Activity:		Decode	Read literalProcessWrite to PC'n'Data
Q1 Decode	Q2 Q3 Q4 Read Process Write	No operation	No No No operation operation
	register 'f' Data register 'f'	If No Jump:	
Fuemples		Q1	Q2 Q3 Q4
Example: Before Instruc FLAG_R		Decode	Read literalProcessNo'n'Dataoperation
After Instruction FLAG_R	on	Example: Before Instruc PC After Instructio If NEGAT PC If NEGAT PC	= address (HERE) on TIVE = 1; = address (Jump)

			w	BNZ	Branch if		
Syntax:	BNOV n			Syntax:	BNZ n	BNZ n	
Operands:	-128 ≤ n ≤ 1	27		Operands:	-128 ≤ n ≤	127	
Operation:		if OVERFLOW bit is '0' (PC) + 2 + 2n \rightarrow PC		Operation:		if ZERO bit is '0' (PC) + 2 + 2n \rightarrow PC	
Status Affected:	None			Status Affected:	None		
Encoding:	1110	0101 nni	nn nnnn	Encoding:	1110	0001 nn	nn nnnn
Description:	program wil The 2's com added to the incremented instruction,	nplement num e PC. Since th d to fetch the r the new addre n. This instruct	ber '2n' is e PC will have next ess will be	Description:	will branch The 2's cor added to th incremente instruction,	nplement num e PC. Since the d to fetch the the new addr n. This instruc	ne PC will have next ess will be
Words:	1			Words:	1		
Cycles:	1(2)			Cycles:	1(2)		
Q Cycle Activity: If Jump:				Q Cycle Activity If Jump:	:		
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Decode	Read literal 'n'	Process Data	Write to PC	Decode	Read literal 'n'	Process Data	Write to PC
No	No	No	No	No	No	No	No
operation	operation	operation	operation	operation	operation	operation	operation
If No Jump:	00	00	04	If No Jump:	00	00	04
Q1 Decode	Q2 Read literal	Q3 Process	Q4 No	Q1 Decode	Q2 Read literal	Q3 Process	Q4 No
Decode	'n'	Data	operation	Decode	'n'	Data	operation
<u>Example</u> : Before Instru		BNOV Jump	<u> </u>	Example: Before Instr		BNZ Jump	
PC After Instruct		dress (HERE))	PC After Instruc		Idress (HERE)	
	RFLOW = 0;	dress (Jump)		If ZER P	O = 0;	ldress (Jump)	

W

INFS	NZ	Incremen	t f, skip if no	ot 0				
Synta	x:	INFSNZ f	{,d {,a}}					
Opera	ands:	$0 \leq f \leq 255$						
		d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1] a ∈ [0,1]					
Opera	ation.	$(f) + 1 \rightarrow de$	et					
Opere		skip if result						
Status	Affected:	None	None					
Encod	ding:	0100	0100 10da ffff ffff					
Descr	iption:	The content	ts of register 'f	' are				
			d. If 'd' is ' 0', th					
			/. If 'd' is '1', th ‹ in register 'f'					
			is not '0', the					
		instruction,	which is alread	dy fetched, is				
			ind a NOP is ex					
		instead, ma	king it a 2-cyc	le				
			he Access Bar	nk is selected.				
			he BSR is use	d to select the				
		GPR bank. If 'a' is '∩' a	nd the extende	ad instruction				
			ed, this instruc					
			Literal Offset A					
			ever f ≤ 95 (5F "Byte-Oriente					
			structions in					
		eral Offset	Mode" for det	tails.				
Words	S:	1						
Cycle	s:	1(2)						
			cycles if skip a a 2-word instr					
Q Cv	cle Activity:	by						
u oy	Q1	Q2	Q3	Q4				
Γ	Decode	Read	Process	Write to				
L		register 'f'	Data	destination				
lf ski		02	03	04				
Г	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
lf ski	•	d by 2-word in						
F	Q1	Q2	Q3	Q4				
	No	No	No	No				
╞	operation No	operation	operation No	operation No				
	operation	No operation	operation	operation				
Example: HERE INFSNZ REG, 1, 0 ZERO								
F	Before Instruc	NZERO						
E	PC	= Address	(HERE)					
A	After Instruction	on						
	REG If REG	= REG + ²	1					
	PC	\neq 0; = Address	(NZERO)					
	lf REG PC	= 0; = Address	(ZERO)					
	. •	,	. (22100)					

IORLW	Inclusive	Inclusive OR literal with W						
Syntax:	IORLW k							
Operands:	$0 \le k \le 255$	5						
Operation:	(W) .OR. k	$\rightarrow W$						
Status Affected:	N, Z							
Encoding:	0000	1001	kkk	.k	kkkk			
Description:	The conter bit literal 'k'							
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	3		Q4			
Decode	Read literal 'k'	Proce Dat		Wi	rite to W			
Example:	IORLW	35h						
Before Instruc	tion							
W	= 9Ah							
After Instruction	n							

BFh

=

© 2017 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
39DAh	OSCCON2	—		COSC	•	CDIV				105
39D9h	OSCCON1	_		NOSC			N	DIV		104
39D8h	CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE		177
39D7h - 39D2h	_				Unimple	emented				
39D1h	VREGCON ⁽¹⁾	_	—	_	_	_	_	VREGPM	—	176
39D0h	BORCON	SBOREN	_	—	_	_	—	—	BORRDY	85
39CFh - 39C8h	—		Unimplemented							
39C7h	PMD7	_	—	—	—	—	—	DMA2MD	DMA1MD	297
39C6h	PMD6		_	SMT1MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD	296
39C5h	PMD5	_	_	U2MD	U1MD	_	SPI1MD	I2C2MD	I2C1MD	295
39C4h	PMD4	CWG3MD	CWG2MD	CWG1MD	_	_	—	—		294
39C3h	PMD3	PWM8MD	PWM7MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	293
39C2h	PMD2	_	DACMD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	292
39C1h	PMD1	NCO1MD	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	291
39C0h	PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	290
39BFh - 39ABh	—		Unimplemented							
39AAh	PIR10	_	_	—	_	_	—	CLC4IF	CCP4IF	146
39A9h	PIR9		_	—	_	CLC3IF	CWG3IF	CCP3IF	TMR6IF	145
39A8h	PIR8	TMR5GIF	TMR5IF	_	_	_	—	—	—	145
39A7h	PIR7	_	—	INT2IF	CLC2IF	CWG2IF	—	CCP2IF	TMR4IF	144
39A6h	PIR6	TMR3GIF	TMR3IF	U2IF	U2EIF	U2TXIF	U2RXIF	I2C2EIF	I2C2IF	143
39A5h	PIR5	I2C2TXIF	I2C2RXIF	DMA2AIF	DMA2ORIF	DMA2DCN- TIF	DMA2SCN- TIF	C2IF	INT1IF	142
39A4h	PIR4	CLC1IF	CWG1IF	NCO1IF	_	CCP1IF	TMR2IF	TMR1GIF	TMR1IF	141
39A3h	PIR3	TMR0IF	U1IF	U1EIF	U1TXIF	U1RXIF	I2C1EIF	I2C1IF	I2C1TXIF	140
39A2h	PIR2	I2C1RXIF	SPI1IF	SPI1TXIF	SPI1RXIF	DMA1AIF	DMA10RIF	DMA1DCN- TIF	DMA1SCNTIF	138
39A1h	PIR1	SMT1PWAIF	SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INTOIF	138
39A0h	PIR0	IOCIF	CRCIF	SCANIF	NVMIF	CSWIF	OSFIF	HLVDIF	SWIF	137
399Fh - 399Bh	—				Unimple	emented				
399Ah	PIE10	—	—	—	—	—	—	CLC4IE	CCP4IE	156
3999h	PIE9	_		_	_	CLC3IE	CWG3IE	CCP3IE	TMR6IE	155
3998h	PIE8	TMR5GIE	TMR5IE	_	_	_	_	_		155
3997h	PIE7	_	—	INT2IE	CLC2IE	CWG2IE	_	CCP2IE	TMR4IE	154
3996h	PIE6	TMR3GIE	TMR3IE	U2IE	U2EIE	U2TXIE	U2RXIE	I2C2EIE	I2C2IE	153
3995h	PIE5	I2C2TXIE	I2C2RXIE	DMA2AIE	DMA2ORIE	DMA2DCN- TIE	DMA2SCN- TIE	C2IE	INT1IE	152
3994h	PIE4	CLC1IE	CWG1IE	NCO1IE	_	CCP1IE	TMR2IE	TMR1GIE	TMR1IE	151
3993h	PIE3	TMR0IE	U1IE	U1EIE	U1TXIE	U1RXIE	I2C1EIE	I2C1IE	I2C1TXIE	150
3992h	PIE2	I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCN- TIE	DMA1SCNTIE	149
3991h	PIE1	SMT1PWAIE	SMT1PRAIE	SMT1IE	C1IE	ADTIE	ADIE	ZCDIE	INT0IE	148
3990h	PIE0	IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE	147
398Fh - 398Bh	_				Unimple	emented				
398Ah	IPR10		—	_	_	_	—	CLC4IP	CCP4IP	165
Legend:	x = unknown.	u = unchanged.	— = unimplemer	nted. a = value	e depends on o	condition				-

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note 1: Unimplemented in LF devices.

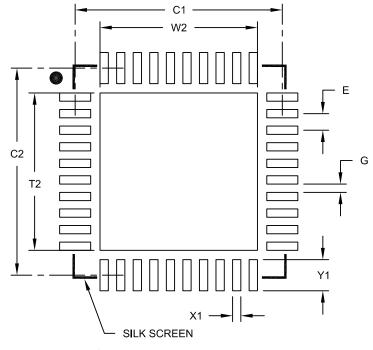
2: Unimplemented in PIC18(L)F26/27K42.

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-26: I²C BUS DATA REQUIREMENTS

Param. No.	Symbol		Characteristic		Max.	Units	Conditions	
SP100*	Тнідн	THIGH Clock high time 100 kHz m	100 kHz mode	4000	_	ns	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	600	—	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	260	_	ns	Device must operate at a minimum of 10 MHz	
SP101*	TLOW	Clock low time	100 kHz mode	4700	_	ns	Device must operate at a minimum of 1.5 MHz	
	D102* To SDA and SOL rice		400 kHz mode	1300	_	ns	Device must operate at a minimum of 10 MHz	
			1 MHz module	500	_		Device must operate at a minimum of 10 MHz	
SP102* TR	SDA and SCL rise	100 kHz mode	—	1000	ns			
	time	time	400 kHz mode	20	300	ns	CB is specified to be from 10-400 pF	
			1 MHz module	_	120	ns		
SP103*	03* TF SDA and SCL fall tim	SDA and SCL fall time	100 kHz mode	_	250	ns		
			400 kHz mode	20 X (VDD/ 5.5V)	250	ns	CB is specified to be from 10-400 pF	
			1 MHz module	20 X (VDD/ 5.5V)	120	ns		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0		ns		
			1 MHz module	0		ns		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(2)	
			400 kHz mode	100	_	ns		
			1 MHz module	50	_	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	_	3450	ns	(1)	
		clock	400 kHz mode		900	ns		
			1 MHz module	—	450	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4700	—	ns	Time the bus must be free	
			400 kHz mode	1300	_	ns	before a new transmission can start	
			1 MHz module	500	—	ns		
SP111	Св	Bus capacitive loading			400	pF		


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			3.80
Optional Center Pad Length	T2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X40)	X1			0.20
Contact Pad Length (X40)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B