

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k42t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.2 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 4.2.4 "Program Counter").

Figure 4-2 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-2 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 41.0 "Instruction Set Summary" provides further details of the instruction set.

4.4.3 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR and two three-word instructions: MOVFFL and MOVSFL. In all cases, the second and the third word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second or third word is executed by itself, a NOP is executed instead. This is necessary for cases when the multi-word instruction is preceded by a conditional instruction that changes the PC. Example 4-4 shows how this works.

FIGURE 4-2: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M	emory			000000h
	Byte Locati	ons \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
Instruction 4:	MOVFFL	123h, 456h	00h	60h	000012h
			F4h	8Ch	000014h
			F4h	56h	000016h
					000018h
					00001Ah

U-1	U-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	LVP ⁽²⁾		WRTSAF (1,3)	WRTD (1,4)	WRTC ⁽¹⁾	WRTB ^(1,5)	
bit 7							bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '1'				
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown	

REGISTER 5-8: CONFIGURATION WORD 4H (30 0007h)

bit 7-6	Unimplemented: Read as '1'
bit 5	 LVP: Low-Voltage Programming Enable bit⁽²⁾ 1 = Low-voltage programming enabled. MCLR/VPP pin function is MCLR. MCLRE (Register 5-3) is ignored. 0 = HV on MCLR/VPP must be used for programming.
bit 4	Unimplemented: Read as '1'
bit 3	WRTSAF: Storage Area Flash (SAF) Write Protection bit ^(1,3) 1 = SAF is NOT write-protected 0 = SAF is write-protected
bit 2	WRTD: Data EEPROM Write Protection bit ^(1,4) 1 = Data EEPROM NOT write-protected 0 = Data EEPROM write-protected
bit 1	WRTC: Configuration Register Write Protection bit ⁽¹⁾ 1 = Configuration Register NOT write-protected0 = Configuration Register write-protected
bit 0	WRTB: Boot Block Write Protection bit ^(1,5) 1 = Boot Block NOT write-protected Boot Block write-protected 0 = Boot Block write-protected Boot Block write-protected
Note 1:	Bits are implemented as sticky bits. Once protection is enabled through ICSP or a self write, it can only be reset through a Bulk Erase.

- 2: The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state.
- 3: Unimplemented if SAF is not present and only applicable if $\overline{SAFEN} = 0$.
- 4: Unimplemented if data EEPROM is not present.
- **5:** Only applicable if $\overline{BBEN} = 0$.

7.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 7-9: FSCM BLOCK DIAGRAM

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 7-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the FRQ bits and the NDIV/CDIV bits. The bit flag OSFIF of the respective PIR register is set. Setting this flag will generate an interrupt if the OSFIE bit of the respective PIR register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

13.4 Register Definitions: Nonvolatile Memory

REGISTER 13-1: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

R/W-0/0) R/W-0/0	U-0	R/S/HC-0/0	R/W/HS-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	
R	EG<1:0>	—	FREE	WRERR	WREN	WR	RD	
bit 7				•		_	bit 0	
Legend:								
R = Reada	ıble bit	W = Writable	bit	HC = Bit is cle	ared by hardv	vare		
x = Bit is u	nknown	-n = Value at	POR	S = Bit can be	set by softwa	re, but not clea	ired	
'0' = Bit is	cleared	'1' = Bit is set		U = Unimplem	ented bit, rea	d as '0'		
bit 7-6	REG<1:0>: N	IVM Region Se	election bit					
	10 =Access F	PFM Locations				ID		
	x1 = Access	Data EEPROM	iguration Bits, Memory Loca	DIA, DCI, Rev I	D and Device	ID		
bit 5		ted: Read as '	∩'					
bit 4	EREE: Progr	am Flash Mem	° orv Frase Enal	hle hit(1)				
Sit 1	1 = Perform	is an erase ope	eration on the r	iext WR comma	and			
	0 = The nex	t WR comman	d performs a w	rite operation				
bit 3	WRERR: Wri	te-Reset Error	Flag bit ^(2,3,4)					
	1 = A write of 1	operation was	interrupted by a	a Reset (hardwa	are set),			
	or WR v	vas written to 0	b1 when an in	valid address is	accessed (la	ble 9-1, Table 7	13-1) rogion	
	or WR v	vas written to 0	b1 when a writ	< 1.02 and addre	tress is acces	sed (Table 9-2)	iegion).	
	0 = All write	operations ha	ve completed r	normally				
bit 2	WREN: Prog	ram/Erase Ena	ble bit					
	1 = Allows p	program/erase	and refresh cy	cles				
	0 = Inhibits	programming/e	erasing and use	er refresh of NV	M			
bit 1	WR: Write Co	ontrol bit ^(5,6,7)						
	When REG p	oints to a Data	EEPROM Mei	<u>mory location:</u>	n Data EEDD(ation	
	When RFG p	oints to a PFM	location:	e correspondinț			allon	
	1 = Initiates	the PFM write	operation with	data from the h	olding registe	rs		
	0 = NVM pr	ogram/erase o	peration is corr	plete and inacti	ive			
bit 0	RD: Read Co	ontrol bit ⁽⁸⁾						
	1 = Initiates	a read at addr	ess pointed by	REG and NVM	ADR, and loa	ds data into NV	/MDAT	
	0 = NVM real	ad operation is	complete and	inactive				
Note 1:	This can only be u	used with PFM.						
2:	2: This bit is set when $WR = 1$ and clears when the internal programming timer expires or the write i							
2.	completed successfully.							
3. 4:	Dit must be cleared by the user; naroware will not clear this bit. Bit may be written to '1' by the user in order to implement test sequences							
5:	This bit can only b	e set by follow	ing the unlock	sequence of Se	ction 13.1.4 '	NVM Unlock	Sequence".	
6:	Operations are se	If-timed and the	e WR bit is clea	ared by hardwar	re when comp	lete.	-	
7:	Once a write operation is initiated, setting this bit to zero will have no effect.							

8: The bit can only be set in software. The bit is cleared by hardware when the operation is complete.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
DMAxCON0	EN	SIRQEN	DGO	_	_	AIRQEN		XIP	248
DMAxCON1	DMOD	E<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP	249
DMAxBUF	DBUF7	DBUF6	DBUF5	DBUF4	DBUF3	DBUF2	DBUF1	DBUF0	250
DMAxSSAL				SSA	<7:0>				250
DMAxSSAH				SSA<	:15:8>				250
DMAxSSAU	—	—			SSA<	21:16>			251
DMAxSPTRL				SPTR	R<7:0>				251
DMAxSPTRH				SPTR	<15:8>				251
DMAxSPTRU	—	—			SPTR<	:21:16>			252
DMAxSSZL			SSZ<7:0>						252
DMAxSSZH	—	—		—		SSZ<	11:8>		252
DMAxSCNTL				SCNT	<7:0>				253
DMAxSCNTH	—	—		—		SCNT	<11:8>		253
DMAxDSAL				DSA	<7:0>				253
DMAxDSAH				DSA<	:15:8>				254
DMAxDPTRL				DPTF	R<7:0>				254
DMAxDPTRH				DPTR	<15:8>				254
DMAxDSZL				DSZ	<7:0>				255
DMAxDSZH	—	—		_		DSZ<	11:8>		255
DMAxDCNTL				DCN1	<7:0>				255
DMAxDCNTH	—	—	—	—		DCNT	<11:8>		256
DMAxSIRQ			SIRQ<6:0>						256
DMAxAIRQ	_				AIRQ<6:0>				256

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH DMA

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by DMA.

REGISTER 20-3: TMR0L: TIMER0 COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR0	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BO		R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR0L<7:0>: TMR0 Counter bits <7:0>

REGISTER 20-4: TMR0H: TIMER0 PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
TMR0H<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When MD16 = 0 **PR0<7:0>:**TMR0 Period Register Bits <7:0> When MD16 = 1 **TMR0H<15:8>:** TMR0 Counter bits <15:8>

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T0CON0	EN		OUT	MD16		OUTPS<3:0>			
T0CON1	CS<2:0> ASYN			ASYNC	CKPS<3:0>				302
TMR0L	TMR0L<7:0>							303	
TMR0H	TMR0H<15:8>						303		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Timer0.

21.1 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the ON and GE bits in the TxCON and TxGCON registers, respectively. Table 21-1 displays the Timer1/3/5 enable selections.

TABLE 21-1: TIMER1/3/5 ENABLE SELECTIONS

ON	GE	Timer1/3/5 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

21.2 Clock Source Selection

The CS<4:0> bits of the TMRxCLK register (Register 21-3) are used to select the clock source for Timer1/3/5. The TxCLK register allows the selection of several possible synchronous and asynchronous clock sources. Register 21-3 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used at the Timer1/3/5 gate:

- Asynchronous event on the TxGPPS pin
- TMR0OUT
- TMR1/3/5OUT (excluding the TMR for which it is being used)
- TMR 2/4/6OUT (postscaled)
- CMP1/2OUT
- SMT1 match
- NCOTOUT
- PWM3/4 OUT
- CCP1/2/3/4 OUT
- CLC1/2/3/4 OUT
- ZCDOUT

Note:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
	Timer1/3/5 enabled after POR
	 Write to TMRxH or TMRxL
	 Timer1/3/5 is disabled
	 Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5
	is enabled (TMR $xON = 1$) when
	TxCKI is low.

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/ 3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKIPPS pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
POL	—	—	_	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	POL: CLCxO	UT Output Pola	arity Control b	bit			
	1 = The output	ut of the logic of	ell is inverted	l 			
	0 = 1 he outp	ut of the logic of	ell is not inve	erted			
bit 6-4	Unimplemen	ted: Read as '	כ'				
bit 3	G4POL: Gate	3 Output Pola	rity Control bi	it			
	1 = The output	ut of gate 3 is i	nverted when	applied to the	logic cell		
	0 = The outp	ut of gate 3 is r	not inverted				
bit 2	G3POL: Gate	2 Output Pola	rity Control bi	it			
	1 = The output	ut of gate 2 is i ut of gate 2 is r	nverted when	applied to the	logic cell		
hit 1			rity Control bi				
DILI	J = The output	e i Oulpul Pola	nuy Control bi	applied to the			
	0 = The output	ut of gate 1 is r	not inverted	applied to the	logic cell		
bit 0	G1POL : Gate	0 Output Pola	rity Control bi	it			
bit 0	1 = The output	ut of gate 0 is i	nverted when	annlied to the	logic cell		
	0 = The output	ut of gate 0 is r	not inverted				
	•	5					

REGISTER 27-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	G3D4T: Gate	2 Data 4 True	(noninverted)	bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gal	te 2			
h # 0		(true) is not gar	ted into CLCX				
DIT 6		e 2 Data 4 Nega	ated (inverted) DIT			
	1 = CLCIN3 0 = CLCIN3	(inverted) is ga	t gated into CLCX	I Cx Gate 2			
bit 5	G3D3T: Gate	2 Data 3 True	(noninverted)	bit			
	1 = CLCIN2	(true) is gated i	nto CLCx Gat	te 2			
	0 = CLCIN2	(true) is not ga	ted into CLCx	Gate 2			
bit 4	G3D3N: Gate	e 2 Data 3 Neg	ated (inverted) bit			
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN2	(inverted) is no	t gated into C	LCx Gate 2			
bit 3	G3D2T: Gate	2 Data 2 True	(noninverted)	bit			
	1 = CLCIN1	(true) is gated i	Into CLCX Gat	te 2 Gate 2			
hit 2	G3D2N: Gate	(ilue) is not ga	ated (inverted) bit			
	1 = CLCIN1	(inverted) is da	ted into CI Cx	Gate 2			
	0 = CLCIN1	(inverted) is no	t gated into C	LCx Gate 2			
bit 1	G3D1T: Gate	2 Data 1 True	(noninverted)	bit			
	1 = CLCIN0	(true) is gated i	into CLCx Gat	te 2			
	0 = CLCIN0	(true) is not ga	ted into CLCx	Gate 2			
bit 0	G3D1N: Gate	e 2 Data 1 Nega	ated (inverted) bit			
	1 = CLCINO	(inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCINO	(invertea) is no	t gated into C	LUX Gate 2			

REGISTER 27-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

29.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 29-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

29.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 29-1 and Figure 29-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 29-1: EXTERNAL RESISTOR

$$RSERIES = \frac{V_{PEAK}}{3 \times 10^{-4}}$$

FIGURE 29-1: EXTERNA

Measuring VCPINV can be difficult, especially when the waveform is relative to VDD. However, by combining Equations 29-2 and 29-3, the resistor value can be determined from the time difference between the ZCD_output high and low intervals. Note that the time difference, ΔT , is 4*TOFFSET. The equation for determining the pull-up and pull-down resistor values from the high and low ZCD_output periods is shown in Equation 29-4.

EQUATION 29-4: PULL-UP/DOWN RESISTOR VALUES

$$R = RSERIES\left(\frac{V_{BIAS}}{V_{PEAK}\left(\sin\left(\pi Freq\frac{(\Delta T)}{2}\right)\right)} - 1\right)$$

R is pull-up or pull-down resistor.

 $\mathsf{VBIAS}\xspace$ is $\mathsf{VPULLUP}\xspace$ when R is pull-up or $\mathsf{VDD}\xspace$ when R is pull-down.

 ΔT is the ZCDOUT high and low period difference.

29.6 Handling VPEAK Variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 29-5. The compensating pull-up for this series resistance can be determined with Equation 29-3 because the pull-up value is not dependent to the peak voltage.

EQUATION 29-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

29.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

29.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the ZCD Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the SEN bit of the ZCDCON register must be set to enable the ZCD module.

29.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit which disables the ZCD module when set, but it can be enabled using the SEN bit of the ZCDCON register (Register 29-1). If the ZCD bit is clear, the ZCD is always enabled.
- The ZCD can also be disabled using the ZCDMD bit of the respective PMD2 register (Register 19-3). This is subject to the status of the ZCD bit.

30.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the CHPOL bit of the MD1CON1 register. Inverting the signal for the carrier low source is enabled by setting the CLPOL bit of the MD1CON1 register.

30.6 Programmable Modulator Data

The BIT of the MD1CON0 register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

30.7 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the OPOL bit of the MD1CON0 register.

30.8 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep. Refer to Section 10.0 "Power-Saving Operation Modes" for more details.

30.9 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

30.10 Peripheral Module Disable

The DSM module can be completely disabled using the PMD module to achieve maximum power saving. The DSMMD bit of PMD6 (Register 19-7) when set disables the DSM module completely. When enabled again, all the registers of the DSM module default to POR status.

32.8.3.4 Receiver Overflow and Transmitter Underflow Interrupts

The receiver overflow interrupt triggers if data is received when the RXFIFO is already full and RXR = 1. In this case, the data will be discarded and the RXOIF bit will be set. The receiver overflow interrupt flag is the RXOIF bit of SPIxINTF. The receiver overflow interrupt enable bit is the RXOIE bit of SPIxINTE.

The Transmitter Underflow interrupt flag triggers if a data transfer begins when the TXFIFO is empty and TXR = 1. In this case, the most recently received data will be transmitted and the TXUIF bit will be set. The transmitter underflow interrupt flag is the TXUIF bit of SPIxINTF. The transmitter underflow interrupt enable bit is the TXUIE bit of SPIxINTE.

Both of these interrupts will only occur in Slave mode, as Master mode will not allow the RXFIFO to overflow or the TXFIFO to underflow.

38.0 COMPARATOR MODULE

Note:	The PIC18(L)F26/2	27/45/46/47/55/56/
	57K42 devices have	two comparators.
	Therefore, all informati	on in this section
	refers to both C1 and C	2.

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution.

The analog comparator module includes the following features:

- Programmable input selection
- Programmable output polarity
- Rising/falling output edge interrupts

38.1 Comparator Overview

A single comparator is shown in Figure 38-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

BNC	;	Branch if	Not Carry		BNN	Branch if	Not Negativ	/e
Synta	ax:	x: BNC n		Syntax:	BNN n			
Oper	ands:	-128 ≤ n ≤ 1	27		Operands:	-128 ≤ n ≤ 1	127	
Oper	ation:	if CARRY b (PC) + 2 + 2	it is '0' 2n → PC		Operation:	if NEGATIV (PC) + 2 + 2	′E bit is '0' 2n → PC	
Statu	s Affected:	None			Status Affected:	None		
Enco	ding:	1110	0011 nn	nn nnnn	Encoding:	1110	0111 nn	nn nnnn
Desc	ription:	If the CARR will branch. The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	Y bit is '0', the pplement num e PC. Since th d to fetch the r the new addre n. This instruct ruction.	n the program ber '2n' is e PC will have next ess will be ion is then a	Description:	If the NEGATIVE bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will h incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then 2-cycle instruction.		, then the lber '2n' is le PC will have next ess will be tion is then a
Word	ls:	1			Words:	1		
Cycle	es:	1(2)			Cycles:	1(2)		
Q C If Ju	ycle Activity: mp:				Q Cycle Activity: If Jump:			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC	Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No	No	No	No	No
	operation	operation	operation	operation	operation	operation	operation	operation
lf No	o Jump:		~~	<u>.</u>	If No Jump:			.
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Decode	read literal	Process Data	operation	Decode	read literal	Data	operation
<u>Exan</u>	<u>nple</u> :	HERE	BNC Jump		Example:	HERE	BNN Jump	390.0001
	Before Instruc	tion			Before Instruc	ction		
PC = address (HERE) After Instruction If CARRY = 0; PC = address (Jump) If CARRY = 1;			PC After Instructi If NEGA PC If NEGA	= ad on TIVE = 0; = ad TIVE = 1;	dress (HERE)		

TABLE 44-7:	MEMORY PROGRAMMING SPECIFICATIONS
-------------	-----------------------------------

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
Data EEPROM Memory Specifications								
MEM20	ED	DataEE Byte Endurance	100k	_	_	E/W	-40°C ≤ TA ≤ +85°C	
MEM21	T _{D_RET}	Characteristic Retention		40		Year	Provided no other specifications are violated	
MEM22	$N_{D_{REF}}$	Total Erase/Write Cycles before Refresh	1M 500k	10M —		E/W	-40°C ≤ TA ≤ +60°C -40°C ≤)TA ≤ +85°C	
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN	Ι	VDDMAX	٧<		
MEM24	$T_{D_{BEW}}$	Byte Erase and Write Cycle Time		4.0	5.0 <	ms		
Program	n Flash Me	emory Specifications			\langle			
MEM30	E _P	Memory Cell Endurance	10k	Ι	- /	EN	-40°C	
MEM32	T _{P_RET}	Characteristic Retention	_	40 <	1	Year	Provided no other specifications are violated	
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN		VDBMAX	\checkmark		
MEM34	V _{P_REW}	VDD for Row Erase or Write operation		Á		/ v		
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write		80	2.5	ms		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Memory Cell Endurance for the Program memory is defined as: One Row Erase operation and one Self-Timed Write.

TABLE 44-10: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS50	Fhfosc	Precision Calibrated HFINTOSC Frequency		4 8 12 16 48 64	_	MHz	(Note 2)		
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency	0.93 1.86	1 2	1.07 2.14	MHz MHz			
OS53*	FLFOSC	Internal LFINTOSC Frequency		31		kHz			
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μs μs	VREGPM = 0 VREGPM = 1		
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time		0.2		ms	7		

These parameters are characterized but not tested. *

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 44-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

PRECISION CALIBRATED HEINTOSC FREQUENCY ACCURACY OVER DEVICE **FIGURE 44-6:** VDD AND TEMPERATURE

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		44		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	ed Pad Width E2 6.25 6.45			6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25 6.45 6.60			
Terminal Width	b	0.20 0.30 0.35			
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

© 2017 Microchip Technology Inc.