

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k42-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

bit bit <th>TABLE 1</th> <th>:</th> <th></th> <th>28-PIN ALI</th> <th>LOCATION</th> <th>TABLE (PIC18(</th> <th>L)F2XK42)</th> <th></th>	TABLE 1	:		28-PIN ALI	LOCATION	TABLE (PIC18(L)F2XK42)													
Image: Problem in the system in theresystem in the system in there and the system in the s	0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	I²C	SPI	UART	WSD	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
Image: Probability of the p	RA0	2	27	ANA0	—	—	C1IN0- C2IN0-	-	—	_		_	_	-	-	CLCIN0 ⁽¹⁾	_	-	IOCA0	—
Image Image <t< td=""><td>RA1</td><td>3</td><td>28</td><td>ANA1</td><td>-</td><td>—</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>—</td><td>_</td><td>—</td><td>—</td><td>CLCIN1⁽¹⁾</td><td>-</td><td>-</td><td>IOCA1</td><td>-</td></t<>	RA1	3	28	ANA1	-	—		-	-	-	-	—	_	—	—	CLCIN1 ⁽¹⁾	-	-	IOCA1	-
R4 6 3 ANA4 MDCARH ⁰ TOCKI ⁰ MDCARH ⁰ TOCKI ⁰ MDCARH ⁰ TOCKI ⁰ </td <td>RA2</td> <td>4</td> <td>1</td> <td>ANA2</td> <td>VREF-</td> <td>DAC1OUT1</td> <td></td> <td>I</td> <td>-</td> <td>—</td> <td>-</td> <td>-</td> <td>—</td> <td>—</td> <td>—</td> <td>-</td> <td>—</td> <td>-</td> <td>IOCA2</td> <td>—</td>	RA2	4	1	ANA2	VREF-	DAC1OUT1		I	-	—	-	-	—	—	—	-	—	-	IOCA2	—
RAS 7 4 ANAS NDSRC ¹⁰ ICCAS RA6 10 7 ANAG ICCAS ICCAS <td>RA3</td> <td>5</td> <td>2</td> <td>ANA3</td> <td>VREF+</td> <td>_</td> <td>C1IN1+</td> <td> </td> <td>_</td> <td>_</td> <td> </td> <td>MDCARL⁽¹⁾</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>IOCA3</td> <td>_</td>	RA3	5	2	ANA3	VREF+	_	C1IN1+		_	_		MDCARL ⁽¹⁾	_	_	_	_	_	_	IOCA3	_
RA6 10 7 ANA6	RA4	6	3	ANA4	_	_		_	_	_	-	MDCARH ⁽¹⁾	T0CKI ⁽¹⁾	_	_	_	_	_	IOCA4	_
Image: Normal Section	RA5	7	4	ANA5	_	_	_	-	_	SS1 ⁽¹⁾	_	MDSRC ⁽¹⁾	_	_	_	_	_	-	IOCA5	—
Image: Constraint of the state of	RA6	10	7	ANA6	-	-	-	-	-	-	-	-	-	-	-	—			IOCA6	
Image: Constraint of the state of	RA7	9	6	ANA7	_	—	_	-	—	_	_	—	_	—	—	—	_	-	IOCA7	
Image: Normal Section Sectin Section Section Section Section Section Section S	RB0	21	18	ANB0	—	-	C2IN1+	ZCD	-	—	-	-	—	CCP4 ⁽¹⁾	CWG1IN ⁽¹⁾	-	—	-		—
Image: Normal system Image: N	RB1	22	19	ANB1	—	—			SCL2 ^(3,4)	_	-	—	—	—	CWG2IN ⁽¹⁾	—	_	_		—
RB4 25 24 ANB4 ADCACT ⁽¹⁾ TGG ⁽¹⁾ TGG ⁽¹⁾	RB2	23	20	ANB2	—	-	-	I	SDA2 ^(3,4)	—	-	-	—	—	CWG3IN ⁽¹⁾	-	—	-		—
ADCACT ⁽¹⁾	RB3	24	21	ANB3	—	-		—	—	_	—	—	_	-	-	-	—	—	IOCB3	—
RB6 27 24 ANB6 CLCIN2 ⁽¹⁾ IOCB6 ICSPCLK	RB4	25	22	ANB4 ADCACT ⁽¹⁾	—	—	—	—	—	—	—	—	T5G ⁽¹⁾	—	—	—	—	—	IOCB4	—
	RB5	26	23	ANB5	_	—	_	-	_	_	_	_	T1G ⁽¹⁾	CCP3 ⁽¹⁾	—	—	_	_	IOCB5	—
RB7 28 25 ANB7 - DAC10UT2 RX2 ⁽¹⁾ - T6IN(1) CLCIN3 ⁽¹⁾ IOCB7 ICSPDAT	RB6	27	24	ANB6	—		_	—	_	_	CTS2 ⁽¹⁾	_	_	_	_		_	_	IOCB6	ICSPCLK
	RB7	28	25	ANB7	—	DAC10UT2	_	_	_		RX2 ⁽¹⁾	_	T6IN(1)	—	—	CLCIN3 ⁽¹⁾	-	-	IOCB7	ICSPDAT

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All output signals shown in this row are PPS remappable.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins can be configured for I²C and SMB[™] 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUs input buffer thresholds.

EXAMPLE 9-3	SETTING UP VECTOR	ED INTERRUPTS USING MPASM
ISR_TMR0: CC BANKSI BCF BTG RETFIN	L PIRO PIR3, TMROIF LATC, 0, ACCESS	; ISR code at 0x08C0 in PFM ; Select bank for PIR0 ; Clear TMR0IF ; Code to execute in ISR ; Return from ISR
InterruptInit	:	
BANKSI	L INTCONO	; Select bank for INTCON0
BSF	INTCONO, GIEH	; Enable high priority interrupts
BSF	INTCONO, GIEL	; Enable low priority interrupts
BSF	INTCONU, IPEN_INTC	CON0 ; Enable interrupt priority
BANKSI	CL PIEO	; Select bank for PIE0
BSF	PIE3, TMROIE	; Enable TMR0 interrupt
BSF	PIE4, TMR1IE	; Enable TMR1 interrupt
BCF RETURI	IPR3, TMROIP 1 1	; Make TMR0 interrupt low priority
VectorTableIn	it:	
; Set	IVTBASE (optional - defaul	t is 0x000008)
MOVLW	0x00	; This is optional
MOVWF		; If not included, then the
MOVLW	0x40	; hardware default value of
MOVWF	IVTBASEH, ACCESS	; 0x0008 will be taken.
MOVLW MOVWF	0x08 IVTBASEL, ACCESS	
110 VW1		
; TMR(vector at IVTBASE + 2*(TM	R0 vector number i.e. 31) = 0x4046
MOVLW	0x00	; Load TBLPTR with the
MOVWF	TBLPTRU, ACCESS	; PFM memory location to be
MOVLW MOVWF	0x40 TBLPTRH, ACCESS	; written to.
MOVIW	0x46	
MOVWF	TBLPTRL, ACCESS	
	te the contents of TMR0 vector TMR0_ADDRESS >> 2 = 0x08C0 0x30 TABLAT, ACCESS	
TBLWT		; Write to temp table latch
		,
MOVLW	0x02	; High byte next
MOVWF TBLWT:	TABLAT, ACCESS	; Write to temp table latch
		,
	e to PFM now using NVMCON	
BANKSI		; Select bank for NVMCON1
MOVLW	0x84	; Setting to write to PFM
MOVWF	NVMCON1	
MOVLW	0x55	; Required unlock sequence
MOVWF	NVMCON2	
MOVLW	0 x A A	
MOVWF	NVMCON2	
BSF	NVMCON1, WR	; Start writing to PFM
BTFSC	NVMCON1, WR	; Wait for write to complete
GOTO	\$-2	
RETURI	1	
	-	
L		

EXAMPLE 9-3: SETTING UP VECTORED INTERRUPTS USING MPASM

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TMR0IP	U1IP	U1EIP	U1TXIP	U1RXIP	I2C1EIP	I2C1IP	I2C1TXIP
bit 7							bit C
Legend: R = Readable	hit	W = Writable	hit	II – I Inimplor	nented bit, read	as 'O'	
u = Bit is unch		x = Bit is unkr			at POR and BOI		othor Pocote
'1' = Bit is set	-	0' = Bit is clear				value at all t	
			areu				
bit 7	TMR0IP: TM	R0 Interrupt Pri	ority bit				
	1 = High prio 0 = Low prior						
bit 6	U1IP: UART1	Interrupt Prior	ity bit				
	1 = High prio	•					
	0 = Low prior	•					
bit 5		1 Framing Err	or Interrupt Pr	iority bit			
	1 = High prio 0 = Low prio						
bit 4	•	RT1 Transmit Ir	terrupt Priorit	v bit			
	1 = High prio			,			
	0 = Low prior						
bit 3		RT1 Receive In	terrupt Priority	y bit			
	1 = High prio						
h # 0	0 = Low prior	•					
bit 2	1 = High prio	1 Error Interrup	ot Priority bit				
	0 = Low prior						
bit 1		Interrupt Priorit	ty bit				
	1 = High prio	rity					
	0 = Low prior						
bit 0		C1 Transmit Int	errupt Priority	bit			
	1 = High prio						
	0 = Low prior	TITV					

REGISTER 9-28: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

11.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WWDT is always On
 - WWDT is off when in Sleep
 - WWDT is controlled by software
 - WWDT is always Off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ _q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
-	CS<2:0>	_		WINDOW<2:0>	
bit 7					bit 0
Legend:					

REGISTER 11-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7 Unimplemented: Read as '0'

bit 6-4 **CS<2:0>:** Watchdog Timer Clock Select bits

- 111 = Reserved •
 - •
 - •
 - 011 = Reserved
 - 010 = SOSC
 - 001 = MFINTOSC 31.25 kHz
- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'

bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of CS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H register.

3: If WDTCCS<2:0> in CONFIG3H \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3H \neq 111, these bits are read-only.

REGISTER 14-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7				-			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 ACC<7:0>: CRC Accumulator Register bits

REGISTER 14-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIFT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

REGISTER 14-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SHIF	Γ<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<7:0>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

15.5 DMA Message Transfers

Once the Enable bit is set to start DMA message transfers, the Source/Destination pointer and counter registers are initialized to the conditions shown in Table 15-3.

TABLE 15-3: DMA INITIAL CONDITIONS

Register	Value loaded
DMAxSPTR<21:0>	DMAxSSA<21:0>
DMAxSCNT<11:0>	DMAxSSZ<11:0>
DMAxDPTR<15:0>	DMAxDSA<15:0>
DMAxDCNT<11:0>	DMAxDSZ<11:0>

During the DMA Operation after each transaction, Table 15-4 and Table 15-5 indicate how the Source/ Destination pointer and counter registers are modified.

TABLE 15-4: DMA SOURCE POINTER/COUNTER DURING OPERATION

Register	Modified Source Counter/Pointer Value
DMAxSCNT<11:0> != 1	DMAxSCNT = DMAxSCNT -1
	SMODE = 00: DMAxSPTR = DMAxSPTR
	SMODE = 01: DMAxSPTR = DMAxSPTR + 1
	SMODE = 10: DMAxSPTR = DMAxSPTR - 1
DMAxSCNT<11:0> == 1	DMAxSCNT = DMAxSSZ
	DMAxSPTR = DMAxSSA

TABLE 15-5: DMA DESTINATION POINTER/COUNTER DURING OPERATION

Register	Modified Destination Counter/Pointer Value
DMAxDCNT<11:0>!= 1	DMAxDCNT = DMAxDCNT -1
	DMODE = 00: DMAxDPTR = DMAxDPTR
	DMODE = 01: DMAxDPTR = DMAxDPTR + 1
	DMODE = 10: DMAxDPTR = DMAxDPTR - 1
DMAxDCNT<11:0> == 1	DMAxDCNT = DMAxDSZ
	DMAxDPTR = DMAxDSA

The following sections discuss how to initiate and terminate DMA transfers.

15.5.1 STARTING DMA MESSAGE TRANSFERS

The DMA can initiate data transactions by either of the following two conditions:

- 1. User software control
- 2. Hardware trigger, SIRQ

15.5.1.1 User Software Control

Software starts or stops DMA transaction by setting/ clearing the DGO bit. The DGO bit is also used to indicate whether a DMA hardware trigger has been received and a message is in progress.

- Note 1: Software start can only occur if the EN bit (DMAxCON1) is set.
 - 2: If the CPU writes to the DGO bit while it is already set, there is no effect on the system, the DMA will continue to operate normally.

15.5.3.1 Clearing the SIRQEN bit

Clearing the SIRQEN bit (DMAxCON1 register) stops the sampling of external start interrupt triggers, hence preventing further DMA Message transfers.

An example would be a communications peripheral with a level-triggered interrupt. The peripheral will continue to request data (because its buffer is empty) even though there is no more data to be moved. Disabling the SIRQEN bit prevents the DMA from processing these requests.

15.5.3.2 Source/Destination Stop

The SSTP and DSTP bits (DMAxCON0 register) determine whether or not to disable the hardware triggers (SIRQEN = 0) once a DMA message has completed.

When the SSTP bit is set and the DMAxSCNT = 0, then the SIRQEN bit will be cleared. Similarly, when the DSTP bit is set and the DMAxDCNT = 0, the SIRQEN bit will be cleared.

Note: The SSTP and DSTP bits are independent functions and do not depend on each other. It is possible for a message to be stopped by either counter at message end or both counters at message end.

15.6 Types of Hardware Triggers

The DMA has two different trigger inputs namely the Source trigger and the abort trigger. Each of these trigger sources is user configurable using the DMAxSIRQ and DMAxAIRQ registers.

Based on the source selected for each trigger, there are two types of requests that can be sent to the DMA.

- Edge triggers
- · Level triggers

15.6.1 EDGE TRIGGER REQUESTS

An Edge request occurs only once when a given module interrupt requirements are true.

15.6.2 LEVEL TRIGGER REQUESTS

A level request is asserted as long as the condition that causes the interrupt is true.

15.7 Types of Data Transfers

Based on the memory access capabilities of the DMA (See Table 15-1), the following sections discuss the different types of data movement between the Source and Destination Memory regions.

• N: 1

This type of transfer is common when sending predefined data packets (such as strings) through a single interface point (such as communications modules transmit registers).

• N: N

This type of transfer is useful for moving information out of the Program Flash or Data EEPROM to SRAM for manipulation by the CPU or other peripherals.

• 1: N

This type of transfer is common when bridging two different modules data streams together (communications bridge).

• 1: N

This type of transfer is useful for moving information from a single data source into a memory buffer (communications receive registers).

15.8 DMA Interrupts

Each DMA has its own set of four interrupt flags, used to indicate a range of conditions during data transfers. The interrupt flag bits can be accessed using the corresponding PIR registers (Refer to the Interrupt Section).

15.8.1 DMA SOURCE COUNT INTERRUPT

The DMAxSCNTIF source count interrupt flag is set every time the DMAxSCNT<11:0> reaches zero and is reloaded to its starting value.

15.8.2 DMA DESTINATION COUNT INTERRUPT

The DMAxDCNTIF destination count interrupt flag is set every time the DMAxDCNT<11:0> reaches zero and is reloaded to its starting value.

The DMA Source Count zero and Destination Count zero interrupts are used in conjunction to determine when to signal the CPU when the DMA Messages are completed.

15.8.3 ABORT INTERRUPT

The DMAxAIF abort interrupt flag is used to signal that the DMA has halted activity due to an abort signal from one of the abort sources. This is used to indicate that the transaction has been halted for some reason.

15.8.4 OVERRUN INTERRUPT

When the DMA receives a trigger to start a new message before the current message is completed, then the DMAxORIF Overrun interrupt flag is set.

This condition indicates that the DMA is being requested before its current transaction is finished. This implies that the active DMA may not be able to keep up with the demands from the peripheral module being serviced, which may result in data loss.

The DMAxORIF flag being set does not cause the current DMA transfer to terminate.

The Overrun interrupt is only available for trigger sources that are edge based and not available for sources that are level-based. Therefore a level-based interrupt source does not trigger a DMA overrun error due to the potential latency issues in the system.

An example of an interrupt that could use the overrun interrupt would be a timer overflow (or period match) interrupt. This event only happens every time the timer rolls over and is not dependent on any other system conditions.

An example of an interrupt that does not allow the overrun interrupt would be the UARTTX buffer. The UART will continue to assert the interrupt until the DMA is able to process the MSG. Due to latency issues, the DMA may not be able to service an empty buffer immediately, but the UART continues to assert its transmit interrupt until it is serviced. If overrun was allowed in this case, the overrun would occur almost immediately as the module samples the interrupt sources every instruction cycle.

15.9 DMA Setup and Operation

The following steps illustrate how to configure the DMA for data transfer:

- 1. Program the appropriate Source and Destination addresses for the transaction into the DMAxSSA and DMAxDSA registers
- Select the source memory region that is being addressed by DMAxSSA register, using the SMR<1:0> bits.
- 3. Program the SMODE and DMODE bits to select the addressing mode.
- 4. Program the Source size DMAxSSZ and Destination size DMAxDSZ registers with the number of bytes to be transferred. It is recommended for proper operation that the size registers be a multiple of each other.
- If the user desires to disable data transfers once the message has completed, then the SSTP and DSTP bits in DMAxCON0 register need to be set. (see Section 15.5.3.2 "Source/Destination Stop").
- If using hardware triggers for data transfer, setup the hardware trigger interrupt sources for the starting and aborting DMA transfers (DMAxSIRQ and DMAxAIRQ), and set the corresponding interrupt request enable bits (SIRQEN and AIRQEN).
- Select the priority level for the DMA (see Section 3.1 "System Arbitration") and lock the priorities (see Section 3.1.1 "Priority Lock")
- 8. Enable the DMA (DMAxCON1bits. EN = 1)
- 9. If using software control for data transfer, set the DGO bit, else this bit will be set by the hardware trigger.

Once the DMA is set up, the following flow chart describes the sequence of operation when the DMA uses hardware triggers and utilizes the unused CPU cycles (bubble) for DMA transfers.

15.9.7 ABORT TRIGGER, MESSAGE IN PROGRESS

When an abort interrupt request is received in a DMA transaction, the DMA will perform a soft-stop by clearing the DGO (i.e., if the DMA was reading the source register, it will complete the read operation and then clear the DGO bit).

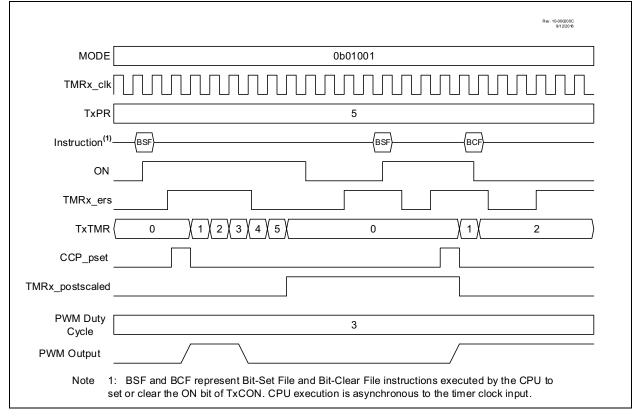
The SIREQEN bit is cleared to prevent any overrun and the AIRQEN bit is cleared to prevent any false aborts.

When the DGO bit is set again the DMA will resume operation from where it left off after the soft-stop.

	0 0 0 0 0 0 0 0 0 0 0	Rav. 10-001275G 8/12/2016
Instruction Clock		
EN		
SIRQEN		
AIRQEN		
Source Hardware Trigger ——		
Abort Hardware Trigger		
DGO		
DMAxSPTR <	0x3EEF 0x3EF0 0x3EF0 0x3EEF	
DMAxDPTR	0x100 0x101 0x102	
	2 1 2	
	10 9 8	
DMA STATE	$IDLE$ $SR^{(1)}$ $IDLE$ $DW^{(2)}$ $SR^{(1)}$ $DW^{(2)}$ $IDLE$ $DW^{(2)}$ $IDLE$	
DMAxCONbits.XIP		
DMAxAIF ——		
DMAxSSA	0x3EEF DMAxDSA 0x100	
DMAxSSZ	0x2 DMAxDSZ 0xA	
Note 1: SR - So		
2: DW - De	estination Write	

The following table contains some of the cases in which the DMA module can be configured to.

22.5.6 EDGE-TRIGGERED ONE-SHOT MODE


The Edge-Triggered One-Shot modes start the timer on an edge from the external signal input, after the ON bit is set, and clear the ON bit when the timer matches the T2PR period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 01001)
- Falling edge (MODE<4:0> = 01010)
- Rising or Falling edge (MODE<4:0>='01011')

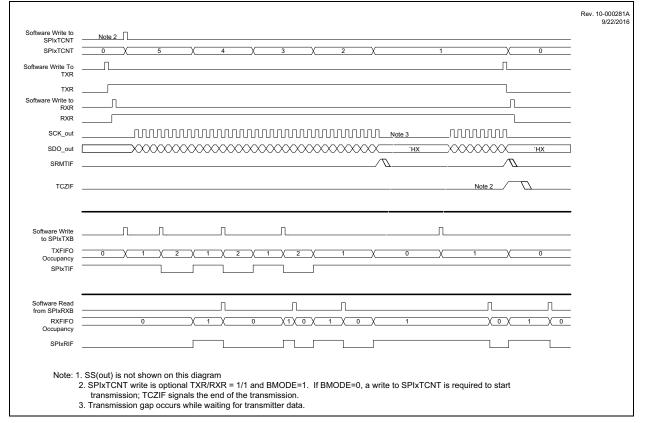
If the timer is halted by clearing the ON bit then another TMRx_ers edge is required after the ON bit is set to resume counting. Figure 22-9 illustrates operation in the rising edge One-Shot mode.

When Edge-Triggered One-Shot mode is used in conjunction with the CCP then the edge-trigger will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated when the timer halts at the T2PR period count match.

FIGURE 22-9: EDGE TRIGGERED ONE-SHOT MODE TIMING DIAGRAM (MODE = 01001)

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	
bit 7	1		·	•			bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7		e 1 Data 4 True	. ,					
		(true) is gated i						
		(true) is not gat						
bit 6		e 1 Data 4 Nega	•					
		(inverted) is ga (inverted) is no						
bit 5			•					
		G2D3T: Gate 1 Data 3 True (noninverted) bit 1 = CLCIN2 (true) is gated into CLCx Gate 1						
		(true) is not gat						
bit 4	G2D3N: Gat	e 1 Data 3 Neg	ated (inverted)) bit				
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 1				
	0 = CLCIN2	(inverted) is no	t gated into C	LCx Gate 1				
bit 3	G2D2T: Gate	e 1 Data 2 True	(noninverted)	bit				
	 1 = CLCIN1 (true) is gated into CLCx Gate 1 0 = CLCIN1 (true) is not gated into CLCx Gate 1 							
		. , .						
bit 2		e 1 Data 2 Neg	•					
		(inverted) is ga (inverted) is no						
bit 1		e 1 Data 1 True	•					
		1 = CLCIN0 (true) is gated into CLCx Gate 1						
	0 = CLCIN0	(true) is not ga	ted into CLCx	Gate1				
bit 0	G2D1N: Gat	e 1 Data 1 Neg	ated (inverted)) bit				
		(inverted) is ga						
	0 = CLCIN0	(invorted) is no	A sector of tests O	Cv Cata 1				

REGISTER 27-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER


32.5.1 FULL DUPLEX MODE

When both TXR and RXR are set, the SPI master is in Full Duplex mode. In this mode, data transfer triggering is affected by the BMODE bit of SPIxCON0.

When BMODE = 1, data transfers will occur whenever both the RXFIFO is not full and there is data present in the TXFIFO. In practice, as long as the RXFIFO is not full, data will be transmitted/received as soon as the SPIxTxB register is written to, matching functionality of SPI (MSSP) modules on older 8-bit Microchip devices. The SPIxTCNT will decrement with each transfer. However, when SPIxTCNT is zero the next transfer is not inhibited and the corresponding SPIxTCNT decrement will cause the count to roll over to the maximum value. Figure 32-3 shows an example of a communication using this mode.

When BMODE = 0, the transfer counter (SPIxTCNTH/ SPIxTCNTL) must also be written to before transfers will occur, and transfers will cease when the transfer counter reaches '0'. For example, if SPIxTXB is written twice and then SPIxTCTL is written with '3' then the transfer will start with the SPIxTCTL write. The two bytes in the TXFIFO will be sent after which the transfer will suspend until the third and last byte is written to SPIxTXB.

32.8.3.4 Receiver Overflow and Transmitter Underflow Interrupts

The receiver overflow interrupt triggers if data is received when the RXFIFO is already full and RXR = 1. In this case, the data will be discarded and the RXOIF bit will be set. The receiver overflow interrupt flag is the RXOIF bit of SPIxINTF. The receiver overflow interrupt enable bit is the RXOIE bit of SPIxINTE.

The Transmitter Underflow interrupt flag triggers if a data transfer begins when the TXFIFO is empty and TXR = 1. In this case, the most recently received data will be transmitted and the TXUIF bit will be set. The transmitter underflow interrupt flag is the TXUIF bit of SPIxINTF. The transmitter underflow interrupt enable bit is the TXUIE bit of SPIxINTE.

Both of these interrupts will only occur in Slave mode, as Master mode will not allow the RXFIFO to overflow or the TXFIFO to underflow.

R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
BUSY	SSFLT	—	_	_	SSET	TXR ⁽¹⁾	RXR ⁽¹⁾		
oit 7							bit		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, reac	l as 'O'			
bit 7	BUSY: SPI N	/lodule Busy Sta	atus bit						
	1 = Data exc	hange is busy							
	0 = Data exc	hange is not tal	king place						
bit 6	SSFLT: SS(ir	n) Fault Status b	bit						
	If SSET = 0								
	1 = SS(in) ended the transaction unexpectedly, and the data byte being received was lost								
	0 = SS(in) ended normally								
	If SSET = 1								
	This bit is un	changed.							
bit 5-3	Unimpleme	n ted : Read as '	o'						
bit 2	SSET: Slave Select Enable bit								
	Master mode:								
	1 = SS(out) is driven to the active state continuously								
	0 = SS(out) is driven to the active state while the transmit counter is not zero								
	Slave mode:								
	1 = SS(in) is ignored and data is clocked on all SCK(in) (as though SS = TRUE at all times)								
		hables/disables able 32-2 for de		d tri-states SD0	O if the TRIS bit	associated wit	h the SDO pi		
bit 1	TXR: Transm	nit Data-Require	d Control bit ⁽	1)					
	1 = TxFIFO data is required for a transfer								
	0 = TxFIFO 0	data is not requi	red for a tran	sfer					
bit 0	RXR : Receive FIFO Space-Required Control bit ⁽¹⁾								
	1 = Data trar	nsfers are suspe	ended if the R	xFIFO is full					
	0 = Received	d data is not sto	red in the FIF	0					
	See Table 32-1 a pertaining to TXF			er mode" and	Section 32.6 "	Slave Mode" fo	or more detai		
.	This register she	uld not be writte	n to while a t	ranafar ia in nr	Daroce (RLIEV h				

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

HS = Hardware set

HC = Hardware clear

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADB7	ADB6	ADB5	ADB4	ADB3	ADB2	ADB1	ADB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets

REGISTER 33-17: I2CxADB1: I²C ADDRESS DATA BUFFER 1 REGISTER⁽¹⁾

'0' = Bit is cleared

bit 7-0	MODE<2:0> = 00x
	Unused in this mode; bit state is a don't care
	MODE<2:0> = 01x
	ADB<7:1>: 10-bit Address High byte
	Received matching 10-bit high address data
	R/W : Read/not-Write Data bit
	Received read/write value from matching 10-bit high address
	MODE<2:0> = 100
	ADB<7:1>: Address Data byte
	7-bit address value copied to transmit shift register
	R/W : Read/not-Write Data bit
	Read/write value copied to transmit shift register
	Master hardware uses this bit to produce read versus write operations.
	MODE<2:0> = 101
	ADB<7:1>: 10-bit Address High Data byte
	10-bit high address value copied to transmit shift register
	R/W: Read/not-Write Data bit
	Read/write value copied to transmit shift register
	Master hardware uses this bit to produce read versus write operations.
	MODE<2:0> = 11x
	ADB<7:1>: Address Data byte
	7-bit address value copied to transmit shift register
	R/W: Read/not-Write Data bit
	Read/write value copied to transmit shift register
	Master hardware uses this bit to produce read versus write operations
Note 1:	This register is read only in slave, 7-bit Addressing modes (MODE<2:0> = $0xx$)

This register is read only in slave, 7-bit Addressing modes (MODE<2:0> = 0xx) Note 1:

'1' = Bit is set

REGISTER 36-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—			ADPC	H<5:0>		
it 7							bit
.egend:							
R = Readable	e bit	W = Writable bit	t	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unc	hanged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/	/alue at all other	Resets
'1' = Bit is se	t	'0' = Bit is cleare	ed				
bit 7-6	Unimplement	ed: Read as '0'					
bit 5-0	ADPCH<5:0>:	ADC Positive Inp	out Channel Se	lection bits			
	111111 - 1	-VR buffer 2 ⁽²⁾		01011	1 = ANC7		
		=VR buffer 1 ⁽²⁾			1 = ANC7 0 = ANC6		
		DAC1 output ⁽¹⁾			1 = ANC5		
		Temperature indic	ator ⁽³⁾		00 = ANC4		
		∕ss (Analog Grou		01001	1 = ANC3		
	111010 = 	Reserved. No cha	nnel connecte	d. 01001	0 = ANC2		
	•				1 = ANC1		
	•				0 = ANCO		
	•			0.0111	1 = ANB7 0 = ANB6		
		Reserved. No cha	innel connecte	u.	1 = ANB5		
	101111 = /	ANF7 ⁽⁴⁾			0 = ANB4		
	101110 = /	ANF6 ⁽⁴⁾		00101	1 = ANB3		
	101101 = /	ANF5 ⁽⁴⁾			0 = ANB2		
	101100 = /	ANF4 ⁽⁴⁾			1 = ANB1		
	101011 = /				00 = ANB0 1 = ANA7		
					0 = ANA6		
	101010 = /				1 = ANA5		
	101001 = /			00010	00 = ANA4		
	101000 = /	ANF0 ⁽⁴⁾		00001	1 = ANA3		
	100111 = 	Reserved. No cha	nnel connecte	u.	0 = ANA2		
	•				1 = ANA1		
	•			00000	00 = ANA0		
	100011 = 	Reserved. No cha	nnel connecte	d.			
	100010 = /	ANE2 ⁽⁵⁾					
	100001 = /	ANE1 ⁽⁵⁾					
	100000 = /						
	011111 = /						
	011110 =						
	011101 =						
	011100 = /	AND4 ⁽⁵⁾					
	011011 =	AND3 ⁽⁵⁾					
	011010 = /	AND2 ⁽⁵⁾					
	011001 =						
	011000 = /						
Note 1: S	See Section 37.0 "	5-Bit Digital-to-A	nalog Conver	ter (DAC) Modul	e" for more infor	mation.	
	See Section 34.0 "						
	See Section 35.0 "						
4 : F	Reserved on PIC18	(L)F26/27/45/46/4	7K42 parts.				
5. 5	Peserved on PIC18	(L)E26/27K42 par	to				

5: Reserved on PIC18(L)F26/27K42 parts.

INCF	Increment f	INCFSZ	Increment f, skip if 0
Syntax:	INCF f {,d {,a}}	Syntax:	INCFSZ f {,d {,a}}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow dest	Operation:	(f) + 1 \rightarrow dest,
Status Affected:	C, DC, N, OV, Z		skip if result = 0
Encoding:	0010 10da ffff ff	Status Affected:	None
Description:	The contents of register 'f' are	Encoding:	0011 11da ffff ffff
Words: Cycles: Q Cycle Activity:	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction oper in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See S tion 41.2.3 "Byte-Oriented and B Oriented Instructions in Indexed eral Offset Mode" for details. 1	e 5 -	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.
Q1 Decode	Q2 Q3 Q4 Read Process Write	Words:	1
Example:	INCF CNT, 1, 0	Cycles:	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.
Before Instru		Q Cycle Activity:	
CNT	= FFh	Q1	Q2 Q3 Q4
Z C	= 0 = ?	Decode	Read Process Write to
DC	= ?		register 'f' Data destination
After Instruct CNT	ion = 00h	If skip:	02 02 04
Z	= 1	Q1 No	Q2 Q3 Q4 No No No
DC	= 1 = 1		operation operation operation
			ed by 2-word instruction:
		Q1	Q2 Q3 Q4
		No	No No No
		operation	operation operation operation
		No operation	NoNoNooperationoperationoperation
		Example:	HERE INCFSZ CNT, 1, 0 NZERO : ZERO :
		Before Instru PC After Instruct CNT If CNT PC If CNT PC	= Address (HERE)

MOVF	Move f						
Syntax:	MOVF f{,	d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]					
Operation:	$f \to \text{dest}$						
Status Affected:	N, Z						
Encoding:	0101	00da fi	fff ffff				
	status of 'd' placed in W placed back Location 'f' 256-byte ba If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' al set is enabl in Indexed I mode when tion 41.2.3 Oriented In	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write W				
Example:	MOVF RE	EG, 0, 0					
Before Instruction REG = 22h W = FFh							

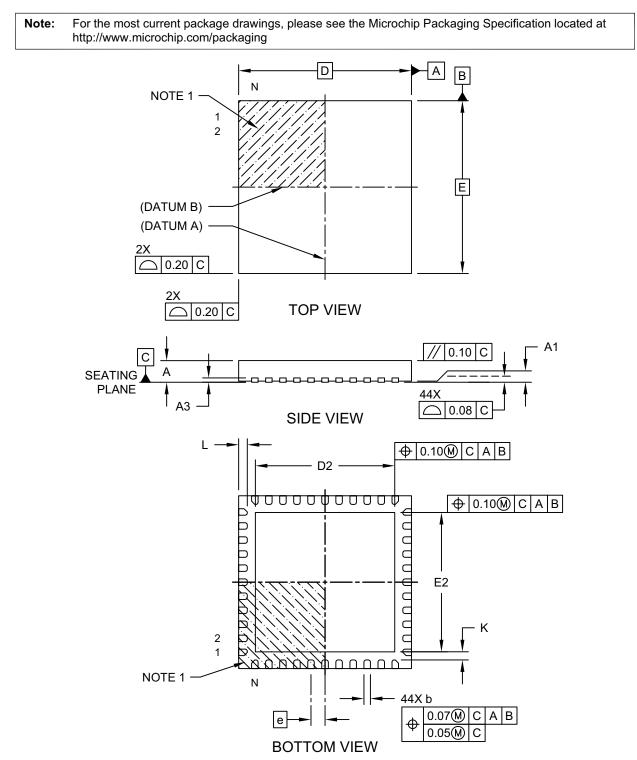
MOVFF Move f to f							
Synta	ax:	MOVFF f	MOVFF f _s ,f _d				
Operands:		0	$\begin{array}{l} 0 \leq f_{s} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$				
Oper	ation:	$(f_{s}) \to f_{d}$	$(f_s) \to f_d$				
Statu	s Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)		1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
Description:		moved to c Location of in the 4096 FFFh) and can also be FFFh. MOVFF ha source and lower 4 Kb	MOVFF has curtailed the source and destination range to the lower 4 Kbyte space of memory (Banks 1 through 15). For everything else, use				
Words:		2	2				
Cycles:		2 (3)	2 (3)				
Q Cycle Activity:							
	Q1	Q2	Q3	}	Q4		
	Decode	Read register 'f' (src)	Proce Dat		No operation		
	Decode	No operation No dummy	No opera		Write register 'f' (dest)		

Example:	MOVFF	REG1,	REG2		
Before Instruction					
REG1	=	33h			
REG2	=	11h			
After Instruction	1				
REG1	=	33h			
REG2	=	33h			

read

After Instruction REG

W


=

=

22h

22h

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2