

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k42-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration, which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

4.5.2 GENERAL PURPOSE REGISTER FILE

General Purpose RAM is available starting Bank 0 of data memory. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

4.5.3 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (3FFFh) and extend downward to occupy Bank 56 through 63 (3800h to 3FFFh). A list of these registers is given in Table 4-3 to Table 4-11. A bitwise summary of these registers can be found in **Section 42.0 "Register Summary"**.

4.5.4 ACCESS BANK

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Bank 63. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where some of the SFRs of the device are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed linearly by an 8-bit address (Figure 4-4).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction uses the Access Bank address map; the current value of the BSR is ignored.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 4.8.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

TABLE 4-10: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 57

0
20
6
201
7
Microchip
Technolo
VBC
Ľ.

39FFh	—	39DFh	OSCFRQ	39BFh	—	399Fh	—	397Fh	—	395Fh	WDTU	393Fh	—	391Fh	-	_
39FEh	_	39DEh	OSCTUNE	39BEh	_	399Eh	—	397Eh	_	395Eh	WDTH	393Eh	_	391Eh	-	
39FDh	—	39DDh	OSCEN	39BDh	_	399Dh	—	397Dh	SCANTRIG	395Dh	WDTL	393Dh	—	391Dh	-	_
39FCh	—	39DCh	OSCSTAT	39BCh		399Ch	—	397Ch	SCANCON0	395Ch	WDTCON1	393Ch		391Ch	-	_
39FBh	—	39DBh	OSCCON3	39BBh	—	399Bh	—	397Bh	SCANHADRU	395Bh	WDTCON0	393Bh	—	391Bh	-	_
39FAh	_	39DAh	OSCCON2	39BAh	—	399Ah	PIE10	397Ah	SCANHADRH	395Ah	—	393Ah	_	391Ah	-	_
39F9h	—	39D9h	OSCCON1	39B9h	—	3999h	PIE9	3979h	SCANHADRL	3959h	—	3939h	—	3919h	-	_
39F8h	—	39D8h	CPUDOZE	39B8h	—	3998h	PIE8	3978h	SCANLADRU	3958h	—	3938h	—	3918h	-	_
39F7h	SCANPR	39D7h	—	39B7h	—	3997h	PIE7	3977h	SCANLADRH	3957h	—	3937h	—	3917h	-	_
39F6h	—	39D6h	—	39B6h	—	3996h	PIE6	3976h	SCANLADRL	3956h	—	3936h	—	3916h	-	_
39F5h	—	39D5h	_	39B5h	_	3995h	PIE5	3975h	—	3955h	—	3935h	—	3915h	-	_
39F4h	DMA2PR	39D4h		39B4h		3994h	PIE4	3974h		3954h	—	3934h	_	3914h	-	_
39F3h	DMA1PR	39D3h		39B3h		3993h	PIE3	3973h		3953h	—	3933h	_	3913h	-	_
39F2h	MAINPR	39D2h	—	39B2h	—	3992h	PIE2	3972h		3952h	—	3932h		3912h		_
39F1h	ISRPR	39D1h	VREGCON ⁽¹⁾	39B1h	—	3991h	PIE1	3971h		3951h	—	3931h		3911h		_
39F0h	—	39D0h	BORCON	39B0h	—	3990h	PIE0	3970h		3950h	—	3930h		3910h		_
39EFh	PRLOCK	39CFh		39AFh	—	398Fh	—	396Fh		394Fh	—	392Fh		390Fh		_
39EEh	—	39CEh		39AEh	—	398Eh	—	396Eh		394Eh	—	392Eh		390Eh		_
39EDh	_	39CDh	_	39ADh	_	398Dh	_	396Dh		394Dh	_	392Dh		390Dh	-	_
39ECh	_	39CCh	_	39ACh	_	398Ch	_	396Ch	_	394Ch	_	392Ch	_	390Ch	-	_
39EBh	_	39CBh	_	39ABh	_	398Bh	_	396Bh	_	394Bh	_	392Bh	_	390Bh	-	_
39EAh	_	39CAh	_	39AAh	PIR10	398Ah	IPR10	396Ah	_	394Ah	_	392Ah	_	390Ah	-	_
39E9h	_	39C9h	_	39A9h	PIR9	3989h	IPR9	3969h	CRCCON1	3949h	_	3929h	_	3909h	-	_
39E8h	_	39C8h	_	39A8h	PIR8	3988h	IPR8	3968h	CRCCON0	3948h	_	3928h	_	3908h	-	_
39E7h	_	39C7h	PMD7	39A7h	PIR7	3987h	IPR7	3967h	CRCXORH	3947h	_	3927h	_	3907h	-	_
39E6h	NVMCON2	39C6h	PMD6	39A6h	PIR6	3986h	IPR6	3966h	CRCXORL	3946h	—	3926h		3906h	-	_
39E5h	NVMCON1	39C5h	PMD5	39A5h	PIR5	3985h	IPR5	3965h	CRCSHIFTH	3945h	—	3925h		3905h	-	_
39E4h	—	39C4h	PMD4	39A4h	PIR4	3984h	IPR4	3964h	CRCSHIFTL	3944h	—	3924h		3904h		_
39E3h	NVMDAT	39C3h	PMD3	39A3h	PIR3	3983h	IPR3	3963h	CRCACCH	3943h	—	3923h		3903h		_
39E2h	_	39C2h	PMD2	39A2h	PIR2	3982h	IPR2	3962h	CRCACCL	3942h	_	3922h	_	3902h	-	_
39E1h	NVMADRH ⁽⁴⁾	39C1h	PMD1	39A1h	PIR1	3981h	IPR1	3961h	CRCDATH	3941h	_	3921h	<u> </u>	3901h	-	_
39E0h	NVMADRL	39C0h	PMD0	39A0h	PIR0	3980h	IPR0	3960h	CRCDATL	3940h	_	3920h	_	3900h	-	_

Unimplemented data memory locations and registers, read as '0'. Legend:

Note 1: Unimplemented in LF devices.

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented in PIC18(L)F26/27/45/46/47K42. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
I2C1RXIE	SPI1IE	SPI1TXIE	SPI1RXIE	DMA1AIE	DMA10RIE	DMA1DCNTIE	DMA1SCNTIE
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'	
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value at	POR and BOR	/Value at all othe	r Resets
'1' = Bit is se	t	'0' = Bit is cle	eared				
bit 7	I2C1RXIE: I	² C1 Receive I	nterrupt Enab	le bit			
	1 = Enabled	1					
	0 = Disable	d					
bit 6	SPI1IE: SPI	1 Interrupt Ena	able bit				
	1 = Enableo	1 H					
bit 5		SPI1 Transmit	Interrunt Enal	hle hit			
Site	1 = Fnablec						
	0 = Disable	d					
bit 4	SPI1RXIE: S	SPI1 Receive	Interrupt Enat	ole bit			
	1 = Enabled	ł					
	0 = Disable	d					
bit 3	DMA1AIE: [DMA1 Abort In	iterrupt Enable	e bit			
	1 = Enablec	1					
hit 2			un Interrunt E	nabla bit			
DIL Z	1 = Enablec		un interrupt 🗆				
	0 = Disable	d					
bit 1	DMA1DCNT	TE: DMA1 De	stination Cou	nt Interrupt Enat	ole bit		
	1 = Enabled	ł		•			
	0 = Disable	d					
bit 0	DMA1SCNT	IE: DMA1 So	urce Count In	terrupt Enable b	it		
	1 = Enabled	1					
		u					

REGISTER 9-16: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

-n/n = Value at POR and BOR/Value at all other Resets

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
		WDTTMR<4:0>			STATE	PSCNT	<17:16>
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplei	mented bit, read	d as '0'	

REGISTER 11-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

x = Bit is unknown

'0' = Bit is cleared

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

u = Bit is unchanged

'1' = Bit is set

	WDT Win	Onen Bereent	
WINDOW	Closed	Open	Open Percent
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during normal operation.

REGISTER 13-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'	
x = Bit is unkno	own	'0' = Bit is clea	ared	'1' = Bit is se	t		
-n = Value at P	POR						

bit 7-0 **DAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 13-4: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY CONTROL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
NVMCON1	REG<1:0> — FREE WRERR WREN WR RD								210			
NVMCON2		Unlock Pattern										
NVMADRL		NVMADR<7:0>										
NVMADRH (1)	NVMADR<9:8>							211				
NVMDAT		NVMDAT<7:0>										

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F45/55K42.

R/W-0/	0 R/W-0/0	R/W/HC-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	
EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'		
u = Bit is u	inchanged	x = Bit is unkno	x = Bit is unknown -n/n = Value at POR and BOR/Value at all					
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is cl	eared by hardv	vare		
bit 7	EN: Scanner 1 = Scanner 0 = Scanner	Enable bit ⁽¹⁾ is enabled is disabled						
bit 6	TRIGEN: Sca 1 = Scanner 0 = Scanner Refer Table 1	anner Trigger En trigger is enableo trigger is disableo 4-1.	able bit ⁽²⁾ 1 d					
 bit 5 SGO: Scanner GO bit^(3, 4) 1 = When the CRC is ready, the Memory region set by the MREG bit will be accessed and data is pato to the CRC peripheral. 0 = Scanner operations will not occur. 								
bit 4-3	Unimplemer	nted: Read as '0'						
bit 2	MREG: Scan 1 = Scanner 0 = Scanner	iner Memory Reg address points to address points to	ion Select bi Data EEPR Program Fla	t ⁽²⁾ OM ash Memory				
bit 1	BURSTMD: \$ 1 = Memory a 0 = Memory a Refer Table 1	Scanner Burst M access request to access request to 4-1.	ode bit o the CPU Ar o the CPU Ar	biter is always t biter is depende	rue ent on the CRC	C request and Tri	igger	
bit 0	BUSY: Scan 1 = Scanner 0 = Scanner	ner Busy Indicato cycle is in proces cycle is compete	or bit ss (or never sta	irted)				
Note 1: 2: 3:	Setting EN = 1 (S Scanner trigger se This bit can be cle occurring) or when	CANCON0 regist election can be so ared in software n CRCGO = 0 (C	ter) does not et using the S . It is cleared RCCON0 reg	affect any other CANTRIG regi in hardware wh gister).	r register conte ster. nen LADR>HAI	nt. DR (and a data c	cycle is not	

REGISTER 14-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

- - 4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.

FIGURE 26-6: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

27.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- I/O pins
- Internal clocks
- · Peripherals
- Register bits

The output can be directed internally to peripherals and to an output pin.

There are four CLC modules available on this device - CLC1, CLC2, CLC3 and CLC4.

Note: The CLC1, CLC2, CLC3 and CLC4 are four separate module instances of the same CLC module design. Throughout this section, the lower case 'x' in register names is a generic reference to the CLC number (which should be substituted with 1, 2, 3, or 4 during code development). For example, the control register is generically described in this chapter as CLCxCON, but the actual device registers are CLC1CON, CLC2CON, CLC3CON and CLC4CON.

Refer to Figure 27-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset

27.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

27.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 27-2. Data inputs in the figure are identified by a generic numbered input name.

Table 27-1 correlates the generic input name to the actual signal for each CLC module. The column labeled 'DyS<4:0> Value' indicates the MUX selection code for the selected data input. DyS is an abbreviation for the MUX select input codes: D1S<4:0> through D4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 27-3 through Register 27-6).

Note: Data selections are undefined at power-up.

29.10 Register Definitions: ZCD Control

R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
SEN	—	OUT	POL	—	_	INTP	INTN			
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 7	SEN: Zero-Cr This bit is igno 1= Zero-cro	oss Detect So ored when ZCI ss detect is er	ftware Enable DSEN configu abled.	bit ration bit is se	t.		role			
hit 6		ted: Read as '	o'	ni operates at			1015.			
bit 5		oss Detect Da	o ta Output hit							
	ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sinking current									
bit 4	POL: Zero-Cr	oss Detect Po	larity bit							
	1 = ZCD logic 0 = ZCD logic	output is inve output is not i	rted nverted							
bit 3-2	Unimplement	ted: Read as '	0'							
bit 1	INTP: Zero-Ci	ross Detect Po	sitive-Going E	Edge Interrupt	Enable bit					
	1 = ZCDIF bit 0 = ZCDIF bit	is set on low-t is unaffected	o-high ZCD_c by low-to-high	output transitio ZCD_output t	n ransition					
bit 0	INTN: Zero-Cu 1 = ZCDIF bit 0 = ZCDIF bit	ross Detect Ne is set on high- is unaffected	egative-Going to-low ZCD_c by high-to-low	Edge Interrup output transitio ZCD_output t	t Enable bit n ransition					

REGISTER 29-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ZCDCON	SEN	—	OUT	POL	—	_	INTP	INTN	462

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

The Master process is started by writing the PID to the UxP1L register when UxP2 is '0' and the UART is idle. The UxTXIF will not be set in this case. Only the six Least Significant bits of UxP1L are used in the PID transmission.

The two Most Significant bits of the transmitted PID are PID parity bits. PID<6> is the exclusive-or of PID bits 0,1,2,and 4. PID<7> is the inverse of the exclusive-or of PID bits 1,3,4,and 5.

The UART calculates and inserts these bits in the serial stream.

Writing UxP1L automatically clears the UxTXCHK and UxRXCHK registers and generates the Break, delimiter bit, Sync character (55h), and PID transmission portion of the transaction. The data portion of the transaction that follows, if there is one, is a Slave process. See **Section 31.5.2 "LIN Slave Mode"** for more details of that process. The Master receives it's own PID when RXEN is set. Software performs the Slave process corresponding to the PID that was sent and received. Attempting to write UxP1L before an active master process is complete will not succeed. Instead, the TXWRE bit will be set.

31.5.2 LIN SLAVE MODE

LIN Slave mode is configured by the following settings:

- MODE<3:0> = 1011
- TXEN = 1
- **RXEN =** 1
- UxP2 = Number of data bytes to transmit
- UxP3 = Number of data bytes to receive
- UxBRGH:L = Value to achieve default baud rate
- TXPOL = 0 (for high Idle state)
- STP = desired Stop bits selection
- C0EN = desired checksum mode
- RxyPPS = TX pin selection code
- TX pin TRIS control = 0
- ON = 1

The Slave process starts upon detecting a Break on the RX pin. The Break clears the UxTXCHK, UxRXCHK, UxP2, and UxP3 registers. At the end of the Break, the auto-baud circuity is activated and the baud rate is automatically set using the Sync character following the Break. The character following the Sync character is received as the PID code and is saved in the receive FIFO. The UART computes the two PID parity bits from the six Least Significant bits of the PID. If either parity bit does not match the corresponding bit of the received PID code, the PERIF flag is set and saved at the same FIFO location as the PID code. The UxRXIF bit is set indicating that the PID is available.

Software retrieves the PID by reading the UxRXB register and determines the Slave process to execute from that. The checksum method, number of data bytes, and whether to send or receive data, is defined by software according to the PID code.

31.5.2.1 LIN Slave Receiver

When the Slave process is a receiver, the software performs the following tasks:

- UxP3 register is written with a value equal to the number of data bytes to receive.
- COEN bit is set or cleared to select the appropriate checksum. This must be completed before the Start bit of the checksum byte is received.
- Each byte of the process response is read from UxRXB when UxRXIF is set.

The UART updates the checksum on each received byte. When the last data byte is received, the computed checksum total is stored in the UxRXCHK register. The next received byte is saved in the receive FIFO and added with the value in UxRXCHK. The result of this addition is not accessible. However, if the result is not all '1's, the CERIF bit in the UxERRIR is set. The CERIF flag persists until cleared by software. Software needs to read UxRXB to remove the checksum byte from the FIFO, but the byte can be discarded if not needed for any other purpose.

After the checksum is received, the UART ignores all activity on the RX pin until a Break starts the next transaction.

31.5.2.2 LIN Slave Transmitter

When the Slave process is a transmitter, software performs the following tasks in the order shown:

- UxP2 register is written with a value equal to the number of bytes to transmit. This will enable TXIF flag which is disabled when UxP2 is '0'.
- COEN bit is set or cleared to select the appropriate checksum
- · Inter-byte delay is performed
- Each byte of the process response is written to UxTXB when UxTXIF is set

The UART accumulates the checksum as each byte is written to UxTXB. After the last byte is written, the UART stores the calculated checksum in the UxTXCHK register and transmits the inverted result as the last byte in the response.

The TXIF flag is disabled when UxP2 bytes have been written. Any writes to UxTXB that exceed the UxP2 count will be ignored and set the TXWRE flag in the UxFIFO register.

When TXMTIF goes true, indicating the transmit shift register has completed sending the last byte in the frame, the TX output is held in Idle state for the number of half-bit periods selected by the STP bits in the UxCON2 register.

After the last Stop bit, the TX output is held in Idle state for an additional wait time determined by the half-bit period count in the UxP1 register. For example, a 2450 µs delay (~6 half-bit times) requires a value of 6 in UxP1L.

Any writes to the UxTXB register that occur after TXMTIF goes true, but before the UxP1 wait time expires, are held and then transmitted immediately following the wait time. If a backward frame is received during the wait time, any bytes that may have been written to UxTXB will be transmitted after completion of the backward frame reception plus the UxP1 wait time.

The wait timer is reset by the backward frame and starts over immediately following the reception of the Stop bits of the backward frame. Data pending in the transmit shift register will be sent when the wait time elapses.

To replace or delete any pending forward frame data, the TXBE bit needs to be set to flush the shift register and transmit buffer. A new control byte can then be written to the UxTXB register. The control byte will be held in the buffer and sent at the beginning of the next forward frame following the UxP1 wait time.

In Control Device mode, PERIF is set when a forward frame is received. This helps the software to determine whether the received byte is part of a forward frame from a Control Device (either from the Control Device under consideration or from another Control Device on the bus) or a backward frame from a Control Gear.

31.6.2 CONTROL GEAR

The Control Gear mode is configured with the following settings:

- MODE = 0b1001
- **TXEN =** 1
- RXEN = 1
- UxP1 = Back Frames are held for transmission this number of half-bit periods after the completion of a Forward Frame.

 UxP2 = Forward/Back Frame threshold delimiter. Idle periods more than this number of half-bit periods are detected as Forward Frames.

- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- RXPOL = same as TXPOL
- STP = 0b10 for two Stop bits
- RxyPPS = TX pin output code
- TX pin TRIS control = 0
- RXPPS = RX pin selection code
- RX pin TRIS control = 1
- Input pin ANSEL bit = 0
- ON = 1

The UART starts listening for a forward frame when the Control Gear mode is entered. Only the frames that follow an Idle period longer than UxP2 half-bit periods are detected as forward frames. Backward frames from other Control Gear are ignored. Only forward frames will be stored in UxRXB. This is necessary because a backward frame can be sent only as a response to a forward frame.

The forward frame is received one byte at a time in the receive FIFO and retrieved by reading the UxRXB register. The end of the forward frame starts a timer to delay the backward frame response by wait time equal to the number of half-bit periods stored in UxP1.

The data received in the forward frame is processed by the application software. If the application decides to send a backward frame in response to the forward frame, the value of the backward frame is written to UxTXB. This value is held for transmission in the transmit shift register until the wait time expires and is then transmitted.

If the backward frame data is written to UxTXB after the wait time has expired, it is held in the UxTXB register until the end of the wait time following the next forward frame. The TXMTIF bit is false when the backward frame data is held in the transmit shift register. Receiving a UxRXIF interrupt before the TXMTIF goes true indicates that the backward frame write was too late and another forward frame. The pending backward frame has to be flushed by setting the TXBE bit, to prevent it from being sent after the next Forward Frame.

TABLE 3	6-2:	COMPUTATION MO	DES						
		Bit Clear Conditions	Value after Trigg	Т	nreshold Opera	Value at ADTIF interrupt			
Mode	ADMD	ACC and CNT	ACC	CNT	Retrigger	Threshold Test	Interrupt	ADAOV	FLTR
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sam- ple	If threshold=true	N/A	N/A
Accumulate	1	ADACLR = 1	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, oth- erwise: CNT+1	No	Every Sam- ple	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Average	2	ADACLR = 1 or CNT>=RPT at GO or retrigger	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, oth- erwise: CNT+1	No	lf CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Burst Average	3	ADACLR = 1 or GO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with CNT=RPT	Repeat while CNT <rpt< td=""><td>lf CNT>=RPT</td><td>If threshold=true</td><td>ACC Overflow</td><td>ACC/2^{ADCRS}</td></rpt<>	lf CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}
Low-pass Filter	4	ADACLR = 1	S+ACC-ACC/ 2 ^{ADCRS} or (S2-S1)+ACC-ACC/2 ^{ADCRS}	Count up, stop counting when CNT = 0xFF	No	If CNT>=RPT	If threshold=true	ACC Overflow	Filtered Value

S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = PREV and S2 = ADRES. Note:

CNT count

count

count

RPT

count

REGISTER 36-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	
PPOL	IPEN	GPOL	-	-	-	—	DSEN	
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 **PPOL:** Precharge Polarity bit If PRE>0x00:

PPOL	Action During 1st Precharge Stage						
	External (selected analog I/O pin)	Internal (AD sampling capacitor)					
1	Connected to VDD	C _{HOLD} connected to Vss					
0	Connected to Vss	C _{HOLD} connected to VDD					

Otherwise:

The bit is ignored

bit 6 IPEN: A/D Inverted Precharge Enable bit

If DSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 **GPOL:** Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 DSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in PREV
- 0 = One conversion is performed for each trigger

ANI	OWF	AND W with f		В	•	Branch if	Branch if Carry				
Synt	ax:	ANDWF f {,d {,a}}			Sy	ntax:	BC n	BC n			
Оре	rands:	$0 \le f \le 255$		Op	erands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$				
	d ∈ [0,1] a ∈ [0,1]		Op	peration:	if CARRY b (PC) + 2 +	if CARRY bit is '1' (PC) + 2 + 2n \rightarrow PC					
Operation: (W) .AND. (f) \rightarrow dest		Sta	atus Affected:	None	None						
State	atus Affected: N, Z		En	codina:	1110 0010 nnnn nnnn						
Enco	oding:	0001	01da ff:	ff ffff	De	scription.	If the CARE	If the CARRY bit is '1' then the program			
Des	cription:	The conten register 'f'. I in W. If 'd' is in register 'f If 'a' is '0', tt If 'a' is '1', tt GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 41.2.3 Oriented Ir eral Offset	The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-		Wa Cy Q If	ords: cles: Cycle Activity: Jump: Q1	Will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2) Q2 Q3 Q4				
Wor	ds:	1	1			Decode	'n'	Data	While to PC		
Cycl	es:	1				No	No	No	No		
QC	Cycle Activity:					operation	operation	operation	operation		
	Q1	Q2	Q3	Q4	lf ז	No Jump: Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write to destination		Decode	Read literal 'n'	Process Data	No operation		
<u>Exa</u>	nple: Before Instruc W REG After Instructio	ANDWF tion = $17h$ = $C2h$ on = $02h$	REG, 0, 0		Ex	ample: Before Instruc PC After Instructi If CARR Uf CARR	HERE ction = ad ion = 1; = = a(BC 5 dress (HERE dress (HERE) + 12)		
REG = C2n					PC = address (HERE + 2)						

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
3BC8h - 3AEBh	-				Unimplemented						
3AEAh	U2CTSPPS	—	—	_	U2CTSPPS					277	
3AE8h	U2RXPPS	—	—	_		U2RXPPS					
3AE7h	U1CTSPPS	—	—	—			U1CTSPPS			277	
3AE5h	U1RXPPS	—	—	—			U1RXPPS			277	
3AE4h	I2C2SDAPPS	—	—	—			I2C2SDAPPS	3		277	
3AE3h	I2C2SCLPPS	_	—	_			I2C2SCLPPS	6		277	
3AE2h	I2C1SDAPPS	_	—	_			I2C1SDAPPS	3		277	
3AE1h	I2C1SCLPPS	_	—	_			I2C1SCLPPS	6		277	
3AE0h	SPI1SSPPS	_	—	_			SPI1SSPPS			277	
3ADFh	SPI1SDIPPS	_	_	_			SPI1SDIPPS	5		277	
3ADEh	SPI1SCKPPS			—			SPI1SCKPPS	3		277	
3ADDh	ADACTPPS			—			ADACTPPS			277	
3ADCh	CLCIN3PPS	—	_	_			CLCIN3PPS			277	
3ADBh	CLCIN2PPS	—	_	_			CLCIN2PPS			277	
3ADAh	CLCIN1PPS	_	_	_			CLCIN1PPS			277	
3AD9h	CLCIN0PPS	_	_	_			CLCIN0PPS			277	
3AD8h	MD1SRCPPS	_		_			MD1SRCPPS	6		277	
3AD7h	MD1CARHPPS	_		_			MD1CARHPP	S		277	
3AD6h	MD1CARLPPS	_		_			MD1CARLPP	S		277	
3AD5h	CWG3INPPS	_		_			CWG3INPPS	3		277	
3AD4h	CWG2INPPS			_			CWG2INPPS	3		277	
3AD3h	CWG1INPPS			_	CWG1INPPS					277	
3AD2h	SMT1SIGPPS			_	SMT1SIGPPS					277	
3AD1h	SMT1WINPPS			_			SMT1WINPP	S		277	
3AD0h	CCP4PPS			_			CCP4PPS			277	
3ACFh	CCP3PPS			_			CCP3PPS			277	
3ACEh	CCP2PPS			_			CCP2PPS			277	
3ACDh	CCP1PPS	_		_			CCP1PPS			277	
3ACCh	T6INPPS			_			T6INPPS			277	
3ACBh	T4INPPS	_		_			T4INPPS			277	
3ACAh	T2INPPS			_			T2INPPS			277	
3AC9h	T5GPPS			_			T5GPPS			277	
3AC8h	T5CLKIPPS			_			T5CLKIPPS			277	
3AC7h	T3GPPS			_	T3GPPS						
3AC6h	T3CLKIPPS			_	T3CI KIPPS						
3AC5h	T1GPPS			_	TIGPPS						
3AC4h	T1CLKIPPS			_	T1CLKIPPS						
3AC3h	TOCLKIPPS		_								
3AC2h	INT2PPS		_				INT2PPS			277	
3AC1h	INT1PPS			_						277	
3AC0h	INTOPPS			_			INTOPPS			277	
3ABFh	PPSLOCK	_	_	_	_	_	_	_	PPSI OCKED	283	
3ABEh				l	Reserved m	aintain as 'o'				200	
3ABDh - 3A9Ah	-				Unimple	emented					
3A99h					Reserved m	aintain as '0'					
Legend:	end: x = unknown, u = unchanged. — = unimplemented. g = value depends on condition										

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Note

Unimplemented in LF devices. 1:

Unimplemented in PIC18(L)F26/27K42. 2:

Unimplemented on PIC18(L)F26/27/45/46/47K42 devices. 3:

Unimplemented in PIC18(L)F45/55K42. 4:

TABLE 44-6: I/O PORTS

Standard Operating Conditions (unless otherwise stated)											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
	VIL	Input Low Voltage									
		I/O PORT:									
D300		with TTL buffer	_	_	0.8	V	$4.5V \le VDD \le 5.5V$				
D301				_	0.15 Vdd	V	1.8V ≤ VDD < 4.5V				
D302		with Schmitt Trigger buffer		_	0.2 Vdd	V	2.0V ≤ VDD ≤ 5.5				
D303		with I ² C levels		—	0.3 Vdd	V					
D304		with SMBus 2.0		_	0.8	V	2.7V ≤ VDØ ≤ 5.5V				
D305		with SMBus 3.0		—	0.8	V	1.8V ≤ VDØ ≤ 5.5V				
D306		MCLR	—	—	0.2 Vdd	V					
	Vih	Input High Voltage				,-					
		I/O PORT:									
D320		with TTL buffer	2.0	_	_	v	4.5V ≩ Vpp ≤ 5,5V				
D321			0.25 Vdd + 0.8	—		V	1.8V ⊊ VDD < 4.5V				
D322		with Schmitt Trigger buffer	0.8 VDD	_	`	N .	2.0V ≤ VDD ≤ 5.5V				
D323		with I ² C levels	0.7 Vdd	_		\rightarrow					
D324		with SMBus 2.0	2.1			V	$2.7V \le VDD \le 5.5V$				
D325		with SMBus 3.0	1.35		$\backslash - \backslash$	У	$1.8V \leq V\text{DD} \leq 5.5V$				
D326		MCLR	0.7 VDD		$\backslash - \backslash$	\sim_{V}					
	lı∟	Input Leakage Current ⁽¹⁾	``	VV	$\overline{\checkmark}$						
D340		I/O Ports		± 5	125	nA	$\label{eq:VSS} \begin{split} Vss &\leq V \text{PIN} \leq V \text{DD}, \\ \text{Pin at high-impedance, 85}^\circ\text{C} \end{split}$				
D341		<		±5	± 1000	nA	$\label{eq:VSS} \begin{split} Vss &\leq V \text{PIN} \leq V \text{DD}, \\ \text{Pin at high-impedance, } 125^\circ\text{C} \end{split}$				
D342		MCLR ⁽²⁾	7	± 50	± 200	nA	$\label{eq:VSS} \begin{split} Vss &\leq V \text{PIN} \leq V \text{DD}, \\ \text{Pin at high-impedance, 85}^\circ\text{C} \end{split}$				
	IPUR	Weak Pull-up Current									
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS				
	Vol	Output Low Voltage									
D360		I/O ports	—	0.6	V	IOL = 10.0mA, VDD = 3.0V					
	Vон	Output High Voltage									
D370		I/Ø ports	VDD - 0.7			V	ЮН = 6.0 mA, VDD = 3.0V				
D380	Сю	All I/O pins	—	5	50	pF					

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Taiwan - Taipei Tel: 886-2-2508-8600

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 39-049-7625286 **Netherlands - Drunen**

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 63-2-634-9065

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Tel: 66-2-694-1351

Thailand - Bangkok