
Microchip Technology - PIC18F45K42-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 35x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k42-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f45k42-i-pt-4387595
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F26/27/45/46/47/55/56/57K42
3.0 PIC18 CPU
This family of devices contains a PIC18 8-bit CPU core
based on the modified Harvard architecture. The PIC18
CPU supports:

• System Arbitration, which decides memory
access allocation depending on user priorities

• Vectored Interrupt capability with automatic two
level deep context saving

• 31-level deep hardware stack with overflow and
underflow reset capabilities

• Support Direct, Indirect, and Relative Addressing
modes

• 8x8 Hardware Multiplier
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 26

PIC18(L)F26/27/45/46/47/55/56/57K42

3.2.3 ISR PRIORITY > PERIPHERAL

PRIORITY > MAIN PRIORITY

In this case, interrupt routines and peripheral operation
(DMAx, Scanner) will stall the CPU. Interrupt will
preempt peripheral operation. This results in lowest
interrupt latency and highest throughput for the
peripheral to access the memory.

3.2.4 PERIPHERAL 1 PRIORITY > ISR
PRIORITY > MAIN PRIORITY >
PERIPHERAL 2 PRIORITY

In this case, the Peripheral 1 will stall the execution of
the CPU. However, Peripheral 2 can access the
memory in cycles unused by Peripheral 1.

The operation of the System Arbiter is controlled
through the following registers:

REGISTER 3-1: ISRPR: INTERRUPT SERVICE ROUTINE PRIORITY REGISTER

REGISTER 3-2: MAINPR: MAIN ROUTINE PRIORITY REGISTER

REGISTER 3-3: DMA1PR: DMA1 PRIORITY REGISTER

U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — ISRPR<2:0>

bit 7 bit 0

Legend:
R = Readable bit
u = Bit is unchanged
1 = bit is set

W = Writable bit
x = Bit is unknown
0 = bit is cleared

U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and BOR/Value at all other Resets
HS = Hardware set

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 ISRPR<2:0>: Interrupt Service Routine Priority Selection bits

U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-1/1

— — — — — MAINPR<2:0>

bit 7 bit 0

Legend:
R = Readable bit
u = Bit is unchanged
1 = bit is set

W = Writable bit
x = Bit is unknown
0 = bit is cleared

U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and BOR/Value at all other Resets
HS = Hardware set

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 MAINPR<2:0>: Main Routine Priority Selection bits

U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0

— — — — — DMA1PR<2:0>

bit 7 bit 0

Legend:
R = Readable bit
u = Bit is unchanged
1 = bit is set

W = Writable bit
x = Bit is unknown
0 = bit is cleared

U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and BOR/Value at all other Resets
HS = Hardware set

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 DMA1PR<2:0>: DMA1 Priority Selection bits
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 30


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

4
0001919B

-p
age 52

PIC
18(L)F26/27/45/46/47/55/56/57K

42

TA ANK 60

3C 3C3Fh — 3C1Fh —
3C 3C3Eh — 3C1Eh —
3C 3C3Dh — 3C1Dh —
3C 3C3Ch — 3C1Ch —
3C 3C3Bh — 3C1Bh —
3C 3C3Ah — 3C1Ah —
3C 3C39h — 3C19h —
3C 3C38h — 3C18h —
3C 3C37h — 3C17h —
3C 3C36h — 3C16h —
3C 3C35h — 3C15h —
3C 3C34h — 3C14h —
3C 3C33h — 3C13h —
3C 3C32h — 3C12h —
3C 3C31h — 3C11h —
3C 3C30h — 3C10h —
3C 3C2Fh — 3C0Fh —
3C 3C2Eh — 3C0Eh —
3C 3C2Dh — 3C0Dh —
3C 3C2Ch — 3C0Ch —
3C 3C2Bh — 3C0Bh —
3C 3C2Ah — 3C0Ah —
3C 3C29h — 3C09h —
3C 3C28h — 3C08h —
3C 3C27h — 3C07h —
3C 3C26h — 3C06h —
3C 3C25h — 3C05h —
3C 3C24h — 3C04h —
3C 3C23h — 3C03h —
3C 3C22h — 3C02h —
3C 3C21h — 3C01h —
3C 3C20h — 3C00h —

Leg
No
BLE 4-7: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES B

FFh — 3CDFh — 3CBFh — 3C9Fh — 3C7Fh — 3C5Fh CLC4GLS3
FEh MD1CARH 3CDEh — 3CBEh — 3C9Eh — 3C7Eh CLCDATA0 3C5Eh CLC4GLS2
FDh MD1CARL 3CDDh — 3CBDh — 3C9Dh — 3C7Dh CLC1GLS3 3C5Dh CLC4GLS1
FCh MD1SRC 3CDCh — 3CBCh — 3C9Ch — 3C7Ch CLC1GLS2 3C5Ch CLC4GLS0
FBh MD1CON1 3CDBh — 3CBBh — 3C9Bh — 3C7Bh CLC1GLS1 3C5Bh CLC4SEL3
FAh MD1CON0 3CDAh — 3CBAh — 3C9Ah — 3C7Ah CLC1GLS0 3C5Ah CLC4SEL2
F9h — 3CD9h — 3CB9h — 3C99h — 3C79h CLC1SEL3 3C59h CLC4SEL1
F8h — 3CD8h — 3CB8h — 3C98h — 3C78h CLC1SEL2 3C58h CLC4SEL0
F7h — 3CD7h — 3CB7h — 3C97h — 3C77h CLC1SEL1 3C57h CLC4POL
F6h — 3CD6h — 3CB6h — 3C96h — 3C76h CLC1SEL0 3C56h CLC4CON
F5h — 3CD5h — 3CB5h — 3C95h — 3C75h CLC1POL 3C55h —
F4h — 3CD4h — 3CB4h — 3C94h — 3C74h CLC1CON 3C54h —
F3h — 3CD3h — 3CB3h — 3C93h — 3C73h CLC2GLS3 3C53h —
F2h — 3CD2h — 3CB2h — 3C92h — 3C72h CLC2GLS2 3C52h —
F1h — 3CD1h — 3CB1h — 3C91h — 3C71h CLC2GLS1 3C51h —
F0h — 3CD0h — 3CB0h — 3C90h — 3C70h CLC2GLS0 3C50h —
EFh — 3CCFh — 3CAFh — 3C8Fh — 3C6Fh CLC2SEL3 3C4Fh —
EEh — 3CCEh — 3CAEh — 3C8Eh — 3C6Eh CLC2SEL2 3C4Eh —
EDh — 3CCDh — 3CADh — 3C8Dh — 3C6Dh CLC2SEL1 3C4Dh —
ECh — 3CCCh — 3CACh — 3C8Ch — 3C6Ch CLC2SEL0 3C4Ch —
EBh — 3CCBh — 3CABh — 3C8Bh — 3C6Bh CLC2POL 3C4Bh —
EAh — 3CCAh — 3CAAh — 3C8Ah — 3C6Ah CLC2CON 3C4Ah —
E9h — 3CC9h — 3CA9h — 3C89h — 3C69h CLC3GLS3 3C49h —
E8h — 3CC8h — 3CA8h — 3C88h — 3C68h CLC3GLS2 3C48h —
E7h — 3CC7h — 3CA7h — 3C87h — 3C67h CLC3GLS1 3C47h —
E6h CLKRCLK 3CC6h — 3CA6h — 3C86h — 3C66h CLC3GLS0 3C46h —
E5h CLKRCON 3CC5h — 3CA5h — 3C85h — 3C65h CLC3SEL3 3C45h —
E4h — 3CC4h — 3CA4h — 3C84h — 3C64h CLC3SEL2 3C44h —
E3h — 3CC3h — 3CA3h — 3C83h — 3C63h CLC3SEL1 3C43h —
E2h — 3CC2h — 3CA2h — 3C82h — 3C62h CLC3SEL0 3C42h —
E1h — 3CC1h — 3CA1h — 3C81h — 3C61h CLC3POL 3C41h —
E0h — 3CC0h — 3CA0h — 3C80h — 3C60h CLC3CON 3C40h —
end: Unimplemented data memory locations and registers, read as ‘0’.

te 1: Unimplemented in LF devices.
2: Unimplemented in PIC18(L)F26/27K42.
3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

PIC18(L)F26/27/45/46/47/55/56/57K42

4.7.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 4.5.2 “General
Purpose Register File”) or a location in the Access
Bank (Section 4.5.4 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 4.5.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 14-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFFL, include the entire
14-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

4.7.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data
structures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 4-6.

EXAMPLE 4-6: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

4.7.3.1 FSR Registers and the INDF
Operand

At the core of indirect addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. Each FSR
pair holds a 14-bit value, therefore, the two upper bits
of the FSRnH register are not used. The 14-bit FSR
value can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers; they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses the data addressed by its
corresponding FSR register pair. A read from INDF1,
for example, reads the data at the address indicated by
FSR1H:FSR1L. Instructions that use the INDF
registers as operands actually use the contents of their
corresponding FSR as a pointer to the instruction’s
target. The INDF operand is just a convenient way of
using the pointer.

Because indirect addressing uses a full 14-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF

; register then
; inc pointer

BTFSS FSR0H, 1 ; All done with
; Bank1?

BRA NEXT ; NO, clear next
CONTINUE ; YES, continue
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 60

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-14: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

IOCIE CRCIE SCANIE NVMIE CSWIE OSFIE HLVDIE SWIE

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 IOCIE: Interrupt-on-Change Enable bit

1 = Enabled
0 = Disabled

bit 6 CRCIE: CRC Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 5 SCANIE: Memory Scanner Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 4 NVMIE: NVM Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 3 CSWIE: Clock Switch Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 2 OSFIE: Oscillator Fail Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 1 HLVDIE: HLVD Interrupt Enable bit

1 = Enabled
0 = Disabled

bit 0 SWIE: Software Interrupt Enable bit

1 = Enabled
0 = Disabled
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 147

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-29: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4
R/W-1/1 R/W-1/1 R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

CLC1IP CWG1IP NCO1IP — CCP1IP TMR2IP TMR1GIP TMR1IP

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 CLC1IP: CLC1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 6 CWG1IP: CWG1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 5 NCO1IP: NCO1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 4 Unimplemented: Read as ‘0’

bit 3 CCP1IP: CCP1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 2 TMR2IP: TMR2 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 1 TMR1GIP: TMR1 Gate Interrupt Priority bit

1 = High priority
0 = Low priority

bit 0 TMR1IP: TMR1 Interrupt Priority bit

1 = High priority
0 = Low priority
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 161

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 9-34: IPR9: PERIPHERAL INTERRUPT PRIORITY REGISTER 9
U-0 U-0 U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

— — — — CLC3IP CWG3IP CCP3IP TMR6IP

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3 CLC3IP: CLC3 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 2 CWG3IP: CWG3 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 1 CCP3IP: CCP3 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 0 TMR6IP: TMR6 Interrupt Priority bit

1 = High priority
0 = Low priority

REGISTER 9-35: IPR10: PERIPHERAL INTERRUPT PRIORITY REGISTER 10
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — CLC4IP CCP4IP

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-2 Unimplemented: Read as ‘0’

bit 1 CLC4IP: CLC4 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 0 CCP4IP: CCP4 Interrupt Priority bit

1 = High priority
0 = Low priority
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 165

PIC18(L)F26/27/45/46/47/55/56/57K42

10.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The Low-Power Sleep mode is intended for
use with these peripherals:

• Brown-out Reset (BOR)
• Windowed Watchdog Timer (WWDT)
• External interrupt pin/Interrupt-On-Change pins
• Peripherals that run off external secondary clock

source

It is the responsibility of the end user to determine what
is acceptable for their application when setting the
VREGPM settings in order to ensure operation in
Sleep.

10.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction
will put the device into Idle mode. In Idle mode, the
CPU and memory operations are halted, but the
peripheral clocks continue to run. This mode is similar
to Doze mode, except that in IDLE both the CPU and
PFM are shut off.

10.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE
= 0), but IDLEN is not changed. The device can re-
enter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the
interrupt that brings the device out of idle also restores
full-speed CPU execution when doze is also enabled.

10.2.4.2 Idle and WWDT

When in idle, the WWDT Reset is blocked and will
instead wake the device. The WWDT wake-up is not an
interrupt, therefore ROI does not apply.

10.3 Peripheral Operation in Power
Saving Modes

All selected clock sources and the peripherals running
off them are active in both IDLE and DOZE mode. Only
in Sleep mode, both the FOSC and FOSC/4 clocks are
unavailable. All the other clock sources are active, if
enabled manually or through peripheral clock selection
before the part enters Sleep.

Note: The PIC18F26/27/45/46/47/55/56/57K42
devices do not have a configurable Low-
Power Sleep mode. PIC18F26/27/45/46/
47/55/56/57K42 devices are unregulated
and are always in the lowest power state
when in Sleep, with no wake-up time
penalty. These devices have a lower
maximum VDD and I/O voltage than the
PIC18(L)F26/27/45/46/47/55/56/57K42.
See Section 44.0 “Electrical
Specifications” for more information.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0,
Configuration Word 1H), the output will
continue operating while in idle.

Note: The WDT can bring the device out of idle,
in the same way it brings the device out of
Sleep. The DOZEN bit is not affected.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 175

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 13-7: PFM ROW ERASE

FLOWCHART
13.1.6 WRITING TO PROGRAM FLASH

MEMORY

The programming write block size is described in
Table 5-4. Word or byte programming is not supported.
Table writes are used internally to load the holding
registers needed to program the memory. There are
only as many holding registers as there are bytes in a
write block. Refer to Table 5-4 for write latch size.

Since the table latch (TABLAT) is only a single byte, the
TBLWT instruction needs to be executed multiple times
for each programming operation. The write protection
state is ignored for this operation. All of the table write
operations will essentially be short writes because only
the holding registers are written. NVMIF is not affected
while writing to the holding registers.

After all the holding registers have been written, the
programming operation of that block of memory is
started by configuring the NVMCON1 register for a
program memory write and performing the long write
sequence.

If the PFM address in the TBLPTR is write-protected or
if TBLPTR points to an invalid location, the WR bit is
cleared without any effect and the WRERR is signaled.

The long write is necessary for programming the
program memory. CPU operation is suspended during
a long write cycle and resumes when the operation is
complete. The long write operation completes in one
instruction cycle. When complete, WR is cleared in
hardware and NVMIF is set and an interrupt will occur if
NVMIE is also set. The latched data is reset to all ‘1s’.
WREN is not changed.

The internal programming timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range of
the device.

Unlock Sequence

(Figure 13-6)

End Erase Operation

Select Memory:

PFM (NVMREGS<1:0> = 10)

Disable Write/Erase Operation

(WREN = 0)

Load Table Pointer register with
address of the block being erased

Start Erase Operation

CPU stalls while Erase operation
completes (2 ms typical)

Select Erase Operation

(FREE = 1)

Disable Interrupts

(GIE = 0)

Enable Interrupts

(GIE = 1)

Enable Write/Erase Operation

(WREN = 1)

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 199

PIC18(L)F26/27/45/46/47/55/56/57K42

25.6.5 WINDOWED MEASURE MODE

This mode measures the window duration of the
SMTWINx input of the SMT. It begins incrementing the
timer on a rising edge of the SMTWINx input and
updates the SMT1CPR register with the value of the
timer and resets the timer on a second rising edge. See
Figure 25-10 and Figure 25-11.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 375

PIC18(L)F26/27/45/46/47/55/56/57K42

31.4 DMX Mode (UART1 only)
DMX is a protocol used in stage and show equipment.
This includes lighting, fog machines, motors, etc. The
protocol consists of a controller that sends out
commands, and receiver such as theater lights that
receive these commands. DMX protocol is usually
unidirectional, but can be a bidirectional protocol in
either Half or Full-duplex modes. An example of Half-
duplex mode is the RDM (Remote Device
Management) protocol that sits on DMX512A. The
controller transmits commands and the receiver
receives them. Also there are no error conditions or re-
transmit mechanisms.

DMX, or DMX512A as it is known, consists of a
“Universe” of 512 channels. This means that one
controller can output up to 512 bytes on a single DMX
link. Each equipment on the line is programmed to
listen to a consecutive sequence of one or more of
these bytes.

For example, a fog machine connected to one of the
universes may be programmed to receive one byte,
starting at byte number 10, and a lighting unit may be
programmed to receive four bytes starting at byte
number 22.

31.4.1 DMX CONTROLLER

DMX Controller mode is configured with the following
settings:

• MODE<3:0> = 1010
• TXEN = 1
• RXEN = 0
• TXPOL = 0
• UxP1 = One less than the number of bytes to

transmit (excluding the Start code)
• UxBRGH:L = Value to achieve 250K baud rate
• STP<1:0> = 10 for 2 Stop bits
• RxyPPS = TX pin output code
• ON = 1

Each DMX transmission begins with a Break followed
by a byte called the ‘Start Code’. The width of the
BREAK is fixed at 25 bit times. The Break is followed
by a “Mark After Break” (MAB) Idle period. After this
Idle period, the 1st through ‘n’th byte is transmitted,
where ‘n-1’ is the value in UxP1. See Figure 31-6.

Software sends the Start Code and the ‘n’ data bytes by
writing the UxTXB register with each byte to be sent in
the desired order. A UxTXIF value of ‘1’ indicates when
the UxTXB is ready to accept the next byte.

The internal byte counter is not accessible to software.
Software needs to keep track of the number of bytes
written to UxTXB to ensure that no more and no less
than ‘n’ bytes are sent because the DMX state machine
will automatically insert a Break and reset its internal
counter after ‘n’ bytes are written. One way to ensure
synchronization between hardware and software is to

toggle TXEN after the last byte of the universe is
completely free of the transmit shift register as
indicated by the TXMTIF bit.

31.4.2 DMX RECEIVER

DMX Receiver mode is configured with the following
settings:

• MODE<3:0> = 1010
• TXEN = 0
• RXEN = 1
• RXPOL = 0
• UxP2 = number of first byte to receive
• UxP3 = number of last byte to receive
• UxBRGH:L = Value to achieve 250K baud rate
• STP<1:0> = 10 for 2 Stop bits
• ON = 1
• UxRXPPS = code for desired input pin
• Input pin ANSEL bit = 0

When configured as DMX Receiver, the UART listens
for a Break character that is at least 23 bit periods wide.
If the Break is shorter than 23 bit times, the Break is
ignored and the DMX state machine remains in Idle
mode. Upon receiving the Break, the DMX counters will
be reset to align with the incoming data stream.
Immediately after the Break, the UART will see the
“Mark after Break” (MAB). This space is ignored by the
UART. The Start Code follows the MAB and will always
be stored in the receive FIFO.

After the Start Code, the 1st through 512th byte will be
received, but not all of them are stored in the receive
FIFO. The UART ignores all received bytes until the
ones of interest are received. This is done using the
UxP2 and UxP3 registers. The UxP2 register holds the
value of the byte number to start the receive process.
The byte counter starts at 0 for the first byte after the
Start Code. For example, to receive four bytes starting
at the 10th byte after the Start Code, write 009h
(9 decimal) to UxP2H:L and 00Ch (12 decimal) to
UxP3H:L. The receive FIFO is only 2 bytes deep,
therefore the bytes must be retrieved by reading
UxRXB as they come in to avoid a receive FIFO
overrun condition.

Typically two Stop bits are inserted between bytes. If
either Stop bit is detected as a ‘0’ then the framing error
for that byte will be set.

Since the DMX sequence always starts with a Break,
the software can verify that it is in sync with the
sequence by monitoring the RXBKIF flag to ensure that
the next byte received after the RXBKIF is processed
as the Start Code and subsequent bytes are processed
as the expected data.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 482


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

40
001919B

-pa
ge 576

PIC
18(L)F26/27/45/46/47/55/56/57K

42

FIG

Rev. 10-000 304A
11/2/201 6

ACKD1 D0

7 8 9

P

0x00

IF is set

Other Master
sends stop
condition

CxRXB
F is set
URE 33-24: I2C MULTI-MASTER, 7-BIT ADDRESS, WRITE (ADRIE = 1, WRIE = 0)

ACK

Received Data

ACK

Received Data

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2
SDA

SCL
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 69 9

S

ACKDT

0x07 0x02 0x01I2CxCNT

Address copied
from I2CxADB1

CNT

MMA

Software sets START

- Received Address and R/W
copied to I2CxADB0[7:0]

If RX shift reg ister matches I2CxADR0:

Master loses arbitration of address.
BCLIF is set, hardware clears MMA
Continues to clock in slave address

CSTR

ADRIF is set CSTR cleared by software

ACKDT cleared by software
User must clear BCLIF to send ACK

Software updates I2CxCNT
for Slave receive message

Another Master clocks ACK
and begin sending data

Software reads data from I2CxRXB Software reads I2

RXBF

I2CxRXIF is set

SMA

User must use ADRIE bit to
interrupt on slave address match

I2CxRXI

PIC18(L)F26/27/45/46/47/55/56/57K42

36.6 Computation Operation
The ADC module hardware is equipped with post
conversion computation features. These features
provide data post-processing functions that can be
operated on the ADC conversion result, including
digital filtering/averaging and threshold comparison
functions.

FIGURE 36-10: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is
controlled by ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• Basic: In this mode, ADC conversion occurs on single
(ADDSEN = 0) or double (ADDSEN = 1) samples.
ADIF is set after all the conversion are complete.

• Accumulate: With each trigger, the ADC conversion
result is added to accumulator and CNT increments.
ADIF is set after each conversion. ADTIF is set
according to the calculation mode.

• Average: With each trigger, the ADC conversion
result is added to the accumulator. When the RPT
number of samples have been accumulated, a
threshold test is performed. Upon the next trigger, the
accumulator is cleared. For the subsequent tests,
additional RPT samples are required to be
accumulated.

• Burst Average: At the trigger, the accumulator is
cleared. The ADC conversion results are then collected
repetitively until RPT samples are accumulated and
finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC
conversion result is sent through a filter. When RPT
samples have occurred, a threshold test is performed.
Every trigger after that the ADC conversion result is
sent through the filter and another threshold test is
performed.

The five modes are summarized in Table 36-2 below.

Rev. 10-000260B
8/4/2015

ADRES

Average/
Filter 1

0
ADPREV

Error
Calculation

ADSTPT

ADFILT

Threshold
Logic

ADPSIS

ADCALC<2:0>

ADMD<2:0>

ADUTHR ADLTHR

Set
Interrupt

FlagADERR
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 613

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 36-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

STPT<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 STPT<15:8>: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on
ADCALC, may be used to determine ERR, see Register 36-29 for more details.

REGISTER 36-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

STPT<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 STPT<7:0>: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on
ADCALC, may be used to determine ERR, see Register 36-30 for more details.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 632

PIC18(L)F26/27/45/46/47/55/56/57K42

BNOV Branch if Not Overflow

Syntax: BNOV n

Operands: -128  n  127

Operation: if OVERFLOW bit is ‘0’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0101 nnnn nnnn

Description: If the OVERFLOW bit is ‘0’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If OVERFLOW = 0;

PC = address (Jump)
If OVERFLOW = 1;

PC = address (HERE + 2)

BNZ Branch if Not Zero

Syntax: BNZ n

Operands: -128  n  127

Operation: if ZERO bit is ‘0’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0001 nnnn nnnn

Description: If the ZERO bit is ‘0’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNZ Jump

Before Instruction
PC = address (HERE)

After Instruction
If ZERO = 0;

PC = address (Jump)
If ZERO = 1;

PC = address (HERE + 2)
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 673

PIC18(L)F26/27/45/46/47/55/56/57K42

IORWF Inclusive OR W with f

Syntax: IORWF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .OR. (f)  dest

Status Affected: N, Z

Encoding: 0001 00da ffff ffff

Description: Inclusive OR W with register ‘f’. If ‘d’ is
‘0’, the result is placed in W. If ‘d’ is ‘1’,
the result is placed back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: IORWF RESULT, 0, 1

Before Instruction
RESULT = 13h
W = 91h

After Instruction
RESULT = 13h
W = 93h

LFSR Load FSR

Syntax: LFSR f, k

Operands: 0  f  2
0  k  16383

Operation: k  FSRf

Status Affected: None

Encoding: 1110
1111

1110
0000

00k13k
k7kkk

kkkk
kkkk

Description: The 14-bit literal ‘k’ is loaded into the
File Select Register pointed to by ‘f’.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘k’ MSB

Process
Data

Write
literal ‘k’
MSB to
FSRfH

Decode Read literal
‘k’ LSB

Process
Data

Write literal
‘k’ to FSRfL

Example: LFSR 2, 3ABh

After Instruction
FSR2H = 03h
FSR2L = ABh
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 686

PIC18(L)F26/27/45/46/47/55/56/57K42

XORWF Exclusive OR W with f

Syntax: XORWF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .XOR. (f) dest

Status Affected: N, Z

Encoding: 0001 10da ffff ffff

Description: Exclusive OR the contents of W with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in the register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 41.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: XORWF REG, 1, 0

Before Instruction
REG = AFh
W = B5h

After Instruction
REG = 1Ah
W = B5h
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 705

PIC18(L)F26/27/45/46/47/55/56/57K42

58
60
60
60
60

58
60
60
60
60
59
59

28
30
29
25
24
31
31
27
26
28
30
29
25
24
31
31
27
26
28
30
29
25
24
31
31
27
26
54
53
57
56
56

gister
 page
3F66h PWM7CON EN — OUT POL — — — — 3
3F65h PWM7DCH DC9 DC8 DC7 DC6 DC5 DC4 DC3 DC2 3
3F65h PWM7DCH DC 3
3F64h PWM7DCL DC1 DC0 — — — — — — 3
3F64h PWM7DCL DC — — — — — — 3
3F63h — Unimplemented

3F62h PWM8CON EN — OUT POL — — — — 3
3F61h PWM8DCH DC9 DC8 DC7 DC6 DC5 DC4 DC3 DC2 3
3F61h PWM8DCH DC 3
3F60h PWM8DCL DC1 DC0 — — — — — — 3
3F60h PWM8DCL DC — — — — — — 3
3F5Fh CCPTMRS1 P8TSEL P7TSEL P6TSEL P5TSEL 3
3F5Eh CCPTMRS0 C4TSEL C3TSEL C2TSEL C1TSEL 3
3F5Dh -
3F5Bh

— Unimplemented

3F5Ah CWG1STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F59h CWG1AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F58h CWG1AS0 SHUTDOWN REN LSBD LSAC — — 4
3F57h CWG1CON1 — — IN — POLD POLC POLB POLA 4
3F56h CWG1CON0 EN LD — — — MODE 4
3F55h CWG1DBF — — DBF 4
3F54h CWG1DBR — — DBR 4
3F53h CWG1ISM — — — — IS 4
3F52h CWG1CLK — — — — — — — CS 4
3F51h CWG2STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F50h CWG2AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F4Fh CWG2AS0 SHUTDOWN REN LSBD LSAC — — 4
3F4Eh CWG2CON1 — — IN — POLD POLC POLB POLA 4
3F4Dh CWG2CON0 EN LD — — — MODE 4
3F4Ch CWG2DBF — — DBF 4
3F4Bh CWG2DBR — — DBR 4
3F4Ah CWG2ISM — — — — IS 4
3F49h CWG2CLK — — — — — — — CS 4
3F48h CWG3STR OVRD OVRC OVRB OVRA STRD STRC STRB STRA 4
3F47h CWG3AS1 — AS6E AS5E AS4E AS3E AS2E AS1E AS0E 4
3F46h CWG3AS0 SHUTDOWN REN LSBD LSAC — — 4
3F45h CWG3CON1 — — IN — POLD POLC POLB POLA 4
3F44h CWG3CON0 EN LD — — — MODE 4
3F43h CWG3DBF — — DBF 4
3F42h CWG3DBR — — DBR 4
3F41h CWG3ISM — — — — IS 4
3F40h CWG3CLK — — — — — — — CS 4
3F3Fh NCO1CLK PWS — CKS 4
3F3Eh NCO1CON EN — OUT POL — — — PFM 4
3F3Dh NCO1INCU INC 4
3F3Ch NCO1INCH INC 4
3F3Bh NCO1INCL INC 4

TABLE 42-1: REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Re
on

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.
3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.
4: Unimplemented in PIC18(L)F45/55K42.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 718

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 44-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 44-15: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

SS

SCK
(CKP = 0)

SCK
(CKP = 1)

SDO

SDI

SP81

SP71 SP72

SP73
SP74

SP75, SP76

SP78SP79

SP80

SP79SP78

MSb LSbbit 6 - - - - - -1

MSb In LSb Inbit 6 - - - -1

Note: Refer to Figure 44-4 for load conditions.

SS

SCK
(CKP = 0)

SCK
(CKP = 1)

SDO

SDI

SP81

SP71 SP72

SP74

SP75, SP76

SP78
SP80

MSb

SP79
SP73

MSb In

bit 6 - - - - - -1

LSb Inbit 6 - - - -1

LSb

Note: Refer to Figure 44-4 for load conditions.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 762

 2017 Microchip Technology Inc. Preliminary DS40001919B-page 805

PIC18(L)F26/27/45/46/47/55/56/57K42

PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X /XX XXX

PatternPackageTemperature
Range

Device

Device: PIC18F26K42,
PIC18LF26K42,
PIC18F27K42, PIC18LF27K42
PIC18F45K42,
PIC18LF45K42
PIC18F46K42, PIC18LF46K42
PIC18F47K42, PIC18LF47K42
PIC18F55K42, PIC18LF55K42
PIC18F56K42, PIC18LF56K42
PIC18F57K42, PIC18LF57K42

Tape and Reel
Option:

Blank = standard packaging (tube or tray)
T = Tape and Reel(1), (2)

Temperature
Range:

E = -40C to +125C (Extended)
I = -40C to +85C (Industrial)

Package: ML = 28-lead QFN 6x6mm
ML = 44-lead QFN 8x8x0.9mm
MX = 28-lead UQFN 6x6x0.5mm
MV = 40-lead UQFN 5x5x0.5mm
MV = 48-lead UQFN
P = 40-lead PDIP
PT = 44-lead TQFP (Thin Quad Flatpack)
PT = 48-lead TQFP
SO = 28-lead SOIC
SP = 28-lead Skinny Plastic DIP
SS = 28-lead SSOP

Pattern: QTP, SQTP, Code or Special Requirements
(blank otherwise)

Examples:
a) PIC18F26K42-E/P 301 = Extended temp.,

PDIP package, QTP pattern #301.
b) PIC18F45K42-E/SO = Extended temp., SOIC

package.

c) PIC18F46K42T-I/ML = Tape and reel, Industrial
temp., QFN package.

Note 1: Tape and Reel option is available for ML,
MV, PT, SO and SS packages with industrial
Temperature Range only.

2: Tape and Reel identifier only appears in
catalog part number description. This
identifier is used for ordering purposes and
is not printed on the device package.

[X](2)

Tape and Reel
 Option

 -

