

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k42-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration, which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

3.2.3 ISR PRIORITY > PERIPHERAL PRIORITY > MAIN PRIORITY

In this case, interrupt routines and peripheral operation (DMAx, Scanner) will stall the CPU. Interrupt will preempt peripheral operation. This results in lowest interrupt latency and highest throughput for the peripheral to access the memory.

3.2.4 PERIPHERAL 1 PRIORITY > ISR PRIORITY > MAIN PRIORITY > PERIPHERAL 2 PRIORITY

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the memory in cycles unused by Peripheral 1.

The operation of the System Arbiter is controlled through the following registers:

REGISTER 3-1: ISRPR: INTERRUPT SERVICE ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		ISRPR<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ISRPR<2:0>: Interrupt Service Routine Priority Selection bits

REGISTER 3-2: MAINPR: MAIN ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-1/1
—	—	—	—	—		MAINPR<2:0>	
bit 7							bit 0

Legend:

· J · ·		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 MAINPR<2:0>: Main Routine Priority Selection bits

REGISTER 3-3: DMA1PR: DMA1 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0
—	—	—	—	—	[DMA1PR<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
1 = bit is set	0 = bit is cleared	HS = Hardware set

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMA1PR<2:0>: DMA1 Priority Selection bits

TABLE 4-7: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES BANK 60

_				_											
3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh	—	3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	—
3CFEh	MD1CARH	3CDEh	_	3CBEh	_	3C9Eh	_	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	_	3C1Eh	_
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	—	3C1Dh	_
3CFCh	MD1SRC	3CDCh	—	3CBCh	—	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	—	3C1Ch	—
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	—	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	—	3C1Bh	—
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	—	3C1Ah	—
3CF9h	—	3CD9h	—	3CB9h	_	3C99h	_	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	—	3C19h	_
3CF8h	—	3CD8h	—	3CB8h	_	3C98h	_	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	—	3C18h	_
3CF7h	_	3CD7h	_	3CB7h	_	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	_	3C17h	_
3CF6h	—	3CD6h		3CB6h	—	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	—	3C16h	_
3CF5h	—	3CD5h		3CB5h	—	3C95h	—	3C75h	CLC1POL	3C55h	_	3C35h	—	3C15h	_
3CF4h	—	3CD4h		3CB4h	—	3C94h	—	3C74h	CLC1CON	3C54h	—	3C34h	—	3C14h	
3CF3h	—	3CD3h	—	3CB3h	_	3C93h	_	3C73h	CLC2GLS3	3C53h	—	3C33h	—	3C13h	_
3CF2h	—	3CD2h	—	3CB2h	_	3C92h	_	3C72h	CLC2GLS2	3C52h	—	3C32h	—	3C12h	_
3CF1h	—	3CD1h	—	3CB1h	_	3C91h	_	3C71h	CLC2GLS1	3C51h	—	3C31h	—	3C11h	_
3CF0h	—	3CD0h	—	3CB0h	_	3C90h	_	3C70h	CLC2GLS0	3C50h	—	3C30h	—	3C10h	_
3CEFh	—	3CCFh	—	3CAFh	_	3C8Fh	_	3C6Fh	CLC2SEL3	3C4Fh	—	3C2Fh	—	3C0Fh	_
3CEEh	—	3CCEh	—	3CAEh	_	3C8Eh	_	3C6Eh	CLC2SEL2	3C4Eh	—	3C2Eh	—	3C0Eh	_
3CEDh	—	3CCDh	—	3CADh	_	3C8Dh	_	3C6Dh	CLC2SEL1	3C4Dh	—	3C2Dh	—	3C0Dh	_
3CECh	—	3CCCh	—	3CACh	_	3C8Ch	_	3C6Ch	CLC2SEL0	3C4Ch	—	3C2Ch	—	3C0Ch	_
3CEBh	—	3CCBh	—	3CABh	_	3C8Bh	_	3C6Bh	CLC2POL	3C4Bh	—	3C2Bh	—	3C0Bh	_
3CEAh	—	3CCAh	—	3CAAh	_	3C8Ah	_	3C6Ah	CLC2CON	3C4Ah	—	3C2Ah	—	3C0Ah	_
3CE9h	—	3CC9h	—	3CA9h	—	3C89h	—	3C69h	CLC3GLS3	3C49h	—	3C29h	—	3C09h	—
3CE8h	—	3CC8h	—	3CA8h	—	3C88h	—	3C68h	CLC3GLS2	3C48h	—	3C28h	—	3C08h	—
3CE7h	—	3CC7h	—	3CA7h	_	3C87h	_	3C67h	CLC3GLS1	3C47h	—	3C27h	—	3C07h	_
3CE6h	CLKRCLK	3CC6h	—	3CA6h	—	3C86h	—	3C66h	CLC3GLS0	3C46h	—	3C26h	—	3C06h	—
3CE5h	CLKRCON	3CC5h	—	3CA5h	_	3C85h	_	3C65h	CLC3SEL3	3C45h	—	3C25h	—	3C05h	_
3CE4h	—	3CC4h	—	3CA4h	_	3C84h	_	3C64h	CLC3SEL2	3C44h	—	3C24h	—	3C04h	_
3CE3h	_	3CC3h	_	3CA3h		3C83h		3C63h	CLC3SEL1	3C43h	_	3C23h	_	3C03h	
3CE2h	_	3CC2h		3CA2h	—	3C82h	—	3C62h	CLC3SEL0	3C42h	_	3C22h	—	3C02h	
3CE1h		3CC1h		3CA1h	_	3C81h	_	3C61h	CLC3POL	3C41h	_	3C21h		3C01h	
3CE0h	_	3CC0h	_	3CA0h	_	3C80h	_	3C60h	CLC3CON	3C40h	_	3C20h	_	3C00h	_

Legend: Unimplemented data memory locations and registers, read as '0'.

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented in PIC18(L)F26/27/45/46/47K42.

4.7.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 4.5.2 "General Purpose Register File") or a location in the Access Bank (Section 4.5.4 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 4.5.1 "Bank Select Register (BSR)") are used with the address to determine the complete 14-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFFL, include the entire 14-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

4.7.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 4-6.

EXAMPLE 4-6: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

					ADDIVEOOINO
	LFSR	FSR0,	10 0h	;	
NEXT	CLRF	POSTIN	1C0	;	Clear INDF
				;	register then
				;	inc pointer
	BTFSS	FSROH,	1	;	All done with
				;	Bank1?
	BRA	NEXT		;	NO, clear next
CONTINUE				;	YES, continue

4.7.3.1 FSR Registers and the INDF Operand

At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds a 14-bit value, therefore, the two upper bits of the FSRnH register are not used. The 14-bit FSR value can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers; they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses the data addressed by its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because indirect addressing uses a full 14-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCIE	CRCIE	SCANIE	NVMIE	CSWIE	OSFIE	HLVDIE	SWIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	IOCIE: Interru	upt-on-Change	Enable bit				
	1 = Enabled						
bit 6	CRCIF: CRC	Interrupt Enab	le bit				
bit o	1 = Enabled						
	0 = Disabled						
bit 5	SCANIE: Mer	mory Scanner I	nterrupt Enab	le bit			
	1 = Enabled						
	0 = Disabled		1. 1.9				
DIT 4		I Interrupt Enac	DIE DIT				
	1 = Enabled 0 = Disabled						
bit 3	CSWIE: Cloc	k Switch Interru	upt Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 2	OSFIE: Oscill	lator Fail Interru	upt Enable bit				
	1 = Enabled						
L			abla bit				
DILI	1 = Enabled						
	0 = Disabled						
bit 0	SWIE: Softwa	are Interrupt En	able bit				
	1 = Enabled	-					
	0 = Disabled						

REGISTER 9-14: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
CLC1IP	CWG1IP	NCO1IP	_	CCP1IP	TMR2IP	TMR1GIP	TMR1IP			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	CLC1IP: CLC	C1 Interrupt Pric	ority bit							
	1 = High pric 0 = 1 ow pric	ority rity								
hit 6		VG1 Interrunt P	riority hit							
bit o	1 = High price	verintenaperi	lonty bit							
	0 = Low prio	rity								
bit 5	NCO1IP: NC	O1 Interrupt Pri	ority bit							
	1 = High pric	ority								
	0 = Low prio	rity								
bit 4	Unimplemen	nted: Read as 'o)'							
bit 3	CCP1IP: CC	P1 Interrupt Price	ority bit							
	1 = High price	prity								
	0 = Low prio	rity								
bit 2		R2 Interrupt Pri	ority bit							
	\perp = Hign pric	rity								
hit 1		MR1 Gate Inter	runt Priority hi	ł						
bit i	1 = High price	ority	apti nonty bi							
	0 = Low prio	rity								
bit 0	TMR1IP: TM	R1 Interrupt Pri	ority bit							
	1 = High pric	ority								
	0 = Low prio	rity								

REGISTER 9-29: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

				-			
U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
	_	_	_	CLC3IP	CWG3IP	CCP3IP	TMR6IP
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3	CLC3IP: CLC	3 Interrupt Pric	ority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 2	CWG3IP: CW	/G3 Interrupt P	riority bit				
	1 = High prio	rity					
bit 1		ILY	ority bit				
		-s menupt Ph	Drity Dit				
	1 =	ritv					
bit 0	TMR6IP: TMF	R6 Interrupt Pri	oritv bit				
	1 = High prio	rity					
	0 = Low prior	rity					

REGISTER 9-34: IPR9: PERIPHERAL INTERRUPT PRIORITY REGISTER 9

REGISTER 9-35: IPR10: PERIPHERAL INTERRUPT PRIORITY REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	—	—	—	—	CLC4IP	CCP4IP
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 CLC4IP: CLC4 Interrupt Priority bit
 - 1 = High priority
 - 0 = Low priority
- bit 0 CCP4IP: CCP4 Interrupt Priority bit
 - 1 = High priority
 - 0 = Low priority

10.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC18F26/27/45/46/47/55/56/57K42
	devices do not have a configurable Low-
	Power Sleep mode. PIC18F26/27/45/46/
	47/55/56/57K42 devices are unregulated
	and are always in the lowest power state
	when in Sleep, with no wake-up time
	penalty. These devices have a lower
	maximum VDD and I/O voltage than the
	PIC18(L)F26/27/45/46/47/55/56/57K42.
	See Section 44.0 "Electrical
	Specifications" for more information.

10.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in idle.

10.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of idle also restores full-speed CPU execution when doze is also enabled.

10.2.4.2 Idle and WWDT

When in idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

10.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

FIGURE 13-7: PFM ROW ERASE FLOWCHART

13.1.6 WRITING TO PROGRAM FLASH MEMORY

The programming write block size is described in Table 5-4. Word or byte programming is not supported. Table writes are used internally to load the holding registers needed to program the memory. There are only as many holding registers as there are bytes in a write block. Refer to Table 5-4 for write latch size.

Since the table latch (TABLAT) is only a single byte, the TBLWT instruction needs to be executed multiple times for each programming operation. The write protection state is ignored for this operation. All of the table write operations will essentially be short writes because only the holding registers are written. NVMIF is not affected while writing to the holding registers.

After all the holding registers have been written, the programming operation of that block of memory is started by configuring the NVMCON1 register for a program memory write and performing the long write sequence.

If the PFM address in the TBLPTR is write-protected or if TBLPTR points to an invalid location, the WR bit is cleared without any effect and the WRERR is signaled.

The long write is necessary for programming the program memory. CPU operation is suspended during a long write cycle and resumes when the operation is complete. The long write operation completes in one instruction cycle. When complete, WR is cleared in hardware and NVMIF is set and an interrupt will occur if NVMIE is also set. The latched data is reset to all '1s'. WREN is not changed.

The internal programming timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note:	The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers
	before executing a long write operation.

25.6.5 WINDOWED MEASURE MODE

This mode measures the window duration of the SMTWINx input of the SMT. It begins incrementing the timer on a rising edge of the SMTWINx input and updates the SMT1CPR register with the value of the timer and resets the timer on a second rising edge. See Figure 25-10 and Figure 25-11.

31.4 DMX Mode (UART1 only)

DMX is a protocol used in stage and show equipment. This includes lighting, fog machines, motors, etc. The protocol consists of a controller that sends out commands, and receiver such as theater lights that receive these commands. DMX protocol is usually unidirectional, but can be a bidirectional protocol in either Half or Full-duplex modes. An example of Halfduplex mode is the RDM (Remote Device Management) protocol that sits on DMX512A. The controller transmits commands and the receiver receives them. Also there are no error conditions or retransmit mechanisms.

DMX, or DMX512A as it is known, consists of a "Universe" of 512 channels. This means that one controller can output up to 512 bytes on a single DMX link. Each equipment on the line is programmed to listen to a consecutive sequence of one or more of these bytes.

For example, a fog machine connected to one of the universes may be programmed to receive one byte, starting at byte number 10, and a lighting unit may be programmed to receive four bytes starting at byte number 22.

31.4.1 DMX CONTROLLER

DMX Controller mode is configured with the following settings:

- MODE<3:0> = 1010
- TXEN = 1
- RXEN = 0
- TXPOL = 0
- UxP1 = One less than the number of bytes to transmit (excluding the Start code)
- UxBRGH:L = Value to achieve 250K baud rate
- STP<1:0> = 10 for 2 Stop bits
- RxyPPS = TX pin output code
- ON = 1

Each DMX transmission begins with a Break followed by a byte called the 'Start Code'. The width of the BREAK is fixed at 25 bit times. The Break is followed by a "Mark After Break" (MAB) Idle period. After this Idle period, the 1st through 'n'th byte is transmitted, where 'n-1' is the value in UxP1. See Figure 31-6.

Software sends the Start Code and the 'n' data bytes by writing the UxTXB register with each byte to be sent in the desired order. A UxTXIF value of '1' indicates when the UxTXB is ready to accept the next byte.

The internal byte counter is not accessible to software. Software needs to keep track of the number of bytes written to UxTXB to ensure that no more and no less than 'n' bytes are sent because the DMX state machine will automatically insert a Break and reset its internal counter after 'n' bytes are written. One way to ensure synchronization between hardware and software is to toggle TXEN after the last byte of the universe is completely free of the transmit shift register as indicated by the TXMTIF bit.

31.4.2 DMX RECEIVER

DMX Receiver mode is configured with the following settings:

- MODE<3:0> = 1010
- TXEN = 0
- RXEN = 1
- RXPOL = 0
- UxP2 = number of first byte to receive
- UxP3 = number of last byte to receive
- UxBRGH:L = Value to achieve 250K baud rate
- STP<1:0> = 10 for 2 Stop bits
- ON = 1
- UxRXPPS = code for desired input pin
- Input pin ANSEL bit = 0

When configured as DMX Receiver, the UART listens for a Break character that is at least 23 bit periods wide. If the Break is shorter than 23 bit times, the Break is ignored and the DMX state machine remains in Idle mode. Upon receiving the Break, the DMX counters will be reset to align with the incoming data stream. Immediately after the Break, the UART will see the "Mark after Break" (MAB). This space is ignored by the UART. The Start Code follows the MAB and will always be stored in the receive FIFO.

After the Start Code, the 1st through 512th byte will be received, but not all of them are stored in the receive FIFO. The UART ignores all received bytes until the ones of interest are received. This is done using the UxP2 and UxP3 registers. The UxP2 register holds the value of the byte number to start the receive process. The byte counter starts at 0 for the first byte after the Start Code. For example, to receive four bytes starting at the 10th byte after the Start Code, write 009h (9 decimal) to UxP2H:L and 00Ch (12 decimal) to UxP3H:L. The receive FIFO is only 2 bytes deep, therefore the bytes must be retrieved by reading UxRXB as they come in to avoid a receive FIFO overrun condition.

Typically two Stop bits are inserted between bytes. If either Stop bit is detected as a '0' then the framing error for that byte will be set.

Since the DMX sequence always starts with a Break, the software can verify that it is in sync with the sequence by monitoring the RXBKIF flag to ensure that the next byte received after the RXBKIF is processed as the Start Code and subsequent bytes are processed as the expected data.

36.6 Computation Operation

The ADC module hardware is equipped with post conversion computation features. These features provide data post-processing functions that can be operated on the ADC conversion result, including digital filtering/averaging and threshold comparison functions.

FIGURE 36-10: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is controlled by ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• **Basic**: In this mode, ADC conversion occurs on single (ADDSEN = 0) or double (ADDSEN = 1) samples. ADIF is set after all the conversion are complete.

• Accumulate: With each trigger, the ADC conversion result is added to accumulator and CNT increments. ADIF is set after each conversion. ADTIF is set according to the calculation mode.

• Average: With each trigger, the ADC conversion result is added to the accumulator. When the RPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the accumulator is cleared. For the subsequent tests, additional RPT samples are required to be accumulated.

• **Burst Average**: At the trigger, the accumulator is cleared. The ADC conversion results are then collected repetitively until RPT samples are accumulated and finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC conversion result is sent through a filter. When RPT samples have occurred, a threshold test is performed. Every trigger after that the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in Table 36-2 below.

REGISTER 36-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			STPT	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets

bit 7-0 **STPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 36-29 for more details.

REGISTER 36-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

'0' = Bit is cleared

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | STPT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **STPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 36-30 for more details.

'1' = Bit is set

BNC	N	Branch if	Not Overflo	w	BNZ		Branch if	Not Zero	
Synta	ax:	BNOV n			Syntax	K:	BNZ n		
Oper	ands:	-128 ≤ n ≤ 1	127		Opera	nds:	-128 ≤ n ≤ 1	27	
Oper	ation:	if OVERFL0 (PC) + 2 + 2	OW bit is '0' 2n → PC		Opera	tion:	if ZERO bit (PC) + 2 + 2	is '0' 2n → PC	
Statu	is Affected:	None			Status	Affected:	None		
Enco	oding:	1110	0101 nni	nn nnnn	Encod	ling:	1110	0001 nn:	nn nnnn
Desc	ription:	If the OVEF program wil The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	RFLOW bit is ' Il branch. nplement num e PC. Since th d to fetch the r the new addre n. This instruct ruction.	o', then the ber '2n' is e PC will have next ess will be tion is then a	Descri	ption:	If the ZERC will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r 2-cycle inst	bit is '0', ther plement num e PC. Since th d to fetch the the new addre n. This instruct ruction.	h the program ber '2n' is e PC will have next ess will be tion is then a
Word	ls:	1			Words	:	1		
Cycle	es:	1(2)			Cycles	S:	1(2)		
Q C If Ju	ycle Activity: Imp:				Q Cy If Jun	cle Activity: np:			
	Q1	Q2	Q3	Q4	_	Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No	No	No	No	Γ	No	No	No	No
	operation	operation	operation	operation	L	operation	operation	operation	operation
It No	o Jump:	00	00	04	If No	Jump:	00	00	04
	Q1 Decede	Q2	Q3	Q4	Г	Q1 Decede	Q2	Q3	Q4
	Decode	'n'	Data	operation		Decode	'n'	Data	operation
					L				
<u>Exan</u>	nple:	HERE	BNOV Jump		Exam	ole:	HERE	BNZ Jump	
	Before Instruc	ction			E	Before Instruc	tion		
	PC After Instruction	= ad on FLOW = 0 [.]	dress (HERE))	Ą	PC fter Instruction	= ade on = 0.	dress (HERE)	
	If OVER	= ad FLOW = 1; = ad	dress (Jump)) + 2)		If ZERO PC	= ado = 1; = ado	dress (Jump)	+ 2)

IOR	WF	Inclusive	Inclusive OR W with f				
Synta	ax:	IORWF	f {,d {,a}}				
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Oper	ation:	(W) .OR. (f	$\rightarrow dest$				
Statu	is Affected:	N, Z					
Enco	oding:	0001	00da	ffff	ffff		
Desc	rription:	Inclusive C '0', the result is (default). If 'a' is '0', ' If 'a' is '1', ' GPR bank. If 'a' is '0' a set is enab in Indexed mode when tion 41.2.3 Oriented I eral Offset	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-				
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Proce Dat	ess V a de	Write to estination		
Exan	nple:	IORWF R	ESULT,	0, 1			

Syntax:LFSR f, kOperands: $0 \le f \le 2$ $0 \le k \le 16383$ Operation: $k \rightarrow FSRf$ Status Affected:NoneEncoding: 1110 1111 $00k_{13}k$ k_7kkk $kkkk$ $kkkk$ Description:The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.Words:2 Q Cycle Activity:Q1Q2 MSB Q3 MSB Q4Process $FSRfH$ DecodeRead literal $K' MSB$ ProcessWrite $K'RSH$ DecodeRead literal $K' MSB$ ProcessWrite $K'RSH$ DecodeRead literal $K' MSB$ ProcessWrite $K'RSH$ Q2Q3 $K' MSB$	LFS	R	Load FS	R				
Operands: $0 \le f \le 2$ $0 \le k \le 16383$ Operation: $k \rightarrow FSRf$ Status Affected:NoneEncoding: 1110 1111 $00k_{13}k$ $kkkk$ $k1111$ $kkkk$ k_7kkk Description:The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.Words:2Q Cycle Activity:QQ1Q2Q3Q4DecodeRead literal 'k' MSBProcessWrite literal 'k' MSB to FSRfHDecodeRead literalProcessWrite literal k' MSB	Synta	ax:	LFSR f, k					
Operation: $k \rightarrow FSRf$ Status Affected:NoneEncoding: 1110 1110 $00k_{13}k$ $kkkk$ Description:The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.Words:2Cycles:2Q Cycle Activity:Q1Q2Q3Q4DecodeRead literal 'k' MSBProcessWrite literal 'k' MSB to FSRfHDecodeRead literalProcessWrite literal 'k' MSB to FSRfH	Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 163 \end{array}$	383				
Status Affected: None Encoding: 1110 1110 00k13k kkkk Description: The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'. Words: 2 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write literal 'k' MSB to FSRfH Decode Read literal Process Write literal	Oper	ation:	$k \to FSRf$					
Encoding: 1110 1110 00k13k kkkk 1111 0000 k7kkk kkkk Description: The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'. Words: 2 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write literal 'k' MSB Data SB to FSRfH Decode Read literal Process Write literal 'k'	Statu	s Affected:	None					
Description: The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'. Words: 2 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write iteral 'k' MSB Data literal 'k' MSB to FSRfH Decode Read literal Process Write literal	Enco	ding:	1110 1111	1110 0000	00k ₁₃ k k ₇ kkk	kkkk kkkk		
Words: 2 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write 'k' MSB Data literal 'k' MSB to FSRfH Decode Read literal Process Write literal	Desc	ription:	The 14-bit File Select	The 14-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.				
Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write 'k' MSB Data literal 'k' MSB to FSRfH Decode Read literal Process Write literal	Word	ls:	2					
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal Process Write 'k' MSB Data literal 'k' MSB to FSRfH Decode Read literal Process Write literal	Cycle	es:	2					
Q1 Q2 Q3 Q4 Decode Read literal 'k' MSB Process Data Write literal 'k' MSB to FSRfH Decode Read literal Process Write literal	QC	ycle Activity:						
Decode Read literal 'k' MSB Process Data Write literal 'k' MSB to FSRfH Decode Read literal Process Write literal		Q1	Q2	Q3		Q4		
Decode Read literal Process Write literal		Decode	Read literal 'k' MSB	Proce Data	ess a lin N	Write teral 'k' ⁄ISB to FSRfH		
'k' LSB Data 'k' to FSRfL		Decode	Read literal 'k' LSB	Proce Data	ess Wr a 'k'	ite literal to FSRfL		

Example: LFSR 2, 3ABh

•		
After Instruction		
FSR2H	=	03h
FSR2L	=	ABh

Examp	le

Before Instruction							
RESULT	=	13h					
W	=	91h					
After Instruction							
RESULT	=	13h					
W	=	93h					

XOR	WF	Exclusive OR W with f								
Synta	x:	XORWF	f {,d {,a}	}						
Opera	ands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]								
Opera	ation:	(W) .XOR.	(f) \rightarrow des	st						
Status	Affected:	N, Z	N, Z							
Encoc	ling:	0001	0001 10da ffff fff:							
Descr	ιption:	register 'f'. in W. If 'd' i in the regis If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whe tion 41.2.3 Oriented I eral Offse	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 41.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details							
Words	S:	1	1							
Cycles	S:	1	1							
Q Cy	cle Activity:									
F	Q1	Q2	Q3	}	Q4					
	Decode	Read register 'f'	Proce Dat	ess a c	Write to destination					
Example:		XORWF	REG, 1,	0						
E A	Before Instruc REG W After Instructio REG	tion = AFh = B5h on = 1Ah								
	VV	 DOU 								

© 2017 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3F66h	PWM7CON	EN	_	OUT	POL	—	—	—	—	358
3F65h	PWM7DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F65h	PWM7DCH				D	С				360
3F64h	PWM7DCL	DC1	DC0	—	—	—	—	—	—	360
3F64h	PWM7DCL	DC		—	—	—	—	—	—	360
3F63h	—				Unimple	emented				
3F62h	PWM8CON	EN	_	OUT	POL	—	—	—	—	358
3F61h	PWM8DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	360
3F61h	PWM8DCH				D	С				360
3F60h	PWM8DCL	DC1	DC0	—	—	—	—	_	—	360
3F60h	PWM8DCL	D	С	_	_	_	—		_	360
3F5Fh	CCPTMRS1	P8T	SEL	P7T	SEL	P6	TSEL	P5	TSEL	359
3F5Eh	CCPTMRS0	C4T	SEL	C3T	SEL	C2 ⁻	TSEL	C1	TSEL	359
3F5Dh - 3F5Bh	—				Unimple	emented				
3F5Ah	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F59h	CWG1AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F58h	CWG1AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F57h	CWG1CON1	—		IN	—	POLD	POLC	POLB	POLA	425
3F56h	CWG1CON0	EN	LD	—	—	—		MODE		424
3F55h	CWG1DBF	—	_				DBF			431
3F54h	CWG1DBR	—	_				DBR			431
3F53h	CWG1ISM	—	_	—	—			IS		427
3F52h	CWG1CLK	—	_	—	—	—	—	—	CS	426
3F51h	CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F50h	CWG2AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F4Fh	CWG2AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F4Eh	CWG2CON1	—		IN	—	POLD	POLC	POLB	POLA	425
3F4Dh	CWG2CON0	EN	LD	—	—	—		MODE		424
3F4Ch	CWG2DBF	—	_	DBF					431	
3F4Bh	CWG2DBR	—		DBR					431	
3F4Ah	CWG2ISM	—	_	—	—			IS		427
3F49h	CWG2CLK	—	_	—	_	_	_		CS	426
3F48h	CWG3STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	428
3F47h	CWG3AS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	430
3F46h	CWG3AS0	SHUTDOWN	REN	LS	BD	LS	SAC	—	—	429
3F45h	CWG3CON1	—	_	IN	—	POLD	POLC	POLB	POLA	425
3F44h	CWG3CON0	EN	LD		—	—		MODE		424
3F43h	CWG3DBF	—		DBF						431
3F42h	CWG3DBR	—		DBR					431	
3F41h	CWG3ISM	—		—	_			IS		427
3F40h	CWG3CLK	—	—	—	—	—	—	—	CS	426
3F3Fh	NCO1CLK		PWS	— CKS						454
3F3Eh	NCO1CON	EN	EN – OUT POL – – PFM						453	
3F3Dh	NCO1INCU	INC							457	
3F3Ch	NCO1INCH	INC							456	
3F3Bh	NCO1INCL	INC							456	

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

FIGURE 44-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> ⁽²⁾ -	¥	/ <u>xx</u>	xxx	Examp	bles:
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a) Pl Pl b) Pl	IC18F26K42-E/P 301 = Extended temp., DIP package, QTP pattern #301. IC18F45K42-E/SO = Extended temp., SOIC ackage.
Device:	PIC18F26K42 PIC18LF26K42 PIC18F27K42 PIC18F45K42 PIC18LF45K42 PIC18F46K42 PIC18F46K42 PIC18F47K42 PIC18F55K42 PIC18F55K42 PIC18F57K42	, , PIC18LF27K42 , 2 , PIC18LF46K42 , PIC18LF47K42 , PIC18LF55K42 , PIC18LF56K42 , PIC18LF57K42			c) Pi	IC18F46K42T-I/ML = Tape and reel, Industrial mp., QFN package.
Tape and Reel Option:	Blank = standa T = Tape and F	ard packaging (tube Reel ^{(1), (2)}	e or tray)		Note 1:	 Tape and Reel option is available for ML, MV, PT, SO and SS packages with industrial Temperature Range only. Tape and Reel identifier only appears in catalog part number description. This
Temperature Range:	E = -40 I = -40°	°C to +125°C (E °C to +85°C (Iı	Extended) ndustrial)			identifier is used for ordering purposes and is not printed on the device package.
Package:	$\begin{array}{rcrr} ML &=& 28-lr\\ ML &=& 44-lr\\ MX &=& 28-lr\\ MV &=& 40-lr\\ MV &=& 48-lr\\ PT &=& 40-lr\\ PT &=& 48-lr\\ PT &=& 48-lr\\ SO &=& 28-lr\\ SP &=& 28-lr\\ SS &=& 28-lr\\ SS &=& 28-lr\\ \end{array}$	ead QFN 6x6mm ead QFN 8x8x0.9n ead UQFN 6x6x0.5 ead UQFN 5x5x0.5 ead UQFN ead PDIP ead TQFP (Thin Qi ead TQFP ead SOIC ead SOIC ead SSOP	nm imm uad Flatpack) DIP			
Pattern:	QTP, SQTP, C (blank otherwis	ode or Special Rec se)	juirements			