
Microchip Technology - PIC18F46K42-E/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 35x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k42-e-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f46k42-e-ml-4390496
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F26/27/45/46/47/55/56/57K42
1.0 DEVICE OVERVIEW
This document contains device specific information for
the following devices:

• This family offers the advantages of all PIC18
microcontrollers – namely, high computational
performance at an economical price – with the
addition of high-endurance Program Flash Mem-
ory, Universal Asynchronous Receiver Transmit-
ter (UART), Serial Peripheral Interface (SPI),
Inter-integrated Circuit (I2C), Direct Memory
Access (DMA), Configurable Logic Cells (CLC),
Signal Measurement Timer (SMT), Numerically
Controlled Oscillator (NCO), and Analog-to-Digital
Converter with Computation (ADC2).

1.1 New Features
• Direct Memory Access Controller: The Direct

Memory Access (DMA) Controller is designed to
service data transfers between different memory
regions directly without intervention from the
CPU. By eliminating the need for CPU-intensive
management of handling interrupts intended for
data transfers, the CPU now can spend more time
on other tasks.

• Vectored Interrupt Controller: The Vectored
Interrupt Controller module reduces the numerous
peripheral interrupt request signals to a single
interrupt request signal to the CPU. It assembles
all of the interrupt request signals and resolves
the interrupts based on both a fixed natural order
priority and a user-assigned priority, thereby
eliminating scanning of interrupt sources.

• Universal Asynchronous Receiver
Transmitter: The Universal Asynchronous
Receiver Transmitter (UART) module is a serial
I/O communications peripheral. It contains all the
clock generators, shift registers and data buffers
necessary to perform an input or output serial
data transfer, independent of device program
execution. The UART can be configured as a full-
duplex asynchronous system or one of several
automated protocols. Full-Duplex mode is useful
for communications with peripheral systems, with
DMX/DALI/LIN support.

• Serial Peripheral Interface: The Serial
Peripheral Interface (SPI) module is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices
communicate in a master/slave environment
where the master device initiates the
communication. A slave device is controlled
through a Chip Select known as Slave Select.
Example slave devices include serial EEPROMs,
shift registers, display drivers, A/D converters, or
another PIC.

• I2C Module: The I2C module provides a
synchronous interface between the
microcontroller and other I2C-compatible devices
using the two-wire I2C serial bus. Devices
communicate in a master/slave environment. The
I2C bus specifies two signal connections - Serial
Clock (SCL) and Serial Data (SDA). Both the SCL
and SDA connections are bidirectional open-drain
lines, each requiring pull-up resistors to the
supply voltage.

• 12-bit A/D Converter with Computation: This
module incorporates programmable acquisition
time, allowing for a channel to be selected and a
conversion to be initiated without waiting for a
sampling period and thus, reduces code
overhead. It has a new module called ADC2 with
computation features, which provides a digital
filter and threshold interrupt functions.

1.2 Details on Individual Family
Members

Devices in the PIC18(L)F26/27/45/46/47/55/56/57K42
family are available in 28-pin and 40/44/48-pin
packages. The block diagram for this device is shown
in Figure 3-1.

The similarities and differences among the devices are
listed in the PIC18(L)F2X/4X/5XK42 Family Types
Table (page 4). The pinouts for all devices are listed in
Table 1.

• PIC18F26K42 • PIC18LF26K42

• PIC18F27K42 • PIC18LF27K42

• PIC18F45K42 • PIC18LF45K42

• PIC18F46K42 • PIC18LF46K42

• PIC18F47K42 • PIC18LF47K42

• PIC18F55K42 • PIC18LF55K42

• PIC18F56K42 • PIC18LF56K42

• PIC18F57K42 • PIC18LF57K42
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 19

PIC18(L)F26/27/45/46/47/55/56/57K42

4.2.4 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21-bit wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by
any operation that reads PCL. This is useful for
computed offsets to the PC (see Section
4.3.2.1 “Computed GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’. The PC increments by two to address
sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

4.2.5 RETURN ADDRESS STACK

The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer. The stack space is not part of either
program or data space. The Stack Pointer is readable
and writable and the address on the top of the stack is
readable and writable through the Top-of-Stack (TOS)
Special File Registers. Data can also be pushed to, or
popped from the stack, using these registers.

A CALL, CALLW or RCALL instruction causes a push
onto the stack; the Stack Pointer is first incremented
and the location pointed to by the Stack Pointer is
written with the contents of the PC (already pointing to
the instruction following the CALL). A RETURN type
instruction causes a pop from the stack; the contents of
the location pointed to by the STKPTR are transferred
to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits in the PCON0 register
indicate if the stack has overflowed or underflowed.

4.2.5.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
holds the contents of the stack location pointed to by the
STKPTR register (Figure 4-1). This allows users to
implement a software stack, if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user-defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE)
bits while accessing the stack to prevent inadvertent
stack corruption.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 36

PIC18(L)F26/27/45/46/47/55/56/57K42

4.4.2 INSTRUCTIONS IN PROGRAM

MEMORY

The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte of an
instruction word is always stored in a program memory
location with an even address (LSb = 0). To maintain
alignment with instruction boundaries, the PC
increments in steps of two and the LSb will always read
‘0’ (see Section 4.2.4 “Program Counter”).

Figure 4-2 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 4-2 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 41.0 “Instruction Set Summary”
provides further details of the instruction set.

4.4.3 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LFSR and two
three-word instructions: MOVFFL and MOVSFL. In all
cases, the second and the third word of the instruction
always has ‘1111’ as its four Most Significant bits; the
other 12 bits are literal data, usually a data memory
address.

The use of ‘1111’ in the four MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed
and used by the instruction sequence. If the first word
is skipped for some reason and the second or third
word is executed by itself, a NOP is executed instead.
This is necessary for cases when the multi-word
instruction is preceded by a conditional instruction that
changes the PC. Example 4-4 shows how this works.

FIGURE 4-2: INSTRUCTIONS IN PROGRAM MEMORY
Word Address

LSB = 1 LSB = 0 
Program Memory
Byte Locations 

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
Instruction 4: MOVFFL 123h, 456h 00h 60h 000012h

F4h 8Ch 000014h
F4h 56h 000016h

000018h
00001Ah
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 42

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 7-7: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0

EXTOEN HFOEN MFOEN LFOEN SOSCEN ADOEN — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 EXTOEN: External Oscillator Manual Request Enable bit
1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC
0 = EXTOSC could be enabled by requesting peripheral

bit 6 HFOEN: HFINTOSC Oscillator Manual Request Enable bit
1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ (Register 7-5)
0 = HFINTOSC could be enabled by requesting peripheral

bit 5 MFOEN: MFINTOSC (500 kHz/31.25 kHz) Oscillator Manual Request Enable bit (Derived from
HFINTOSC)
1 = MFINTOSC is explicitly enabled
0 = MFINTOSC could be enabled by requesting peripheral

bit 4 LFOEN: LFINTOSC (31 kHz) Oscillator Manual Request Enable bit
1 = LFINTOSC is explicitly enabled
0 = LFINTOSC could be enabled by requesting peripheral

bit 3 SOSCEN: Secondary Oscillator Manual Request Enable bit
1 = Secondary Oscillator is explicitly enabled, operating as specified by SOSCPWR
0 = Secondary Oscillator could be enabled by requesting peripheral

bit 2 ADOEN: ADC Oscillator Manual Request Enable bit
1 = ADC oscillator is explicitly enabled
0 = ADC oscillator could be enabled by requesting peripheral

bit 1-0 Unimplemented: Read as ‘0’
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 109

PIC18(L)F26/27/45/46/47/55/56/57K42

13.3.5 WRITE VERIFY

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

EXAMPLE 13-5: DATA EEPROM READ

EXAMPLE 13-6: DATA EEPROM WRITE

13.3.6 OPERATION DURING CODE-
PROTECT

Data EEPROM Memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.

If the Data EEPROM is write-protected or if NVMADR
points an invalid address location, the WR bit is cleared
without any effect. WRERR is signaled in this scenario.

13.3.7 PROTECTION AGAINST SPURIOUS
WRITE

There are conditions when the user may not want to
write to the Data EEPROM Memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT).

The unlock sequence and the WREN bit together help
prevent an accidental write during brown-out, power
glitch or software malfunction.

; Data Memory Address to read
CLRF NVMCON1 ; Setup Data EEPROM Access
MOVF EE_ADDRL, W ;
MOVWF NVMADRL ; Setup Address
BSF NVMCON1, RD ; Issue EE Read
MOVF NVMDAT, W ; W = EE_DATA

; Data Memory Address to write
CLRF NVMCON1 ; Setup Data EEPROM Access
MOVF EE_ADDRL, W ;
MOVWF NVMADRL ; Setup Address

; Data Memory Value to write
MOVF EE_DATA, W ;
MOVWF NVMDAT ;

; Enable writes
BSF NVMCON1, WREN ;

; Disable interrupts
BCF INTCON0, GIE ;

; Required unlock sequence
MOVLW 55h ;
MOVWF NVMCON2 ;
MOVLW AAh ;
MOVWF NVMCON2 ;

; Set WR bit to begin write
BSF NVMCON1, WR ;

; Enable INT
BSF INTCON0, GIE ;

; Wait for interrupt, write done
SLEEP ;

; Disable writes
BCF NVMCON1, WREN ;
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 208

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 14-1: SCANNER OPERATING MODES(1)

TRIGEN BURSTMD Scanner Operation

0 0 Memory access is requested when the CRC module is ready to accept data; the
request is granted if no other higher priority source request is pending.

1 0 Memory access is requested when the CRC module is ready to accept data and trigger
selection is true; the request is granted if no other higher priority source request is
pending.

x 1 Memory access is always requested, the request is granted if no other higher priority
source request is pending.

Note 1: See Section 3.1 “System Arbitration” for Priority selection and Section 3.2 “Memory Access Scheme” for
Memory Access Scheme.

REGISTER 14-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — LADR<21:16>(1,2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 LADR<21:16>: Scan Start/Current Address bits(1,2)

Upper bits of the current address to be fetched from, value increments on each fetch of memory.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access;
registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

LADR<15:8>(1, 2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 LADR<15:8>: Scan Start/Current Address bits(1, 2)

Most Significant bits of the current address to be fetched from, value increments on each fetch of
memory.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access;
registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 223

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 14-14: SCANLADRL: SCAN LOW ADDRESS LOW BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

LADR<7:0>(1, 2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 LADR<7:0>: Scan Start/Current Address bits(1, 2)

Least Significant bits of the current address to be fetched from, value increments on each fetch of
memory

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access;
registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-15: SCANHADRU: SCAN HIGH ADDRESS UPPER BYTE REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

— — HADR<21:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 HADR<21:16>: Scan End Address bits(1, 2)

Upper bits of the address at the end of the designated scan

Note 1: Registers SCANHADRU/H/L form a 22-bit value but are not guarded for atomic or asynchronous access;
registers should only be read or written while SGO = 0 (SCANCON0 register).

2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 224

PIC18(L)F26/27/45/46/47/55/56/57K42

20.3 Programmable Prescaler
A software programmable prescaler is available for
exclusive use with Timer0. There are 16 prescaler
options for Timer0 ranging in powers of two from 1:1 to
1:32768. The prescaler values are selected using the
CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable.
Clearing the prescaler register can be done by writing
to the TMR0L register or to the T0CON0/T0CON1
register or by any Reset.

20.4 Programmable Postscaler
A software programmable postscaler (output divider) is
available for exclusive use with Timer0. There are 16
postscaler options for Timer0 ranging from 1:1 to 1:16.
The postscaler values are selected using the OUTPS
bits of the T0CON0 register.

The postscaler is not directly readable or writable.
Clearing the postscaler register can be done by writing
to the TMR0L register or to the T0CON0/T0CON1
register or by any Reset.

20.5 Operation During Sleep
When operating synchronously, Timer0 will halt. When
operating asynchronously, Timer0 will continue to
increment and wake the device from Sleep (if Timer0
interrupts are enabled) provided that the input clock
source is active.

20.6 Timer0 Interrupts
The Timer0 interrupt flag bit (TMR0IF) is set when
either of the following conditions occur:

• 8-bit TMR0L matches the TMR0H value
• 16-bit TMR0 rolls over from ‘FFFFh’

When the postscaler bits (OUTPS) are set to 1:1
operation (no division), the T0IF flag bit will be set with
every TMR0 match or rollover. In general, the TMR0IF
flag bit will be set every OUTPS +1 matches or
rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the
PIE3 register = ‘1’), the CPU will be interrupted and the
device may wake from Sleep (see Section
20.2 “Clock Source Selection” for more details).

20.7 Timer0 Output
The Timer0 output can be routed to any I/O pin via the
RxyPPS output selection register (see Section
17.0 “Peripheral Pin Select (PPS) Module” for
additional information). The Timer0 output can also be
used by other peripherals, such as the auto-conversion
trigger of the Analog-to-Digital Converter. Finally, the
Timer0 output can be monitored through software via
the Timer0 output bit (OUT) of the T0CON0 register
(Register 20-1).

TMR0_out will be a pulse of one postscaled clock
period when a match occurs between TMR0L and PR0
(Period register for TMR0) in 8-bit mode, or when
TMR0 rolls over in 16-bit mode. The Timer0 output is a
50% duty cycle that toggles on each TMR0_out rising
clock edge.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 300

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reset
Values

on
Page

TxCON — — CKPS<1:0> — SYNC RD16 ON 313

TxGCON GE GPOL GTM GSPM GO/DONE GVAL — — 314

TxCLK — — — CS<4:0> 315

TxGATE — — — GSS<4:0> 316

TMRxL Least Significant Byte of the 16-bit TMR3 Register 317

TMRxH Holding Register for the Most Significant Byte of the 16-bit TMR3 Register 317

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by TIMER1/3/5.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 318

PIC18(L)F26/27/45/46/47/55/56/57K42

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page

TxPR Timer2 Module Period Register 320*

TxTMR Holding Register for the 8-bit T2TMR Register 320*

TxCON ON CKPS<2:0> OUTPS<3:0> 338

TxCLK — — — — — CS<2:0> 335

TxRST — — — — RSEL<3:0> 336

TxHLT PSYNC CPOL CSYNC MODE<4:0> 339

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.
* Page provides register information.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 340

PIC18(L)F26/27/45/46/47/55/56/57K42

25.6.6 GATED WINDOWED MEASURE

MODE

This mode measures the duty cycle of the SMT1_signal
input over a known input window. It does so by
incrementing the timer on each pulse of the clock signal
while the SMT1_signal input is high, updating the
SMT1CPR register and resetting the timer on every
rising edge of the SMTWINx input after the first. See
Figure 25-12 and Figure 25-13.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 378


 2016

-2017 M
icrochip T

echnology In
c.

Prelim
inary

D
S

40
001919B

-pa
ge 389

PIC
18(L)F26/27/45/46/47/55/56/57K

42

FIG

FIG

Rev. 10-000190A
12/18/2013

119 10 12

13

13

Rev. 10-000191A
12/18/2013
URE 25-19: GATED COUNTER MODE REPEAT ACQUISITION TIMING DIAGRAM

URE 25-20: GATED COUNTER MODE SINGLE ACQUISITION TIMING DIAGRAM

SMTx_signal

SMTxEN

SMTxWIN

0

SMTxGO

SMTxTMR

SMTxCPW

51 2 3 4 7 86

8

SMTxPWAIF

SMTx_signal

SMTxEN

SMTxWIN

0

SMTxGO

SMTxTMR

SMTxCPW

51 2 3 4 7 86

8

SMTxPWAIF

PIC18(L)F26/27/45/46/47/55/56/57K42

REGISTER 25-16: SMT1PRL: SMT PERIOD REGISTER – LOW BYTE
R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1

SMT1PR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMT1PR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 25-17: SMT1PRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1

SMT1PR<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMT1PR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 25-18: SMT1PRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1 R/W-x/1

SMT1PR<23:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMT1PR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 403

PIC18(L)F26/27/45/46/47/55/56/57K42

31.2.1.8 Asynchronous Transmission Setup

1. Initialize the UxBRGH, UxBRGL register pair and
the BRGS bit to achieve the desired baud rate
(see Section 31.17 “UART Baud Rate
Generator (BRG)”).

2. Set the MODE<3:0> bits to the desired
asynchronous mode.

3. Set TXPOL bit if inverted TX output is desired.

4. Enable the asynchronous serial port by setting
the ON bit.

5. Enable the transmitter by setting the TXEN
control bit. This will cause the UxTXIF interrupt
flag to be set.

6. If the device has PPS, configure the desired I/O
pin RxyPPS register with the code for TX output.

7. If interrupts are desired, set the UxTXIE interrupt
enable bit in the respective PIE register. An
interrupt will occur immediately provided that the
GIE bits in the INTCON0 register are also set.

8. Write one byte of data into the UxTXB register.
This will start the transmission.

9. Subsequent bytes may be written when the
UxTXIF bit is ‘1’.

FIGURE 31-3: ASYNCHRONOUS TRANSMISSION

FIGURE 31-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

Word 1
Stop bit

Word 1
Transmit Shift Reg.

Start bit bit 0 bit 1 last bit

Write to UxTXB
Word 1

BRG Output
(Shift Clock)

TX

UxTXIF bit
(Transmit Buffer

Reg. Empty Flag)

TXMTIF bit
(Transmit Shift

Reg. Empty Flag)

1 TCY

pin

Transmit Shift Reg.

Write to UxTXB

BRG Output
(Shift Clock)

TX

TXMTIF bit
(Transmit Shift

Reg. Empty Flag)

Word 1 Word 2

Word 1 Word 2

Start bit Stop bit Start bit

Transmit Shift Reg.

Word 1 Word 2
bit 0 bit 1 last bit bit 0

Note: This timing diagram shows the first transmission and the start of the second consecutive transmission.

1 TCY

1 TCY

pin

UxTXIF bit
(Transmit Buffer

Reg. Empty Flag)
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 477

PIC18(L)F26/27/45/46/47/55/56/57K42

31.4 DMX Mode (UART1 only)
DMX is a protocol used in stage and show equipment.
This includes lighting, fog machines, motors, etc. The
protocol consists of a controller that sends out
commands, and receiver such as theater lights that
receive these commands. DMX protocol is usually
unidirectional, but can be a bidirectional protocol in
either Half or Full-duplex modes. An example of Half-
duplex mode is the RDM (Remote Device
Management) protocol that sits on DMX512A. The
controller transmits commands and the receiver
receives them. Also there are no error conditions or re-
transmit mechanisms.

DMX, or DMX512A as it is known, consists of a
“Universe” of 512 channels. This means that one
controller can output up to 512 bytes on a single DMX
link. Each equipment on the line is programmed to
listen to a consecutive sequence of one or more of
these bytes.

For example, a fog machine connected to one of the
universes may be programmed to receive one byte,
starting at byte number 10, and a lighting unit may be
programmed to receive four bytes starting at byte
number 22.

31.4.1 DMX CONTROLLER

DMX Controller mode is configured with the following
settings:

• MODE<3:0> = 1010
• TXEN = 1
• RXEN = 0
• TXPOL = 0
• UxP1 = One less than the number of bytes to

transmit (excluding the Start code)
• UxBRGH:L = Value to achieve 250K baud rate
• STP<1:0> = 10 for 2 Stop bits
• RxyPPS = TX pin output code
• ON = 1

Each DMX transmission begins with a Break followed
by a byte called the ‘Start Code’. The width of the
BREAK is fixed at 25 bit times. The Break is followed
by a “Mark After Break” (MAB) Idle period. After this
Idle period, the 1st through ‘n’th byte is transmitted,
where ‘n-1’ is the value in UxP1. See Figure 31-6.

Software sends the Start Code and the ‘n’ data bytes by
writing the UxTXB register with each byte to be sent in
the desired order. A UxTXIF value of ‘1’ indicates when
the UxTXB is ready to accept the next byte.

The internal byte counter is not accessible to software.
Software needs to keep track of the number of bytes
written to UxTXB to ensure that no more and no less
than ‘n’ bytes are sent because the DMX state machine
will automatically insert a Break and reset its internal
counter after ‘n’ bytes are written. One way to ensure
synchronization between hardware and software is to

toggle TXEN after the last byte of the universe is
completely free of the transmit shift register as
indicated by the TXMTIF bit.

31.4.2 DMX RECEIVER

DMX Receiver mode is configured with the following
settings:

• MODE<3:0> = 1010
• TXEN = 0
• RXEN = 1
• RXPOL = 0
• UxP2 = number of first byte to receive
• UxP3 = number of last byte to receive
• UxBRGH:L = Value to achieve 250K baud rate
• STP<1:0> = 10 for 2 Stop bits
• ON = 1
• UxRXPPS = code for desired input pin
• Input pin ANSEL bit = 0

When configured as DMX Receiver, the UART listens
for a Break character that is at least 23 bit periods wide.
If the Break is shorter than 23 bit times, the Break is
ignored and the DMX state machine remains in Idle
mode. Upon receiving the Break, the DMX counters will
be reset to align with the incoming data stream.
Immediately after the Break, the UART will see the
“Mark after Break” (MAB). This space is ignored by the
UART. The Start Code follows the MAB and will always
be stored in the receive FIFO.

After the Start Code, the 1st through 512th byte will be
received, but not all of them are stored in the receive
FIFO. The UART ignores all received bytes until the
ones of interest are received. This is done using the
UxP2 and UxP3 registers. The UxP2 register holds the
value of the byte number to start the receive process.
The byte counter starts at 0 for the first byte after the
Start Code. For example, to receive four bytes starting
at the 10th byte after the Start Code, write 009h
(9 decimal) to UxP2H:L and 00Ch (12 decimal) to
UxP3H:L. The receive FIFO is only 2 bytes deep,
therefore the bytes must be retrieved by reading
UxRXB as they come in to avoid a receive FIFO
overrun condition.

Typically two Stop bits are inserted between bytes. If
either Stop bit is detected as a ‘0’ then the framing error
for that byte will be set.

Since the DMX sequence always starts with a Break,
the software can verify that it is in sync with the
sequence by monitoring the RXBKIF flag to ensure that
the next byte received after the RXBKIF is processed
as the Start Code and subsequent bytes are processed
as the expected data.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 482

PIC18(L)F26/27/45/46/47/55/56/57K42

32.5.6 MASTER MODE SPI CLOCK

CONFIGURATION

32.5.6.1 SPI Clock Selection

The clock source for SPI master modes is selected by
the SPIxCLK register. Selections include the following:

• FOSC

• HFINTOSC

• CLKREF

• Timer0_overflow

• Timer2_Postscaled

• Timer4_Postscaled

• Timer6_Postscaled

• SMT_match

The SPIxBAUD register allows for dividing this clock.
The frequency of the SCK output is defined by
Equation 32-1:

EQUATION 32-1: FREQUENCY OF SCK
OUTPUT SIGNAL

where FBAUD is the baud rate frequency output on the
SCK pin, FCSEL is the frequency of the input clock
selected by the SPIxCLK register, and BAUD is the
value contained in the SPIxBAUD register.

32.5.6.2 CKE, CKP and SMP

The CKP, CKE, and SMP bits control the relationship
between the SCK clock output, SDO output data
changes, and SDI input data sampling. The bit
functions are as follows:

• CKP - SCK output polarity

• CKE - SDO output change relative to the SCK
clock

• SMP - SDI input sampling relative to the clock
edges

The CKE bit, when set, inverts the low Idle state of the
SCK output to a high Idle state.

Figure 32-7 through Figure 32-10 illustrate the eight
possible combinations of the CKP, CKE, and SMP bit
selections.

When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. When the CKE bit is
cleared, the SDO data is undefined prior to the first
SCK edge.

Note: All timing diagrams assume the LSBF bit
of SPIxCON0 is cleared.

FBAUD

FCSEL
2 BAUD 1+  

---------------------------------=
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 525

PIC18(L)F26/27/45/46/47/55/56/57K42
TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH SPI

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on
page

SPIxINTF SRMTIF TCZIF SOSIF EOSIF — RXOIF TXUIF — 535

SPIxINTE SRMTIE TCZIE SOSIE EOSIE — RXOIE TXUIE — 536

SPIxTCNTH — — — — — TCNT10 TCNT9 TCNT8 537

SPIxTCNTL TCNT7 TCNT6 TCNT5 TCNT4 TCNT3 TCNT2 TCNT1 TCNT0 536

SPIxTWIDTH — — — — — TWIDTH2 TWIDTH1 TWITDH0 537

SPIxBAUD BAUD7 BAUD6 BAUD5 BAUD4 BAUD3 BAUD2 BAUD1 BAUD0 538

SPIxCON0 EN — — — — LSBF MST BMODE 538

SPIxCON1 SMP CKE CKP FST — SSP SDIP SDOP 539

SPIxCON2 BUSY SSFLT — — — SSET TXR RXR 540

SPIxSTATUS TXWE — TXBE — RXRE CLRBF — RXBF 541

SPIxRXB RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0 541

SPIxTXB TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1 TXB0 542

SPIxCLK — — — — CLKSEL3 CLKSEL2 CLKSEL1 CLKSEL0 542

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the SPI module.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 543

PIC18(L)F26/27/45/46/47/55/56/57K42

FIGURE 33-18: STOP CONDITION DURING RECEIVE OR TRANSMIT

33.5.9 MASTER TRANSMISSION IN 7-BIT
ADDRESSING MODE

This section describes the sequence of events for the
I2C module configured as an I2C master in 7-bit
Addressing mode and is transmitting data. Figure 33-
19 is used as a visual reference for this description.

1. If ABD = 0; i.e., Address buffers are enabled

Master software loads number of bytes to be
transmitted in one sequence in I2CxCNT, slave
address in I2CxADB1 with R/W = 0 and the first byte
of data in I2CxTXB. Master software has to set the Start
(S) bit to initiate communication.

 If ABD = 1; i.e., Address buffers are disabled

Master software loads the number of bytes to be
transmitted in one sequence in I2CxCNT and the slave
address with R/W = 0 into the I2CxTXB register. Writing
to the I2CxTXB will assert the start condition on the bus
and sets the S bit. Software writes to the S bit are
ignored in this case.

2. Master hardware waits for BFRE bit to be set;
then shifts out start and address.

3. If the transmit buffer is empty (i.e., TXBE = 1)
and I2CxCNT!= 0, the I2CxTXIF and MDR bits
are set and the clock is stretched on the 8th
falling SCL edge. Clock can be started by
loading the next data byte in I2CxTXB register.

4. Master sends out the 9th SCL pulse for ACK.

5. If the Master hardware receives ACK from Slave
device, it loads the next byte from the transmit
buffer (I2CxTXB) into the shift register and the

value of I2CxCNT register is decremented.

6. If a NACK was received, Master hardware
asserts Stop or Restart

7. If ABD = 0; i.e., Address buffers are enabled

If I2CxCNT = 0, Master hardware sends Stop or sets
MDR if RSEN = 1 and waits for the software to set the
Start bit again to issue a restart condition.

 If ABD = 1; i.e., Address buffers are disabled

If I2CxCNT = 0, Master hardware sends Stop or sets
MDR if RSEN = 1 and waits for the software to write the
new address to the I2CxTXB register. Software writes
to the S bit are ignored in this case.

8. Master hardware outputs data on SDA.

9. If TXBE = 1 and I2CxCNT! = 0, I2CxTXIF and
MDR bits are set and the clock is stretched on
8th falling SCL edge. The user can release the
clock by writing the next data byte to I2CxTXB
register.

10. Master hardware clocks in ACK from Slave, and
loads the next data byte from I2CTXB to the shift
register. The value of I2CxCNT is decremented.

11. Go to step 7.

Rev. 10-000 310A
11/2/201 6

SCL

SDA

SDA asserted low before rising edge of clock
to setup Stop condition

Stop condition starts
falling edge of
9th clock

SCL = 1 for TSCL/2, followed by SDA = 1

ACK

P

TSCL

PCIF bit is set

I2C_clk 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Stop condition must be held for
TSCL after Stop transition

TSCL TSCL
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 567

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 36-18: ADRESH: ADC RESULT REGISTER HIGH, FM = 0

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

ADRES<11:4>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ADRES<11:4>: ADC Result Register bits
Upper eight bits of 12-bit conversion result.

REGISTER 36-19: ADRESL: ADC RESULT REGISTER LOW, FM = 0

R/W-x/u R/W-x/u R/W-x/u R/W-x/u U-0 U-0 U-0 U-0

ADRES<3:0> — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 ADRES<3:0>: ADC Result Register bits. Lower four bits of 12-bit conversion result.

bit 3-0 Reserved
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 628

PIC18(L)F26/27/45/46/47/55/56/57K42
REGISTER 38-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — PCH<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 PCH<2:0>: Comparator Non-Inverting Input Channel Select bits

111 = VSS

110 = FVR_Buffer2
101 = DAC_Output
100 = PCH not connected
011 = PCH not connected
010 = PCH not connected
001 = CxIN1+
000 = CxIN0+

REGISTER 38-5: CMOUT: COMPARATOR OUTPUT REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R-0/0 R-0/0

— — — — — — C2OUT C1OUT

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 Unimplemented: Read as ‘0’

bit 1 C2OUT: Mirror copy of C2OUT bit

bit 0 C1OUT: Mirror copy of C1OUT bit

TABLE 38-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

CMxCON0 EN OUT — POL — — HYS SYNC 648

CMxCON1 — — — — — — INTP INTN 649

CMxNCH — — — — — NCH<2:0> 649

CMxPCH — — — — — PCH<2:0> 650

CMOUT — — — — — — C2OUT C1OUT 650

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.
 2017 Microchip Technology Inc. Preliminary DS40001919B-page 650

