

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k42-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P
C
18
3(
Ţ
26
7
/4
5/
4
2/2
7
ເ
Ś
5
6/
57
x
4
N

0/I	48-Pin TQFP	48-Pin UQFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	l²C	SPI	UART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC2	40	40	ANC2	—	-	—	—	—	-	—	—	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	-	-	—	IOCC2	-
RC3	41	41	ANC3	-	-	—	—	SCL1 ^(3,4)	SCK1 ⁽¹⁾	-	—	T2IN ⁽¹⁾	-	—	_	—	—	IOCC3	-
RC4	46	46	ANC4	—	-	—	—	SDA1 ^(3,4)	SDI1 ⁽¹⁾	—	—	_	—	—	_	—	—	IOCC4	
RC5	47	47	ANC5	—	-	—	—	—	—	—	—	T4IN ⁽¹⁾	—	—	—	—	—	IOCC5	-
RC6	48	48	ANC6	_	-	-	—	_	—	CTS1 ⁽¹⁾	_	_	—	_		—	-	IOCC6	-
RC7	1	1	ANC7	_	-	—	—	_	—	RX1 ⁽¹⁾	_	_	_	_	_	—	—	IOCC7	-
RD0	42	42	AND0	_	-	-	—	(4)	—	_	_	_	—	_		—	-	_	-
RD1	43	43	AND1	_	-	—	—	(4)	—	_	_	-	-	—		—	—	-	-
RD2	44	44	AND2	_	-	-	—	_	—	_	_	-	-	_	_	-	-	-	-
RD3	45	45	AND3	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RD4	2	2	AND4	_	-	_	-	_	—	_	-	-	_	-	_	_	_	-	—
RD5	3	3	AND5	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RD6	4	4	AND6	_	-	-	—	_	—	_	_	_	—	_		—	-	_	-
RD7	5	5	AND7	_	-	—	—	_	—	_	_	-	-	—		—	—	-	-
RE0	27	27	ANE0	_	-	-	—	_	—	_	_	_	—	_		—	-	_	-
RE1	28	28	ANE1	_	-	—	—	_	—	_	_	_	_	_	_	—	—	-	-
RE2	29	29	ANE2	_	-	_	_	_	—	_	-	-	_	-	_	_	_	-	—
RE3	20	20	—	—	—	—	—	—	—	—	—	-	—	—	-	—	—	IOCE3	MCLR VPP
RF0	36	36	ANF0	_	-	_	—	_	—	_	_	-	_	_	_	_	_	-	—
RF1	37	37	ANF1	—	-	—	—	—	—	—	_	-	_	_	—	—	—	_	—
RF2	38	38	ANF2	—	-	_	—	—	—	—	—	_	—	—	—	—	—	—	—
RF3	39	39	ANF3	—	_	_	—	—	—	—	_	_	—	_	_	—	_	_	_
RF4	12	12	ANF4	_	_	_	-	_	—	_	_	-	_	_	_	_	-	_	-
RF5	13	13	ANF5	-	—	—	—	—	—	-	—	-	—	_	-	—	-	_	-
RF6	14	14	ANF6	_	—	-	_	_	—	_	—	-	—	_	_	—	-	—	-
RF7	15	15	ANF7	-	-	—	_	_	—	-	_	-	—	_	-	—	-	_	-
Note	1:	This is	a PPS remap	pable input si	ignal. The input	t function ma	y be mov	ed from the d	lefault locatio	on shown to a	one of several of	other PORTx pin	s.						

48-PIN ALLOCATION TABLE FOR PIC18(L)F5XK42 (CONTINUED)

2: All output signals shown in this row are PPS remappable.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4/RD0/RD1 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

TABLE 3:

4.5 Data Memory Organization

Data memory in PIC18F26/27/45/46/47/55/56/57K42 devices is implemented as static RAM. Each register in the data memory has a 14-bit address, allowing up to 16384 bytes of data memory. The memory space is divided into 64 banks that contain 256 bytes each. Figure 4-3 shows the data memory organization for the PIC18F26/27/45/46/47/55/56/57K42 devices in this data sheet.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (select SFRs and GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to some SFRs and the lower portion of GPR Bank 0 without using the Bank Select Register (BSR). **Section 4.5.4 "Access Bank"** provides a detailed description of the Access RAM.

4.5.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 64 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 14-bit address, or an 8-bit low-order address and a 6-bit Bank Select Register.

This SFR holds the six Most Significant bits of a location address; the instruction itself includes the eight Least Significant bits. Only the six lower bits of the BSR are implemented (BSR<5:0>). The upper two bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the eight bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 4-3.

Since up to 64 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 3Fh will end up corrupting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory maps in Figure 4-3 indicate which banks are implemented.

	-2. OLAR	OLN. OLOOP								
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	—		—		CLK	<3:0>				
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other							other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-4	Unimplemen	ted: Read as '	0'							
bit 3-0 CLK<3:0>: CLKR Clock Selection bits										
	1111 = Rese	rved								
	•									
	•									
	•									
	1011 = Rese	rved								
	1010 = CLC4 Output									
	1001 = CLC3 Output									
	1000 = CLC2	2 Output								
	0111 = CLC1 Output									
	0110 = NCO1 Output									
	0101 = 5050									
	0100 - MFIN	ITOSC (51.25 k	z)							
	0011 = 101 IN	TOSC (300 kHz)	2)							
	0001 = HFIN	TOSC								
	0000 = FOSC									

CI KOCI KI CI OCK DEEEDENCE CI OCK SEI ECTION MUX

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	EN			DC<	:1:0>		113		
CLKRCLK	_			_			CLK<2:0>		114

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

DECISTED 8-2-

R/W-0/	0 R/W-0/0	R/W/HC-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0
EN	TRIGEN	SGO	_	—	MREG	BURSTMD	BUSY
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is u	inchanged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	OR/Value at all of	ther Resets
'1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware							
bit 7	EN: Scanner 1 = Scanner 0 = Scanner	Enable bit ⁽¹⁾ is enabled is disabled					
bit 6	TRIGEN: Sca 1 = Scanner 0 = Scanner Refer Table 1	anner Trigger En trigger is enableo trigger is disableo 4-1.	able bit ⁽²⁾ 1 d				
bit 5	SGO: Scann 1 = When the to the CI 0 = Scanner	er GO bit ^(3, 4) CRC is ready, th RC peripheral. operations will no	e Memory ree ot occur	gion set by the N	MREG bit will b	e accessed and o	data is passed
bit 4-3	Unimplemer	nted: Read as '0'					
bit 2	MREG: Scan 1 = Scanner 0 = Scanner	iner Memory Reg address points to address points to	ion Select bi Data EEPR Program Fla	t ⁽²⁾ OM ash Memory			
bit 1	BURSTMD: \$ 1 = Memory a 0 = Memory a Refer Table 1	Scanner Burst M access request to access request to 4-1.	ode bit o the CPU Ar o the CPU Ar	biter is always t biter is depende	rue ent on the CRC	C request and Tri	igger
bit 0	BUSY: Scan 1 = Scanner 0 = Scanner	ner Busy Indicato cycle is in proces cycle is compete	or bit ss (or never sta	irted)			
Note 1: 2: 3:	Setting EN = 1 (S Scanner trigger se This bit can be cle occurring) or when	CANCON0 regist election can be so ared in software n CRCGO = 0 (C	ter) does not et using the S . It is cleared RCCON0 reg	affect any other CANTRIG regi in hardware wh gister).	r register conte ster. nen LADR>HAI	nt. DR (and a data c	cycle is not

REGISTER 14-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

- - 4: CRCEN and CRCGO bits (CRCCON0 register) must be set before setting the SGO bit.

TRIGEN	BURSTMD	Scanner Operation
0	0	Memory access is requested when the CRC module is ready to accept data; the request is granted if no other higher priority source request is pending.
1	0	Memory access is requested when the CRC module is ready to accept data and trigger selection is true; the request is granted if no other higher priority source request is pending.
X	1	Memory access is always requested, the request is granted if no other higher priority source request is pending.

TABLE 14-1: SCANNER OPERATING MODES⁽¹⁾

Note 1: See Section 3.1 "System Arbitration" for Priority selection and Section 3.2 "Memory Access Scheme" for Memory Access Scheme.

REGISTER 14-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			LADR<2	21:16> ^(1,2)		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **LADR<21:16>:** Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - 2: While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 14-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	LADR<15:8> ^(1, 2)										
bit 7	bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SGO = 0 (SCANCON0 register).
 - **2:** While SGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 15-3: DMAxBUF: DMAx DATA BUFFER REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
bit 7							bit 0

Legend: R = Readable bit

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 BUF<7:0>: DMA Internal Data Buffer bits

DMABUF<7:0>

These bits reflect the content of the internal data buffer the DMA peripheral uses to hold the data being moved from the source to destination.

REGISTER 15-4: DMAxSSAL: DMAx SOURCE START ADDRESS LOW REGISTER

	-0/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SSA<7:0>							
bit 7						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<7:0>: Source Start Address bits

REGISTER 15-5: DMAxSSAH: DMAx SOURCE START ADDRESS HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SSA<15:8>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 SSA<15:8>: Source Start Address bits

REGISTER 15-18: DMAxDSZL: DMAx DESTINATION SIZE LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DSZ<7:0>							
bit 7							bit 0
Logond							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 **DSZ<7:0>:** Destination Message Size bits

REGISTER 15-19: DMAxDSZH: DMAx DESTINATION SIZE HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	DSZ<11:8>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

Dit 7-4 Unimplemented: Read as 0	bit 7-4	Unimplemented: Read as '0'
----------------------------------	---------	----------------------------

bit 3-0 DSZ<11:8>: Destination Message Size bits

REGISTER 15-20: DMAxDCNTL: DMAx DESTINATION COUNT LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
DCNT<7:0>							
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged	

bit 7-0 **DCNT<7:0>:** Current Destination Byte Count

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
DMAxCON0	EN	SIRQEN	DGO	_	_	AIRQEN		XIP	248	
DMAxCON1	DMOD	E<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP	249	
DMAxBUF	DBUF7	DBUF6	DBUF5	DBUF4 DBUF3 DBUF2 DBUF1 DBUF0					250	
DMAxSSAL			SSA<7:0>							
DMAxSSAH			SSA<15:8>						250	
DMAxSSAU	—	—			SSA<	21:16>			251	
DMAxSPTRL				SPTR	R<7:0>				251	
DMAxSPTRH			SPTR<15:8>							
DMAxSPTRU	—	—	— SPTR<21:16>							
DMAxSSZL			SSZ<7:0>							
DMAxSSZH	—	—		— — SSZ<11:8>						
DMAxSCNTL				SCNT	<7:0>				253	
DMAxSCNTH	—	—		—		SCNT	<11:8>		253	
DMAxDSAL				DSA	<7:0>				253	
DMAxDSAH				DSA<	:15:8>				254	
DMAxDPTRL				DPTF	R<7:0>				254	
DMAxDPTRH				DPTR	<15:8>				254	
DMAxDSZL				DSZ	<7:0>				255	
DMAxDSZH	—	—		_		DSZ<	11:8>		255	
DMAxDCNTL				DCN1	<7:0>				255	
DMAxDCNTH	—	—	—	—		DCNT	<11:8>		256	
DMAxSIRQ					SIRQ<6:0>	•			256	
DMAxAIRQ	_				AIRQ<6:0>				256	

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH DMA

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by DMA.

22.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which is selected with the postscaler control bits, OUTPS of the T2CON register. The interrupt is enabled by setting the T2TMR Interrupt Enable bit, TMR2IE, of the respective PIE register. The interrupt timing is illustrated in Figure 22-3.

FIGURE 22-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

_	Re/10.000008 912.016
CKPS	0b010
TxPR	1
OUTPS	0b0001
TMRx_clk	
TxTMR	0 1 0 1 1 0 1 0 0
TMRx_postscaled _	
TMRxIF _	(1) (1)
Note 1: 2:	Setting the interrupt flag is synchronized with the instruction clock. Synchronization may take as many as 2 instruction cycles Cleared by software.

22.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode, the timer resets and the ON bit is cleared when the timer value matches the T2PR period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 22-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation, the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the T2PR match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a T2PR period count match.

FIGURE 22-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

FIGURE 25-17:

PIC18(L)F26/27/45/46/47/55/56/57K42

29.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the respective PIR register will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Both are located in the ZCDCON register. Priority of the interrupt can be changed if the IPEN bit of the INTCON register is set. The ZCD interrupt can be made high or low priority by setting or clearing the ZCDIP bit of the respective IPR register.

To fully enable the interrupt, the following bits must be set:

- ZCDIE bit of the respective PIE register
- INTP bit of the ZCDCON register (for a rising edge detection)
- INTN bit of the ZCDCON register (for a falling edge detection)
- GIE bits of the INTCON0 register

Changing the POL bit can cause an interrupt, regardless of the level of the SEN bit.

The ZCDIF bit of the respective PIR register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

29.5 Correcting for VCPINV offset

The actual voltage at which the ZCD switches is the reference voltage at the noninverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late. When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 29-2.

EQUATION 29-2: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{V_{DD} - V_{CPINV}}{V_{PEAK}}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 29-3 or Equation 29-4.

EQUATION 29-3: ZCD PULL-UP/DOWN

When External Signal is relative to VDD:

$$R_{PULLDOWN} = \frac{R_{SERIES}(VCPINV)}{(VDD - VCPINV)}$$

FIGURE 31-5:	ASYNCHRONOUS RECH	EPTION			
RX pin	Start	Start bitbit 0 X	Xlast bit/ Stop bit	∫∫X <u>last bit</u> ∕Stop	
Rcv Shift Reg Rcv Buffer Reg.		<u> </u>	Word 2	<u></u>	
RXIDL -		<u> </u>	i~i	<u>}</u>	
Read Rcv Buffer Reg. UxRXB —	<u>} </u>	<u>} </u>		<u>}</u>	ų
UxRXIF (Interrupt Flag) -	j	<u> </u>			
RXFOIF bit	<u>_</u>	<u> </u>		<u></u> ز	
				Cleared by sc	oftware)
Note: This ti is reco	ming diagram shows three words appearing eived, causing the RXFOIF (FIFO overrun) b	on the RX input. The UxRX it to be set. STPMD = 0, \$	KB (receive buffer) is not r STP<1:0> = 00.	ead before the third w	/ord

REGISTE	R 33-6: I2CxS	TATO: PC ST	ATUS REGI	STER 0						
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0			
BFRE ⁽³	sma	MMA	R ^(1, 2)	D	_	_	_			
bit 7	·						bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	-n/n = Value at POR and BOR/Value at all other Rese					
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are set HC =	Hardware clea	r			
bit 7	BFRE: Bus Fi 1 = Indicates Both SC I2CCLK 0 = Bus not in	ree Status bit ⁽³ the I ² C bus is CL and SDA ha must select a dle (When no I) idle ve been high valid clock so 2CCLK is sele	for time-out se urce for this bit ected, this bit re	lected by I2CCC to function. emains clear))N2 <bfret<1< td=""><td>l:0>> bits.</td></bfret<1<>	l:0>> bits.			
bit 6	 SMA: Slave Module Active Status bit 1 = Set after the 8th falling SCL edge of a received matching 7-bit slave address Set after the 8th falling SCL edge of a received matching 10-bit slave low address Set after the 8th falling SCL edge of a received matching 10-bit slave low address, only after a previous matching high and low w/ write. 0 = Cleared by any Restart/Stop detected on the bus Cleared by BTOLE and BCL IE conditions 									
bit 5 MMA: Master Module Active Status bit 1 = Master Mode state machine is active Set when master state machine asserts a Start on bus 0 = Master state machine is idle Cleared when BCLIF is set Cleared when Stop is shifted out by master.							ion.			
bit 4	R: Read Infor 1 = Indicates 0 = Indicates	mation bit ^(1, 2) the last match the last match	ing received (ing received ((high) address (high) address	was a Read req was a Write	uest				
bit 3	D: Data bit 1 = Indicates 0 = Indicates	the last byte re the last byte re	eceived or tra eceived or tra	nsmitted was d nsmitted was a	lata in address					
bit 2-0	Unimplemen	ted: Read as 1	' b0							
Note 1: 2: 3:	This bit holds the F the Master or appe Clock requests and Software must use	R bit information earing on the bit d input from I20 the EN bit to fi	n following the us without a n CxCLK registe orce Master c	e last received natch do not af er are disabled or Slave hardwa	address match. fect this bit. in Slave modes are to idle.	Addresses tra	nsmitted by			

R/W/HS-	0 R/W/HS-0	U-0	R/W/HS-0	R/W/HS-0	R/W/HS-0	R/W/HS-0	R/W/HS-0				
CNTIF	ACKTIF	_	WRIF	ADRIF	PCIF	RSCIF	SCIF				
bit 7	·		•				bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets				
'1' = Bit is s	set	'0' = Bit is clea	ared	HS = Hardwa	ire set HC =	Hardware clea	r				
bit 7	 bit 7 CNTIF: Byte Count Interrupt Flag bit 1 = When I2CCNT = 0, set by the 9th falling edge of SCL. 0 = I2CCNT condition has not occurred. 										
bit 6	bit 6 ACKTIF: Acknowledge Status Time Interrupt Flag bit ⁽²⁾ (MODE<2:0> = 0xx OR 11x) 1 = Set by the 9th falling edge of SCL for any byte when addressed as a Slave 0 = Acknowledge condition not detected.										
bit 5	Unimplemer	nted: Read as '	o'								
bit 4	WRIF: Data V 1 = Set the 8 0 = Data Wri	Write Interrupt F 3th falling edge ite condition no	Flag bit (MODI of SCL for a re t detected	$E<2:0> = 0 \times x$ (eceived data b	OR 11x) yte.						
bit 3	ADRIF: Addr 1 = Set the 8 0 = Address	ress Interrupt FI 8th falling edge condition not d	ag bit (MODE of SCL for a n etected	<2:0> = 0xx O natching receiv	R 11x) ved (high/low) a	ddress byte					
bit 2	PCIF: Stop C 1 = Set on d 0 = No Stop	Condition Interru etection of Stop condition detec	pt Flag condition ted								
bit 1	RSCIF: Rest 1 = Set on d 0 = No Rest	art Condition In etection of Res art condition de	terrupt Flag tart condition tected								
bit 0	SCIF: Start C 1 = Set on d 0 = No Start	Condition Interru etection of Star condition detec	pt Flag t condition ted								
Note 1: 2:	Enabled interrupt ACKTIF is not set matching low add	flags are OR'd by a matching, ress byte is shif	to produce the 10-bit, high a ted in.	e PIRx <l2cxlf ddress byte wi</l2cxlf 	> bit. th the R/W bit c	lear. It is only s	et after the				

REGISTER 33-10: I2CxPIR: I2CxIF INTERRUPT FLAG REGISTER

34.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the EN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

34.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 36.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 37.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 38.0 "Comparator Module" for additional information.

34.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the RDY bit of the FVRCON register will be set.

FIGURE 34-1: VOLTAGE REFERENCE BLOCK DIAGRAM

NEOIDTEN 30	J-2. OWINO						
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	_	—	INTP	INTN
bit 7							bit 0

REGISTER 38-2: CMxCON1: COMPARATOR x CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	INTP: Comparator Interrupt on Positive-Going Edge Enable bit
	1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit $0 = N_0$ interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	INTN: Comparator Interrupt on Negative-Going Edge Enable bit
	 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

REGISTER 38-3: CMxNCH: COMPARATOR x INVERTING CHANNEL SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—	_	_		NCH<2:0>			
bit 7									

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-3 Unimplemented: Read as '0'

bit 2-0 NCH<2:0>: Comparator Inverting Input Channel Select bits

111 **= V**SS

110 = FVR_Buffer2

101 = NCH not connected

- 100 = NCH not connected
- 011 = CxIN3-
- 010 = CxIN2-
- 001 = CxIN1-
- 000 = CxIN0-

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
3A98h	—				Reserved, m	aintain as '0'					
3A97h- 3A95h	—				Unimple	emented					
3A94h	INLVLF ⁽³⁾	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	270	
3A93h	SLRCONF ⁽³⁾	SLRCONF7	SLRCONF6	SLRCONF5	SLRCONF4	SLRCONF3	SLRCONF2	SLRCONF1	SLRCONF0	269	
3A92h	ODCONF ⁽³⁾	ODCONF7	ODCONF6	ODCONF5	ODCONF4	ODCONF3	ODCONF2	ODCONF1	ODCONF0	268	
3A91h	WPUF ⁽³⁾	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	267	
3A90h	ANSELF ⁽³⁾	ANSELF7	ANSELF6	ANSELF5	ANSELF4	ANSELF3	ANSELF2	ANSELF1	ANSELF0	266	
3A8Fh- 3A8Ah	—				Unimple	emented					
3A89h	_				Reserved, m	aintain as '0'					
3A88h	_				Reserved, m	aintain as '0'					
3A87h	IOCEF	—	—	—	—	IOCEF3	—	—	—	287	
3A86h	IOCEN		_	—	—	IOCEN3	—	—	_	287	
3A85h	IOCEP		_	—	—	IOCEP3	—	—	_	287	
3A84h	INLVLE	—	_	—	_	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾	270	
3A83h	SLRCONE ⁽²⁾			_	_	_	SRLE2 ⁽²⁾	SRLE1 ⁽²⁾	SRLE0 ⁽²⁾	269	
3A82h	ODCONE ⁽²⁾		_	—	—	—	ODCE2 ⁽²⁾	ODCE1 ⁽²⁾	ODCE0 ⁽²⁾	268	
3A81h	WPUE			_	—	WPUE3	WPUE2 ⁽²⁾	WPUE1 ⁽²⁾	WPUE0 ⁽²⁾	267	
3A80h	ANSELE ⁽²⁾	ANSELE7	ANSELE6	ANSELE5	ANSELE4	ANSELE3	ANSELE2	ANSELE1	ANSELE1 ANSELE0		
3A7Fh- 3A7CH	—				Unimple	emented					
3A7Bh	RD1I2C ⁽²⁾		IOCEN3	P	U		_		263		
3A7Ah	RD0I2C ⁽²⁾		IOCEN3	P	U	—	—		ТН	263	
3A79h	—				Reserved, m	aintain as '0'					
3A78h	—				Reserved, m	aintain as '0'					
3A77h- 3A75h	_				Unimple	emented					
3A74h	INLVLD ⁽²⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	270	
3A73h	SLRCOND ⁽²⁾	SRLD7	SRLD6	SRLD5	SRLD4	SRLD3	SRLD2	SRLD1	SRLD0	269	
3A72h	ODCOND ⁽²⁾	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	268	
3A71h	WPUD ⁽²⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	267	
3A70h	ANSELD ⁽²⁾	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0	266	
3A6Fh- 3A6Ch	_				Unimple	emented					
3A6Bh	RC4I2C		SLEW	P	U	—	—		TH	263	
3A6Ah	RC3I2C	_	SLEW	P	U	—	_		ТН	263	
3A69h	_				Reserved, m	aintain as '0'					
3A68h	—			T	Reserved, m	aintain as '0'	r	1			
3A67h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	287	
3A66h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	287	
3A65h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	287	
3A64h	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	270	
3A63h	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	269	
3A62h	ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	268	
3A61h	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	267	
3A60h	ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	266	
3A5Fh - 3A5Ch	-				Unimple	emented					

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

Note

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3A16h	RC6PPS	_	—	—	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	280
3A15h	RC5PPS		_	—	RC5PPS4	RC5PPS3	RC5PPS2	RC5PPS1	RC5PPS0	280
3A14h	RC4PPS	—	_	—	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	280
3A13h	RC3PPS	—	_	—	RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	280
3A12h	RC2PPS	—	_	—	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	280
3A11h	RC1PPS	—	_	—	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	280
3A10h	RC0PPS	—	_	—	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	280
3A0Fh	RB7PPS	—	—	_	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	280
3A0Eh	RB6PPS	—	—	_	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	280
3A0Dh	RB5PPS	—	—	—	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	280
3A0Ch	RB4PPS	—	—	_	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	280
3A0Bh	RB3PPS	—	—	—	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	280
3A0Ah	RB2PPS	—	—	—	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	280
3A09h	RB1PPS	—	—	—	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	280
3A08h	RB0PPS		—	—	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	280
3A07h	RA7PPS		—	—	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	280
3A06h	RA6PPS		—	—	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	280
3A05h	RA5PPS		—	—	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	280
3A04h	RA4PPS	_	_	_	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	280
3A03h	RA3PPS			_	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	280
3A02h	RA2PPS	—	—	—	RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	280
3A01h	RA1PPS	—	—	—	RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	280
3A00h	RA0PPS	—	—	—	RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	280
39FFh - 39F8h	—			1	Unimple	emented				
39F7h	SCANPR		—	—	—	—		PR		31
39F6h - 39F5h	—			1	Unimple	emented				
39F4h	DMA2PR	_		—	—	—		PR		31
39F3h	DMA1PR	_		—	—	—		PR		30
39F2h	MAINPR	—	—	—	—	_		PR		30
39F1h	ISRPR	—	—	—	—	—		PR		30
39F0h	—		1		Unimple	emented			[
39EFh	PRLOCK		—	—	—	—	—	—	PRLOCKED	31
39EEh - 39E7h	—				Unimple	emented				
39E6h	NVMCON2				NVM	CON2				211
39E5h	NVMCON1	RE	EG	—	FREE	WRERR	WREN	WR	RD	210
39E4h	<u> </u>				Unimple	emented				0.10
39E3h	NVMDAT				D/	AT .				212
39E2h		Unimplemented								011
39E1h	NVMADRH ⁽⁴⁾	—	—	—		—	— — ADR			
39E0h	NVMADRL	ADR						211		
39DFh	USCERQ	—	—	—	—		F	KQ		107
39DEh	OSCIUNE			MEGEN		000051/				108
39DDh	USCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SUSCEN	ADOEN	—	-	109
39DCh	USCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	100
39DBh	USCCON3	CSWHOLD	SOSCPWR	—	OKDY	NOSCR	—	—	—	105

TABLE 42-1:REGISTER FILE SUMMARY FOR PIC18(L)F26/27/45/46/47/55/56/57K42 DEVICES

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Unimplemented in LF devices.

2: Unimplemented in PIC18(L)F26/27K42.

3: Unimplemented on PIC18(L)F26/27/45/46/47K42 devices.

4: Unimplemented in PIC18(L)F45/55K42.

TABLE 44-3: SUPPLY CURRENT (IDD)^(1,2,4)

PIC18LF27/47/57K42				Standard Operating Conditions (unless otherwise stated)					
PIC18F27/47/57K42									
Param. No.	Symbol	Device Characteristics	Min.	Тур.†	Max.	Units	Conditions		
							VDD	Note	
D100	IDD _{XT4}	XT = 4 MHz	—	625	1200	μΑ	3.0V	\wedge	
D100	IDD _{XT4}	XT = 4 MHz		825	1400	μΑ	3.0V		
D100A	IDD _{XT4}	XT = 4 MHz		425	_	μΑ	3.0V	PMD's all 1's	
D100A	IDD _{XT4}	XT = 4 MHz	_	665	_	μΑ	3.0V	PMD's all 1's	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz		2.9	5	mA	3.0V		
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	3	5.1	mA	3.0V		
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	-	2.0	—	mA	3.0V	PMD's)all ⊥'s	
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	_	2.1	_	mA	3.0V	RMD's all 1's	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	10.7	17.5	mA	3.0V		
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	_	11	18	mA	3.0V		
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	-	6.7	—	mA	3.0√	PMD's all 1's	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	_	6.9	_	mA	3.0	PMD's all 1's	
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	_	10.7	17.5	mA	3.0V	\sim	
D103	IDD _{HSPLL64}	HS+PLL = 64 MHz	_	11 <	18	mA	3.€∨		
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz	_	6.7	\mathcal{F}	mA	3.0	PMD's all 1's	
D103A	IDD _{HSPLL64}	HS+PLL = 64 MHz		6.9		mÀ	3.0V	PMD's all 1's	
D104	Idd _{idle}	IDLE mode, HFINTOSC = 16 MHz		2.0 T		mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	$\langle - \rangle$	2.1	$\left[\mathcal{I} \right]$	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	\geq	2.Q	Ź	∕mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio ≠ 16	<u> </u>	2.1	$\langle - \rangle$	mA	3.0V		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low; MCLR = VDD; WDT disabled

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: IDD_{DOZE} = [IDD_{IDLE}*(N-1)/N] + IDD_{HFO}16/N where N = DOZE Ratio (Register 10-2).

4: PMD bits are all in the default state, no modules are disabled.