

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k42t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 Register Definitions: Configuration Words

REGISTER 5	5-1: CONF	IGURATION W	/ORD 1L (3	30 0000h)						
U-1	R/W-1	R/W-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1			
_		RSTOSC<2:0>				EXTOSC<2:0>	>			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '1'				
-n = Value for	blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 7	Unimpleme	nted: Read as '1'								
bit 6-4	RSTOSC<2	:0>: Power-up De	fault Value f	for COSC bits						
	111 = EXTC	SC operating per	FEXTOSC	<2:0> bits						
	110 = HFINTOSC with HFFRQ = 4 MHz and CDIV = 4:1									
	101 = LFINTOSC									
	100 = SOSC									
	011 = Rese	rved								
	010 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC<2:0> bits									
	001 = Reserved									
	000 = HFINTOSC with HFFRQ = 64 MHz and CDIV = 1:1; resets COSC/NOSC to 3'b110									
bit 3	Unimpleme	nted: Read as '1'								
bit 2-0	FEXTOSC<2:0>: FEXTOSC External Oscillator Mode Selection bits									
	111 = FCH (External Clock High Power) ⁽¹⁾									
	$110 = ECM (External Clock Medium Power)^{(1)}$									
	101 = ECL (External Clock Low Power) ⁽¹⁾									
	100 = Oscill	ator is not enable	d							
	011 = Rese	rved (do not use)								
	010 = HS (c	rystal oscillator) a	bove 8 MHz	2						
	001 = XT (c	rystal oscillator) a	bove 500 kH	Hz, below 8 MHz	Z					
	000 = LP (ci	rystal oscillator) o	ptimized for	32.768 kHz						

Note 1: Refer to Table 44-9 for External Clock/Oscillator Timing Requirements.

5.7.4 FIXED VOLTAGE REFERENCE DATA

The DIA stores measured FVR voltages for this device in mV for the different buffer settings of 1x, 2x or 4x at Program Memory locations 3F0030h to 3F003Bh. For more information on the FVR, refer to **Section 34.0 "Fixed Voltage Reference (FVR)"**.

- FVRA1X stores the value of ADC FVR1 Output voltage for 1x setting (in mV)
- FVRA2X stores the value of ADC FVR1 Output Voltage for 2x setting (in mV)
- FVRA4X stores the value of ADC FVR1 Output Voltage for 4x setting (in mV)
- FVRC1X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC2X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC4X stores the value of Comparator FVR2 output voltage for 4x setting (in mV)

5.8 Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the Program memory space mapped from 3FFF00h to 3FFF09h. The data stored in these locations is read-only and cannot be erased.

Refer to Table 5-4: Device Configuration Information for PIC18(L)F26/27/45/55/46/47/56/57K42 for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and Bootloader applications.

The erase size is the minimum erasable unit in the PFM, expressed as rows. The total device Flash memory capacity is (Row Size * Number of rows)

	Nome	DESCRIPTION		VALUE		
ADDRESS	Name	DESCRIPTION	PIC18(L)F45/55K42	PIC18(L)F26/46/56K42	PIC18(L)F27/47/57K42	UNITS
3F FF00h-3F FF01h	ERSIZ	Erase Row Size	64	64	64	Words
3F FF02h-3F FF03h	WLSIZ	Number of write latches per row	128	128	128	Bytes
3F FF04h-3F FF05h	URSIZ	Number of User Rows	256	512	1024	Rows
3F FF06h-3F FF07h	EESIZ	Data EEPROM memory size	256	1024	1024	Bytes
3F FF08h-3F FF09h	PCNT	Pin Count	40 ⁽¹⁾ /48	28/40 ⁽¹⁾ /48	28/40 ⁽¹⁾ /48	Pins

TABLE 5-4:DEVICE CONFIGURATION INFORMATION FOR PIC18(L)F26/27/45/55/46/47/56/57K42

Note 1: Pin count of 40 is also used for 44-pin part.

9.4.1 SERVING A HIGH OR LOW PRIORITY INTERRUPT WHEN MAIN ROUTINE CODE IS EXECUTING

When a high or low priority interrupt is requested when the main routine code is executing, the main routine execution is halted and the ISR is addressed, see Figure 9-2. Upon a return from the ISR (by executing the RETFIE instruction), the main routine resumes execution.

FIGURE 9-2: INTERRUPT EXECUTION: HIGH/LOW PRIORITY INTERRUPT WHEN EXECUTING MAIN ROUTINE

REGIST	IN 3-3. FINO.	FERIFIERA		FIREGISTE	N 0` '		
R/W/HS	-0/0 R/W/HS-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
TMR30	GIF TMR3IF	U2IF ⁽²⁾	U2EIF ⁽³⁾	U2TXIF ⁽⁴⁾	U2RXIF ⁽⁴⁾	I2C2EIF ⁽⁵⁾	I2C2IF ⁽⁶⁾
bit 7					•	•	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HS = Bit is se	et in hardware		
bit 7	TMR3GIF: T	VR3 Gate Inter	rupt Flag bit				
	1 = Interrupt	has occurred (must be clear	ed by software	:)		
	0 = Interrupt	event has not	occurred				
bit 6		R3 Interrupt Fla	ag bit	ad by a offician	`		
	0 = Interrupt	event has not	occurred	ed by sollware	;)		
bit 5	U2IF: UART2	2 Interrupt Flag	bit ⁽²⁾				
	1 = Interrupt	has occurred					
	0 = Interrupt	event has not	occurred				
bit 4	U2EIF: UART	C2 Framing Erro	or Interrupt Fla	ag bit ⁽³⁾			
	1 = Interrupt	has occurred					
1.1.0		event has not	occurred	··(4)			
DIT 3	UZIXIF: UAF		iterrupt Flag b	11(-1)			
	0 = Interrupt	event has not	occurred				
bit 2		DT2 Dessive In	torrupt Elag b	:+(4)			
	1 = Interrupt	has occurred	terrupt Flag b	l(*)			
	0 = Interrupt	event has not	occurred				
bit 1	12C2EIF: 1 ² C2	2 Error Interrup	t Flag bit ⁽⁵⁾				
	1 = Interrupt	has occurred					
1.11.0	0 = Interrupt	event has not	occurred				
DIT U	12C2IF: 1 ² C2	Interrupt Flag b	oit ⁽⁶⁾				
	0 = Interrupt	event has not	occurred				
Note 1:	Interrupt flag bits o	et set when ar	n interrupt con	dition occurs. r	equiraless of the	e state of its co	rrespondina
	enable bit, or the g	global enable b	it. User softwa	are should ensi	ure the appropri	ate interrupt fla	ig bits are
	clear prior to enab	ling an interrup	vt.				
2:	UxIF is a read-only	y bit. To clear th	ne interrupt co	ndition, all bits	in the UxUIR re	gister must be	cleared.
3:	UXEIF is a read-or	hiy bit. To clear	the interrupt of	condition, all bi	ts in the UxERR	ik register mu	st be cleared.
4: 5.		only bit. To clos	iy bits and car		areu by the som∖ hits in the l2Cv⊏	Nale. PR register m	ist he cleared
э.	IZUXEIF IS a IEdu-	only bit. To Clea	a the interrupt			ixix register filt	ist DE CIEdi EU.

REGISTER 9-9: PIR6: PERIPHERAL INTERRUPT REGISTER 6⁽¹⁾

13.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 13-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in Section 13.1.6 "Writing to Program Flash Memory". Figure 13-2 shows the operation of a table write with program memory.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 13-2: TABLE WRITE OPERATION

13.1.6.2 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. Since program memory is stored as a full page, the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 13-10: PROGRAM FLASH MEMORY VERIFY FLOWCHART

13.1.6.3 Unexpected Termination of Write Operation

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

13.1.6.4 Protection Against Spurious Writes

A write sequence is valid only when both the following conditions are met, this prevents spurious writes which might lead to data corruption.

- The WR bit is gated through the WREN bit. It is suggested to have the WREN bit cleared at all times except during memory writes. This prevents memory writes if the WR bit gets set accidentally.
- 2. The NVM unlock sequence must be performed each time before a write operation.

13.2 Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Word Access

When REG<1:0> = 0b01 or 0b11 in the NVMCON1 register, the Device Information Area, the Device Configuration Area, the User IDs, Device ID/ Revision ID and Configuration Words can be accessed. Different access may exist for reads and writes (see Table 13-1).

13.2.1 Reading Access

The user can read from these blocks by setting the REG bits to 0b01 or 0b11. The user needs to load the address into the TBLPTR registers. Executing a TBLRD after that moves the byte pointed to the TABLAT register. The CPU operation is suspended during the read and resumes after. When read access is initiated on an address outside the parameters listed in Table 13-1, the TABLAT register is cleared, reading back '0's.

13.2.2 Writing Access

The WREN bit in NVMCON1 must be set to enable writes. This prevents accidental writes to the CONFIG words due to errant (unexpected) code execution. The WREN bit should be kept clear at all times, except when updating the CONFIG words. The WREN bit is not cleared by hardware. The WR bit will be inhibited from being set unless the WREN bit is set.

The user needs to load the TBLPTR and TABLAT register with the address and data byte respectively before executing the write command. An unlock sequence needs to be followed for writing to the USER IDs/ DEVICE IDs/CONFIG words (Section 13.1.4, NVM Unlock Sequence). If WRTC = 0 or if TBLPTR points an invalid address location (see Table 13-1), WR bit is cleared without any effect and WRERR is set.

A single CONFIG word byte is written at once and the operation includes an implicit erase cycle for that byte (it is not necessary to set FREE). CPU execution is stalled and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The new CONFIG value takes effect when the CPU resumes operation.

TABLE 13-3:	DIA, DCI, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS
	(REG<1:0> = x1)

Address	Function	Read Access	Write Access
20 0000h-20 000Fh	User IDs	Yes	Yes
30 0000h-30 0009h	Configuration Words	Yes	Yes
3F 0000h-3F 003Fh	DIA	Yes	No
3F FF00h-3F FF09h	DCI	Yes	No
3F FFFCh-3F FFFFh	Revision ID/Device ID	Yes	No

18.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F26/27/45/46/47/55/56/57K42 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-onchange module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 18-1 is a block diagram of the IOC module.

18.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIEx register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

18.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

18.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

18.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 18-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F

18.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

FIGURE 21-2: TIMER1/3/5 16-BIT READ/ WRITE MODE BLOCK DIAGRAM From Timer1 Circuitry Set TMR1IF TMR1 TMR1L High Byte on Overflow . 8 Read TMR1L Write TMR1L 8 .8 TMR1H 8 Internal Data Bus

Block Diagram of Timer1 Example of TIMER1/3/5

21.6 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. See Figure 21-4 for timing details.

TABLE 21-2: TIMER1/3/5 GATE ENABLE SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

23.2.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE Interrupt Priority bit of the respective PIE register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the respective PIR register following any change in Operating mode.

23.2.4 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep as long as the clock source for Timer1 is active in Sleep.

23.3 Compare Mode

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMRxH:TMRxL register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output, clear TMRx
- Toggle the CCPx output
- Set the CCPx output
- · Clear the CCPx output
- · Pulse output
- Pulse output, clear TMRx

The action on the pin is based on the value of the MODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set, and an ADC conversion can be triggered, if selected.

All Compare modes can generate an interrupt and trigger an ADC conversion. When MODE = 0b0001 or 0b1011, the CCP resets the TMR register pair.

Figure 23-2 shows a simplified diagram of the compare operation.

FIGURE 23-2: COMPARE MODE OPERATION BLOCK DIAGRAM

25.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMT1_signal input. This mode is asynchronous to the SMT clock and uses the SMT1_signal as a time source. The SMT1CPW register will be updated with the current SMT1TMR value on the rising edge of the SMT1WIN input. See Figure 25-18.

FIGURE 25-18: COUNTER MODE TIMING DIAGRAM

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—				SSEL<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set	U	'0' = Bit is cle	ared	g = Value depends on condition				
bit 7-5	Unimplemen	ted: Read as '	0'					
bit 4-0	SSEI <4·0>· 3	SMT1 Signal S	election hits					
Sit 10	111111 = Res	erved						
	•							
	•							
	•							
	11010 = Res	erved						
	11001 = CLC	24_0ut						
	10111 = CLC	2 out						
	10110 = CLC	C1_out						
	10101 = ZCE	01_out						
	10100 = CMF	P2_out						
	10011 = CMF	P1_out						
	10010 = NCC	onvod						
	10000 = Res	erved						
	01111 = PWI	M8 out						
	01110 = PWI	M7_out						
	01101 = PWI	M6_out						
	01100 = PWI	M5_out						
	01011 = CCH	P4_out						
	01010 = CCF	-3_0ui 22_out						
	01000 = CCF	P1 out						
	00111 = TMF	R6_postscaled						
	00110 = TMF	R5_postscaled						
	00101 = TMF	R4_postscaled						
	00100 = TMF	R3_postscaled						
	00011 = IMF	R2_postscaled						
	00010 = TMF	<pre>CI_posiscaled R0_overflow</pre>						
	00000 = SM1	TxSIGPPS						

REGISTER 25-6: SMT1SIG: SMT1 SIGNAL INPUT SELECT REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	G1D4T: Gate	0 Data 4 True	(non-inverted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	te 0			
1.11 O	0 = CLCIN3	(true) is not gai	ed into CLCX	Gate 0			
DIT 6		e 0 Data 4 Nega	ated (inverted				
	1 = CLCIN3 0 = CLCIN3	(inverted) is ga	t gated into CLCX	I Cx Gate 0			
bit 5	G1D3T: Gate	0 Data 3 True	(non-inverted) bit			
	1 = CLCIN2	(true) is gated i	nto CLCx Gat	te 0			
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 0			
bit 4	G1D3N: Gate	e 0 Data 3 Nega	ated (inverted) bit			
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 0			
	0 = CLCIN2	(inverted) is no	t gated into C	LCx Gate 0			
bit 3	G1D2T: Gate	0 Data 2 True	(non-inverted) bit			
	1 = CLCIN1	(true) is gated i	nto CLCx Gat	te 0 x Cato 0			
hit 2	G1D2N: Gate	(ilue) is not gai	ated (inverted) hit			
	1 = CLCIN1	(inverted) is da	ted into CI Cx	Gate 0			
	0 = CLCIN1	(inverted) is no	t gated into C	LCx Gate 0			
bit 1	G1D1T: Gate	0 Data 1 True	(non-inverted) bit			
	1 = CLCIN0	(true) is gated i	nto CLCx Gat	te 0			
	0 = CLCIN0	(true) is not gat	ed into CLCx	Gate 0			
bit 0	G1D1N: Gate	e 0 Data 1 Nega	ated (inverted) bit			
	1 = CLCINO	(inverted) is ga	ted into CLCx	Gate 0			
	0 = CLCINO	(invertea) is no	i galed into C	LOX GAIE U			

REGISTER 27-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

GURE 28-2	2: FDC OUTPUT MODE OPERATION DIAGRAM
NCOx Clock Source	
NCOx Increment Value	4000h 4000h
NCOx Accumulator Value	00000h X 04000h X 08000h X 06000h X 00000h X 04000h X 08000h X 06000h X 04000h X 04000h X 08000h X 04000h X 08000h
NCO_overflow	
NCO_interrupt	
NCOx Output FDC Mode	
NCOx Output PF Mode NCOxPWS = - 000	
NCOx Output PF Mode NCOxPWS = - 001	

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
RUNOV	'F RXPOL	STP	<1:0>	C0EN	TXPOL	FLO•	<1:0>			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is	set	'0' = Bit is cle	ared							
bit 7			flow Oracle	:4						
DIL 7		un During Over	now Control b	nizo with Start	hite offer as and	woondition				
	⊥ = KX Inpu 0 = RX inpu	 1 = RX input shifter continues to synchronize with Start bits after overflow condition 0 = RX input shifter stops all activity on receiver overflow condition 								
bit 6	RXPOL: Rec	ceive Polarity Co	ontrol bit							
-	1 = Invert R	X polarity. Idle s	tate is low							
	0 = RX pola	0 = RX polarity is not inverted, Idle state is high								
bit 5-4	STP<1:0>: S	Stop Bit Mode C	ontrol bits ⁽¹⁾							
	11 = Trans	11 = Transmit 2 Stop bits, receiver verifies first Stop bit								
	10 = Irans	10 = Transmit 2 Stop bits, receiver verifies first and second Stop bits								
	00 = Trans	01 = Transmit 1.5 Stop bits, receiver verifies first Stop bit 00 = Transmit 1 Stop bit, receiver verifies first Stop bit								
bit 3	C0EN: Chec	ksum Mode Sel	ect bit ⁽²⁾							
	LIN mode:									
	1 = Checksu	1 = Checksum Mode 1, enhanced LIN checksum includes PID in sum								
	0 = Checksu	0 = Checksum Mode 0, legacy LIN checksum does not include PID in sum								
	Other modes	Other modes:								
	⊥ = Add all 0 = Checksi	1 = Add all TX and RX characters								
bit 2	TXPOL: Tran	nsmit Polarity C	ontrol bit							
	1 = Output d	lata is inverted.	TX output is I	ow in Idle state	,					
	0 = Output o	0 = Output data is not inverted, TX output is high in Idle state								
bit 1-0	FLO<1:0>: ⊦	-landshake Flow	Control bits							
	11 = <u>Reser</u>	ved								
	10 = RTS/C	CTS and TXDE	Hardware flow	v control						
	01 = XON/2	CONTROL IS Off	now control							
				.						
Note 1:	All modes transm. Stop bits and all o	it selected num	ber of Stop bit / the first Stop	s. Only DMX a bit.	nd DALI receive	ers verify select	ted number of			

REGISTER 31-3: UxCON2: UART CONTROL REGISTER 2

2: UART1 only.

REGISTER 31-10: UxRXB: UART RECEIVE REGISTER

R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			RX	B<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unknow	/n	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 **RXB<7:0>:** Top of Receive Buffer

REGISTER 31-11: UxTXB: UART TRANSMIT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TXB<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TXB<7:0>: Bottom of Transmit Buffer

R/C/HS-0/0	U-0	R-1/1	U-0	R/C/HS-0/0	S-0/0	U-0	R-0/0		
TXWE	_	TXBE	_	RXRE	CLRBF	_	RXBF		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
				S = Settable I	e DIT Dit				
				HS = Bit can	be set by hardw	are			
bit 7	TXWE: Trans	mit Buffer Write	e Error bit						
	1 = SPIxTxB was written while TxFIFO was full								
	0 = No error h	as occurred							
bit 6	Unimplemen	ted: Read as ')'						
bit 5	TXBE: Transmit Buffer Empty bit (read-only)								
	1 = Transmit buffer TxFIFO is empty								
	0 = Transmit I	ouffer is not em	pty						
bit 4	Unimplemen	ted: Read as ')'						
bit 3	RXRE: Receive Buffer Read Error bit								
	1 = SPIxRB was read while RxFIFO was empty								
	0 = No error has occurred								
bit 2	CLRBF: Clear Buffer Control bit (write only)								
	1 = Reset the receive and transmit buffers, making both buffers empty								
	0 = Take no a	ction							
bit 1	Unimplemen	ted: Read as ')'						
bit 0	RXBF : Receive Buffer Full bit (read-only)								
	1 = Receive buffer is full								
	0 = Receive buffer is not full								

REGISTER 32-11: SPIxRxB: SPI READ BUFFER REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

bit 7-0 **RXB<7:0>**: Receiver Buffer bits (read-only)

If RX buffer is not empty:

Contains the top-most byte of RXFIFO, and reading this register will remove the top-most byte RXFIFO and decrease the occupancy of the RXFIFO

If RX buffer is empty:

Reading this register will read as '0', leave the occupancy unchanged, and set the RXRE bit of SPIxSTATUS

REGISTE	R 33-6: 12CxS	TATO: I ² C ST	ATUS REGI	STER 0					
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0		
BFRE ⁽³	³⁾ SMA	MMA	R ^(1, 2)	D	—	—	_		
bit 7	·		•	·			bit 0		
Legend:									
R = Reada	able bit	W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is u	inchanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are set HC =	Hardware clea	r		
bit 7	BFRE: Bus F 1 = Indicates Both SC I2CCLK 0 = Bus not in	ree Status bit ⁽³ the I ² C bus is CL and SDA ha must select a dle (When no I) idle ve been high valid clock so 2CCLK is sele	for time-out se urce for this bit ected, this bit re	lected by I2CCC to function. emains clear))N2 <bfret<1< td=""><td>1:0>> bits.</td></bfret<1<>	1:0>> bits.		
bit 6	SMA: Slave M 1 = Set after Set after after a p 0 = Cleared b Cleared	Aodule Active S the 8th falling S r the 8th falling the 8th falling revious matchi by any Restart/ by BTOIF and	Status bit SCL edge of a SCL edge of SCL edge of a ng high and le Stop detected BCLIF condi	a received mate a received mate a received mate ow w/ write. d on the bus tions	ching 7-bit slave tching 10-bit sla ching 10-bit slav	address ve low addres e high w/ read	s address, only		
bit 5	MMA: Master 1 = Master M Set when 0 = Master s Cleared Cleared Cleared	Module Active Node state machine is tate machine is when BCLIF is when Stop is s for BTOIF cond	e Status bit chine is active machine asse s idle set hifted out by i dition, after th	e erts a Start on b master. e master succe	ous essfully shifts ou	t a Stop condit	ion.		
bit 4	R : Read Infor 1 = Indicates 0 = Indicates	mation bit ^(1, 2) the last match the last match	ing received (ing received ((high) address (high) address	was a Read req was a Write	uest			
bit 3	D: Data bit 1 = Indicates 0 = Indicates	the last byte re the last byte re	eceived or tra eceived or tra	nsmitted was d nsmitted was a	lata in address				
bit 2-0	Unimplemen	ted: Read as 1	' b0						
Note 1: 2: 3:	This bit holds the F the Master or appe Clock requests and Software must use	R bit informatio earing on the b d input from I20 the EN bit to f	n following the us without a n CxCLK registe orce Master o	e last received natch do not af er are disabled or Slave hardwa	address match. fect this bit. in Slave modes are to idle.	Addresses tra	nsmitted by		

38.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the HYS bit of the CMxCON0 register.

See Comparator Specifications in Table 44-17 for more information.

38.3.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the SYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used, the CxOUT bit is synchronized with the timer, so that the software sees no ambiguity due to timing. See the Comparator Block Diagram (Figure 38-2) and the Timer1 Block Diagram (Figure 21-1) for more information.

38.4 Comparator Interrupt

An interrupt can be generated for every rising or falling edge of the comparator output.

When either edge detector is triggered and its associated enable bit is set (INTP and/or INTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the respective PIR register) will be set.

To enable the interrupt, you must set the following bits:

- EN bit of the CMxCON0 register
- · CxIE bit of the respective PIE register
- INTP bit of the CMxCON1 register (for a rising edge detection)
- INTN bit of the CMxCON1 register (for a falling edge detection)
- GIE bit of the INTCON0 register

The associated interrupt flag bit, CxIF bit of the respective PIR register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the POL bit of the CMxCON0 register, or by switching the comparator on or off with the EN bit of the CMxCON0 register.

38.5 Comparator Positive Input Selection

Configuring the PCH<2:0> bits of the CMxPCH register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN0+, CxIN1+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See Section 34.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 37.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (EN = 0), all comparator inputs are disabled.

38.6 Comparator Negative Input Selection

The NCH<2:0> bits of the CMxNCH register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- · CxIN0-, CxIN1-, CxIN2-, CxIN3- analog pin
- FVR (Fixed Voltage Reference)
- Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

44.4 AC Characteristics

