

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Detaile	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47k42-e-pt

4.4.2 INSTRUCTIONS IN PROGRAM **MEMORY**

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 4.2.4 "Program Counter").

Figure 4-2 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>. which accesses the desired byte address in program memory. Instruction #2 in Figure 4-2 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 41.0 "Instruction Set Summary" provides further details of the instruction set.

4.4.3 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR and two three-word instructions: MOVFFL and MOVSFL. In all cases, the second and the third word of the instruction always has '1111' as its four Most Significant bits: the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence - immediately after the first word - the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second or third word is executed by itself, a NOP is executed instead. This is necessary for cases when the multi-word instruction is preceded by a conditional instruction that changes the PC. Example 4-4 shows how this works.

FIGURE 4-2:	INST	RUCTION	IS IN PRO	OGRA	M MEMOR	Y	
					LSB = 1	LSB = 0	Word Address ↓
		Program M	emory				000000h
		Byte Locati	ons \rightarrow				000002h
							000004h
							000006h
	Instruction 1:	MOVLW	055h		0Fh	55h	000008h
	Instruction 2:	GOTO	0006h		EFh	03h	00000Ah
					F0h	00h	00000Ch
	Instruction 3:	MOVFF	123h, 4	156h	C1h	23h	00000Eh
					F4h	56h	000010h
	Instruction 4:	MOVFFL	123h,	456h	00h	60h	000012h
					F4h	8Ch	000014h
					F4h	56h	000016h
							000018h
							00001Ah

Preliminary © 2017 Microchip Technology Inc. DS40001919B-page 42

5.0 DEVICE CONFIGURATION

Device configuration consists of the Configuration Words, User ID, Device ID, Rev ID, Device Information Area (DIA), (see Section 5.7 "Device Information Area"), and the Device Configuration Information (DCI) regions, (see Section 5.8 "Device Configuration Information").

5.1 Configuration Words

There are six Configuration Word bits that allow the user to setup the device with several choices of oscillators, Resets and memory protection options. These are implemented as Configuration Word 1 through Configuration Word 6 at 300000h through 30000Bh.

REGISTER 5-5: CONFIGURATION WORD 3L (30 0004h)

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE<1:0>				WDTCPS<4:0	>	
bit 7	•		•				bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '1'

-n = Value for blank device '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 **Unimplemented:** Read as '1'

bit 6-5 WDTE<1:0>: WDT Operating Mode bits

00 = WDT is disabled, SWDTEN is ignored

01 = WDT is enabled/disabled by the SWDTEN bit in WDTCON0

10 = WDT is enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN is ignored

11 = WDT is enabled regardless of Sleep; SWDTEN is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		Coffware Control			
WDTCPS<4:0>	Value	Divider Ra	tio	Typical Time-out (FIN = 31 kHz)	Software Control of WDTPS?
00000	00000	1:32	2 ⁵	1 ms	
00001	00001	1:64	2 ⁶	2 ms	
00010	00010	1:128	2 ⁷	4 ms	
00011	00011	1:256	2 ⁸	8 ms	
00100	00100	1:512	2 ⁹	16 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00111	00111	1:4096	2 ¹²	128 ms	
01000	01000	1:8192 2 ¹³		256 ms	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01010	01010	1:32768	2 ¹⁵	1s	
01011	01011	1:65536	2 ¹⁶	2s	
01100	01100	1:131072	2 ¹⁷	4s	
01101	01101	1:262144	2 ¹⁸	8s	
01110	01110	1:524299	2 ¹⁹	16s	
01111	01111	1:1048576	2 ²⁰	32s	
10000	10000	1:2097152	2 ²¹	64s	
10001	10001	1:4194304	2 ²²	128s	
10010	10010	1:8388608	2 ²³	256s	
10011	10011		_		
 11110	 11110	1:32	2 ⁵	1 ms	No
11111	01011	1:65536	2 ¹⁶	2s	Yes

9.6 Returning from Interrupt Service Routine (ISR)

The "Return from Interrupt" instruction (RETFIE) is used to mark the end of an ISR.

When RETFIE 1 instruction is executed, the PC is loaded with the saved PC value from the top of the PC stack. Saved context is also restored with the execution of this instruction. Thus, execution returns to the previous state of operation that existed before the interrupt occurred.

When RETFIE 0 instruction is executed, the saved context is not restored back to the registers.

9.7 Interrupt Latency

By assigning each interrupt with a vector address/ number (MVECEN = 1), scanning of all interrupts is not necessary to determine the source of the interrupt.

When MVECEN = 1, Vectored interrupt controller requires three clock cycles to vector to the ISR from main routine, thereby removing dependency of interrupt timing on compiled code.

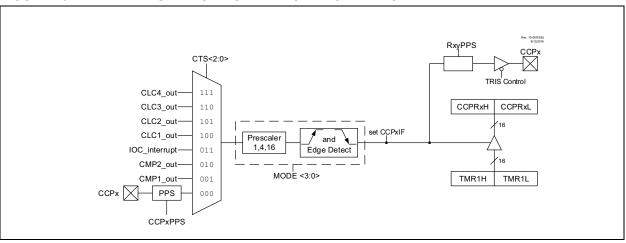
There is a fixed latency of three instruction cycles between the completion of the instruction active when the interrupt occurred and the first instruction of the Interrupt Service Routine. Figure 9-7, Figure 9-8 and Figure 9-9 illustrate the sequence of events when a peripheral interrupt is asserted when the last executed instruction is one-cycle, two-cycle and three-cycle respectively, when MVECEN = 1.

After the Interrupt Flag Status bit is set, the current instruction completes executing. In the first latency cycle, the contents of the PC, STATUS, WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U registers are context saved and the IVTBASE+ Vector number is calculated. In the second latency cycle, the PC is loaded with the calculated vector table address for the interrupt source and the starting address of the ISR is fetched. In the third latency cycle, the PC is loaded with the ISR address. All the latency cycles are executed as a FNOP instruction.

When MVECEN = 0, Vectored interrupt controller requires two clock cycles to vector to the ISR from main routine. There is a latency of two instruction cycles plus the software latency between the completion of the instruction active when the interrupt occurred and the first instruction of the Interrupt Service Routine.

REGISTER 9-26: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SMT1PWAIP	SMT1PRAIP	SMT1IP	C1IP	ADTIP	ADIP	ZCDIP	INT0IP
bit 7							bit 0

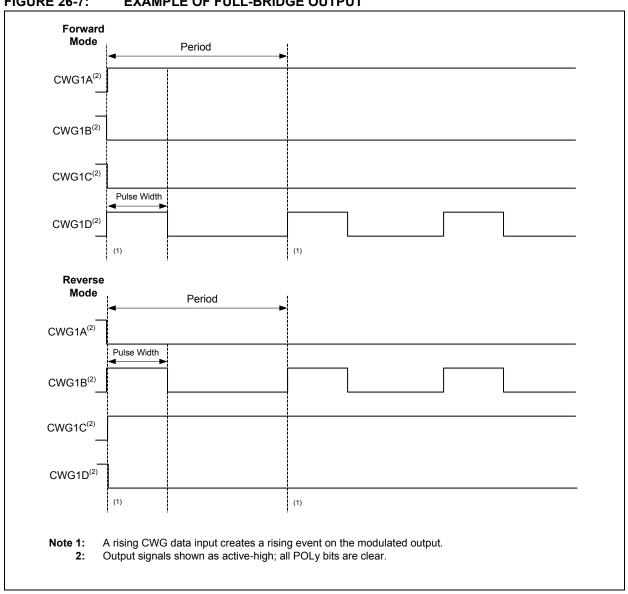

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	SMT1PWAIP: SMT1 Pulse Width Acquisition Interrupt Priority bit
	1 = High priority 0 = Low priority
bit 6	SMT1PRAIP: SMT1 Period Acquisition Interrupt Priority bit
	1 = High priority 0 = Low priority
bit 5	SMT1IP: SMT1 Interrupt Priority bit
	1 = High priority0 = Low priority
bit 4	C1IP: C1 Interrupt Priority bit
	1 = High priority0 = Low priority
bit 3	ADTIP: ADC Threshold Interrupt Priority bit
	1 = High priority
bit 2	0 = Low priority
DIL Z	ADIP: ADC Interrupt Priority bit 1 = High priority
	0 = Low priority
bit 1	ZCDIP: ZCD Interrupt Priority bit
	1 = High priority 0 = Low priority
bit 0	INT0IP: External Interrupt 0 Interrupt Priority bit
	1 = High priority0 = Low priority

TABLE 17-1: PPS INPUT REGISTER DETAILS

	PPS Input	Default Pin	Register		Input Available from Selected PORTx												
Peripheral	Register	Selection at POR	Reset Value at POR	PIC18	(L)F26/2	7K42		PIC18(L)F45/46/47K42				PIC18(L)F55/56/57K42					
ADC Conversion Trigger	ADACTPPS	RB4	0b0 1100	_	В	С	_	В	_	D	_		В	_	D	_	_
SPI1 Clock	SPI1SCKPPS	RC3	0b1 0011	_	В	С	_	В	С	_	_	_	В	С	_	_	_
SPI1 Data	SPI1SDIPPS	RC4	0b1 0100	_	В	С	_	В	С	_	_	_	В	С	_	_	_
SPI1 Slave Select	SPI1SSPPS	RA5	0b0 0101	А	_	С	Α	_	_	D	_	Α	_	_	D		_
I ² C1 Clock	I2C1SCLPPS	RC3	0b1 0011	_	В	С	_	В	С	_	_	_	В	С	_	_	_
I ² C1 Data	I2C1SDAPPS	RC4	0b1 0100	_	В	С	_	В	С	_	_	_	В	С	_	_	_
I ² C2 Clock	I2C2SCLPPS	RB1	0b0 1001	_	В	С	_	В	_	D	_	_	В	_	D	_	_
I ² C2 Data	I2C2SDAPPS	RB2	0b0 1010	_	В	С	_	В	_	D		_	В	_	D	_	_
UART1 Receive	U1RXPPS	RC7	0b1 0111	_	В	С	_	В	С	_	_	_	_	С	_	_	F
UART1 Clear To Send	U1CTSPPS	RC6	0b1 0110	_	В	С	_	В	С	_			_	С	_		F
UART2 Receive	U2RXPPS	RB7	0b0 1111	_	В	С	_	В	_	D	_	_	В	_	D	_	_
UART2 Clear To Send	U2CTSPPS	RB6	0b0 1110	_	В	С	_	В	_	D	_	_	В	_	D	_	_

FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM



In Forward Full-Bridge mode (MODE<2:0> = 010), CWGxA is driven to its active state, CWGxB and CWGxC are driven to their inactive state, and CWGxD is modulated by the input signal, as shown in Figure 26-7.

In Reverse Full-Bridge mode (MODE<2:0> = 011), CWGxC is driven to its active state. CWGxA and CWGxD are driven to their inactive states, and CWGxB is modulated by the input signal, as shown in Figure 26-7.

In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or viceversa. This dead-band control is described in Section 26.6 "Dead-Band Control", with additional details in Section 26.7 "Rising Edge and Reverse Dead Band" and Section 26.8 "Falling Edge and Forward Dead Band". Steering modes are not used with either of the Full-Bridge modes. The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWGxCON0 while keeping MODE<2:1> static, without disabling the CWG module.

FIGURE 26-7: EXAMPLE OF FULL-BRIDGE OUTPUT

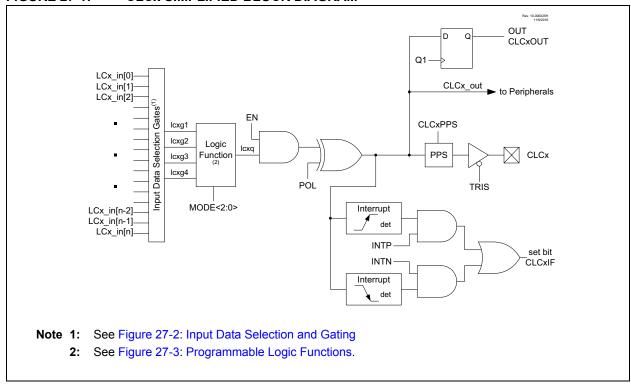
Preliminary © 2017 Microchip Technology Inc. DS40001919B-page 411

26.12 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- · CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.


In other words, if the HFINTOSC is simultaneously selected as system clock and CWG clock, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

26.13 Configuring the CWG

- Ensure that the TRIS control bits corresponding to CWG outputs are set so that all are configured as inputs, ensuring that the outputs are inactive during setup. External hardware should ensure that pin levels are held to safe levels.
- 2. Clear the EN bit, if not already cleared.
- 3. Configure the MODE<2:0> bits of the CWGx-CON0 register to set the output operating mode.
- Configure the POLy bits of the CWGxCON1 register to set the output polarities.
- Configure the ISM<4:0> bits of the CWGxISM register to select the data input source.
- If a steering mode is selected, configure the STRx bits to select the desired output on the CWG outputs.
- Configure the LSBD<1:0> and LSAC<1:0> bits
 of the CWGxASD0 register to select the autoshutdown output override states (this is
 necessary even if not using auto-shutdown
 because start-up will be from a shutdown state).
- If auto-restart is desired, set the REN bit of CWGxAS0.
- If auto-shutdown is desired, configure the ASxE bits of the CWGxAS1 register to select the shutdown source.
- Set the desired rising and falling dead-band times with the CWGxDBR and CWGxDBF registers.
- Select the clock source in the CWGxCLKCON register.
- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

FIGURE 27-1: CLCx SIMPLIFIED BLOCK DIAGRAM

27.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- · Logic function selection
- · Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

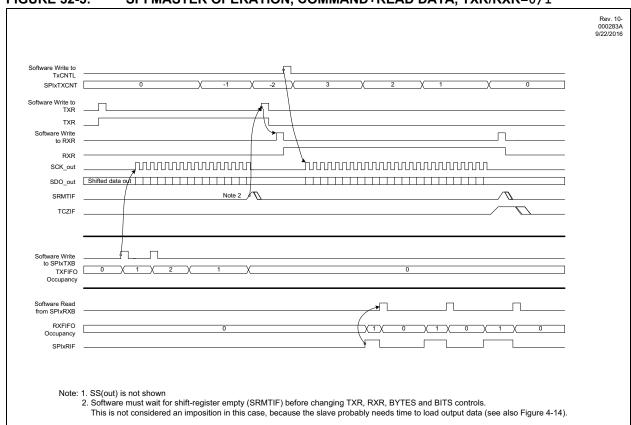
27.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 27-2. Data inputs in the figure are identified by a generic numbered input name.

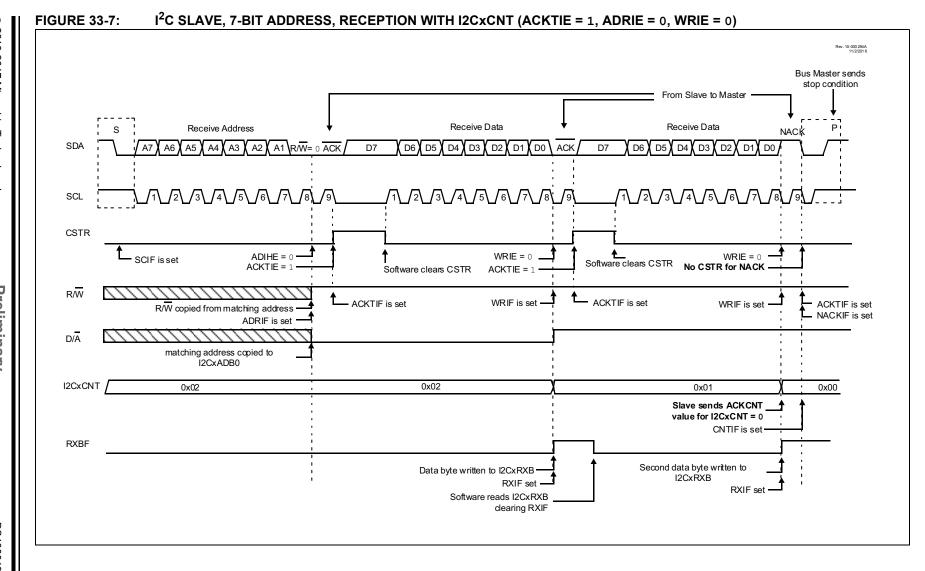
Table 27-1 correlates the generic input name to the actual signal for each CLC module. The column labeled 'DyS<4:0> Value' indicates the MUX selection code for the selected data input. DyS is an abbreviation for the MUX select input codes: D1S<4:0> through D4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 27-3 through Register 27-6).


Note: Data selections are undefined at power-up.

32.5.3 RECEIVE ONLY MODE

When RXR is set and TXR is clear, the SPI master is in Receive Only mode. In this mode, data transfers when the RXFIFO is not full and the Transfer Counter is nonzero. In this mode, writing a value to SPIxTCNTL will start the clocks for transfer. The clocks will suspend while the RXFIFO is full and cease when the SPIxTCNT reaches zero (see Section 32.4 "Transfer Counter"). If there is any data in the TXFIFO, the first


data written to the TXFIFO will be transmitted on each data exchange, although the TXFIFO occupancy will not change, meaning that the same message will be sent on each transmission. If there is no data in the TXFIFO, the most recently received data will instead be transmitted. Figure 32-5 shows an example of sending a command using Section 32.5.2 "Transmit Only Mode" and then receiving a byte of data using this mode.

32.5.4 TRANSFER OFF MODE

When both TXR and RXR are cleared, the SPI master is in Transfer Off mode. In this mode, SCK will not toggle and no data is exchanged. However, writes to SPIxTXB will be transferred to the TXFIFO which will be transmitted if the TXR bit is set.

33.4.3.2 Slave Transmission (7-bit Addressing Mode)

This section describes the sequence of events for the I^2C module configured as an I^2C slave in 7-bit Addressing mode and is transmitting data. Figure 33-9 and Figure 33-10 are used as a visual reference for this description.

- Master asserts Start condition (can also be a restart) on the bus. Start condition Interrupt Flag (SCIF) in I2CxPIR register is set.
- 2. If Start condition interrupt is enabled (SCIE bit is set), generic interrupt I2CxIF is set.
- Master transmits eight bits 7-bit address and R/W = 1.
- Received address is compared with the values in I2CxADR0/I2CxADR1/I2CxADR2/I2CxADR3 registers. Refer to Section 33.4.1 "Slave Addressing Modes" for Slave Addressing modes
- 5. If address matches; SMA in I2CxSTAT0 register is set, R/W is copied to R/W bit, D/A bit is cleared. If the address does not match; module becomes idle.
- The matched address data is loaded into I2CxADB0 and ADRIF in I2CxPIR register is set.
- If Address hold interrupt is enabled (ADRIE = 1), CSTR is set. I2CxIF is set. Slave software can read address from I2CxADB0 and set/clear ACKDT before releasing SCL. SCL line can be released by clearing CSTR.
- If the transmit buffer is empty from the previous transaction, i.e. TXBE = 1 and I2CxCNT!= 0 (I2CxTXIF = 1), CSTR is set. Slave software must load data into I2CxTXB to release SCL. I2CxCNT decrements after the byte is loaded into the shift register.
- Slave hardware waits for 9th SCL pulse with ACK data from Master.
- 10. If I2CxCNT = 0, CNTIF is set.
- 11. If the Acknowledge interrupt and hold is enabled (ACKTIE = 1), CSTR is set, I2CxIF is set.
- 12. Slave software can change the value of ACKDT before releasing SCL by clearing CSTR.
- Master sends eight SCL pulses to clock out data or asserts a Stop condition to end the transaction.
- 14. Go to step 8.

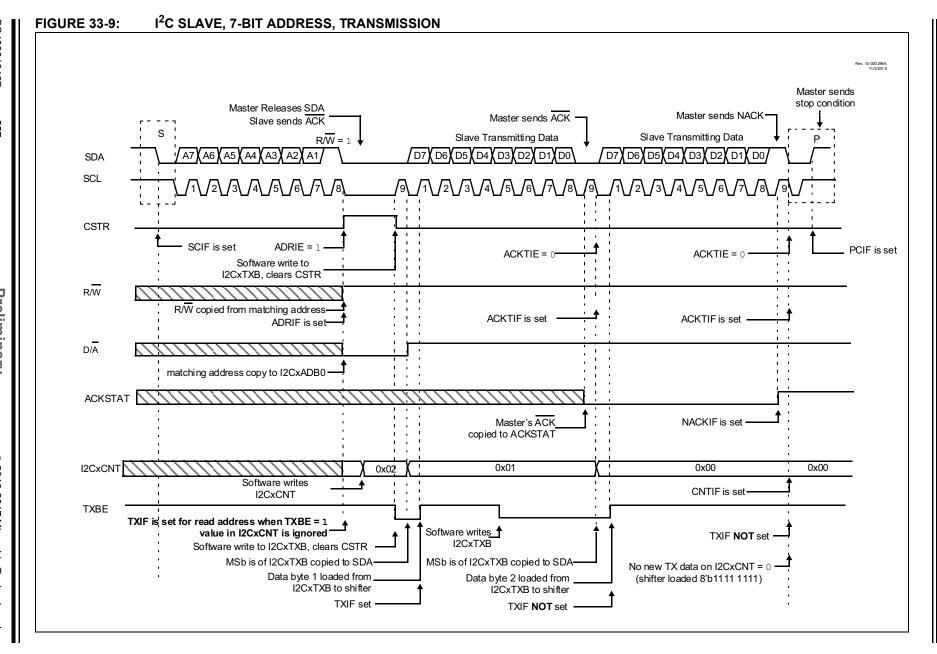
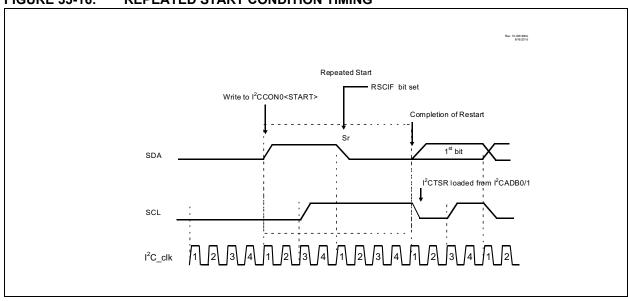
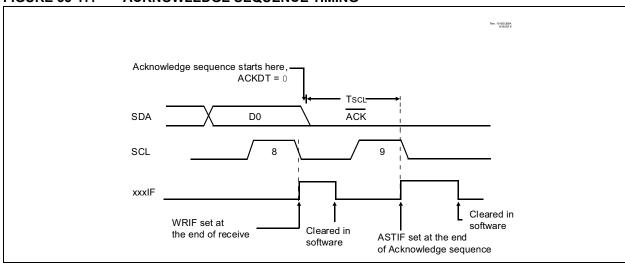



FIGURE 33-16: REPEATED START CONDITION TIMING



33.5.7 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled automatically following an address/data byte transmission. The SCL pin is pulled low and the contents of the Acknowledge Data bits (ACKDT/ACKCNT) are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user

should set the ACKDT bit before starting an Acknowledge sequence. The master then waits one clock period (TSCL) and the SCL pin is released high. When the SCL pin is sampled high (clock arbitration), the master counts another TSCL. The SCL pin is then pulled low. Figure 33-17 shows the timings for Acknowledge sequence.

FIGURE 33-17: ACKNOWLEDGE SEQUENCE TIMING

33.5.8 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of receive/transmit when I2CxCNT = 0. After the last byte of a receive/transmit sequence, the SCL line is held low. The master asserts the SDA line low. The SCL pin is then released high TSCL/2 later and is detected high. The SDA pin is then released. When the SDA pin

transitions high while SCL is high, the PCIF bit of the I2CxIF register is set. Figure 33-18 shows the timings for a Stop condition.

MOVSF Move Indexed to f

Syntax: MOVSF $[z_s]$, f_d Operands: $0 \le z_s \le 127$ $0 \le f_d \le 4095$

Operation: $((FSR2) + z_s) \rightarrow f_d$

Status Affected: None

Encoding: 1st word (source) 2nd word (destin.)

Description:

4440	4044		
1110	1011	0zzz	ZZZZs
1111	ffff	ffff	ffffd

The contents of the source register are moved to destination register ' f_d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ' f_d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh).

MOVSF has curtailed the destination range to the lower 4 Kbyte space in memory (Banks 1 through 15). For everything else, use MOVSFL.

Words: 2 Cycles: 2

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: MOVSF [05h], REG2

Before Instruction

FSR2 = 80h Contents of 85h = 33h REG2 = 11h

After Instruction

FSR2 = 80h Contents of 85h = 33h REG2 = 33h

MOVSFL	Move Indexed to f (Long Range)
Syntax:	MOVSFL [z _s], f _d
Operands:	$0 \le z_s \le 127$ $0 \le f_d \le 16383$
Operation:	$((FSR2) + z_s) \rightarrow f_d$
Status Affected:	None

Status Affected. None

Encoding: 1st word (opcode) 2nd word (source) 3rd word (full destin.

	0000	0000	0110	0010
	1111	XXXZ	ZZZZ	zzsff
)	1111	ffff	ffff	ffffd

Description:

The contents of the source register are moved to destination register 'f_d'. The actual address of the source register is determined by adding the 7-bit literal offset 'zs' in the first word to the value of FSR2 (14 bits). The address of the destination register is specified by the 14-bit literal 'f_d' in the second word. Both addresses can be anywhere in the 16 Kbyte data space (0000h to 3FFFh). The MOVSFL instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h.

Words: 3 Cycles: 3

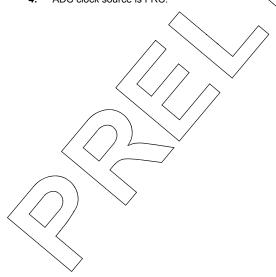
Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	No opera- tion	No operation	No operation
Decode	Read register "z" (src.)	Process data	No operation
Decode	No opera- tion No dummy read	No operation	Write register "f" (dest.)

Example: MOVSFL [05h], REG2

Before Instruction

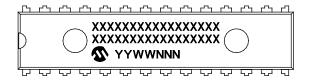
FSR2 = 80h Contents of 85h = 33h REG2 = 11h

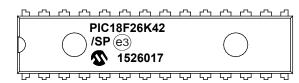

After Instruction

FSR2 = 80h Contents of 85h = 33h

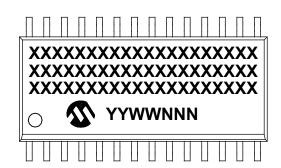
TABLE 44-5: POWER-DOWN CURRENT (IPD)(1,2)

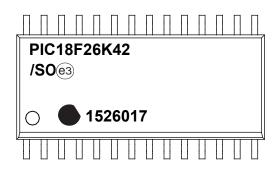
PIC18LF27/47/57K42				Standard Operating Conditions (unless otherwise stated)					
PIC18F27/47/57K42				Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param.	Symbol	Device Characteristics	Min.	Typ.†	Max. +85°C	Max. +125°C	Units	Conditions	
No.								VDD	Note
D200	IPD	IPD Base	_	0.07	2	10.5	μΑ	3.0V	
D200	IPD	IPD Base	_	0.4	4	12	μΑ	3.0V	_ \\
D200A			_	20	38	42	μΑ	3.0V	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	_	0.9	3.2	11.2	μА	3.0V	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	_	1.1	3.2	13	μΑ	3.0	
D202	IPD_SOSC	Secondary Oscillator (Sosc)	_	0.75	6	14	μΑ	3.QV	⊻P mo de
D202	IPD_SOSC	Secondary Oscillator (Sosc)	_	1.0	7	15	μΑ	3.0V	LP mode
D203	IPD_FVR	FVR	_	45	74	75	/ptA_	3.0V	FVRCON = 0x81 or 0x84
D203	IPD_FVR	FVR	-	40	70	76 [〈]	μA	3.04	FVRCON = 0x81 or 0x84
D204	IPD_BOR	Brown-out Reset (BOR)	_	9.4	14	18	\μΑ\	3.01	
D204	IPD_BOR	Brown-out Reset (BOR)	-	9.4	15	¹⁸	μA	3⁄.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	_	0.2	3 '	M	μΑ	3 .0∨	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	_	9.5	14.8	18	μΑ	√3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	_	9.7	14.2	17	μΑ	3.0V	
D207	IPD_ADCA	ADC - Converting	_	.01	8,	10.5	ΨA	3.0V	
D207	IPD_ADCA	ADC - Converting	_	0(1	4	12	μΑ	3.0V	ADC not converting (4)
D208	IPD_CMP	Comparator		33	49	50	μΑ	3.0V	
D208	IPD_CMP	Comparator	$\overline{-}$	30	49	50	μΑ	3.0V	

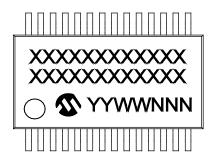

- † Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: The peripheral current is the sum of the base /DD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IND or IPD current from this limit. Max. values should be used when calculating total current consumption.
 - 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and fied to Vss.
 - 3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
 - 4: ADC clock source is FRC.

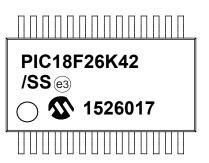

46.0 PACKAGING INFORMATION

Package Marking Information


28-Lead SPDIP (.300")


Example


28-Lead SOIC (7.50 mm)


Example

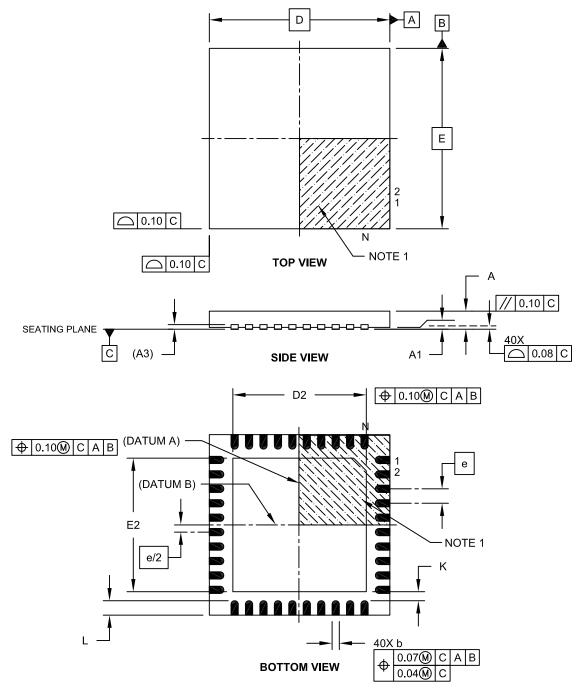
28-Lead SSOP (5.30 mm)

Example

Legend: XX...X Customer-specific information or Microchip part number

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

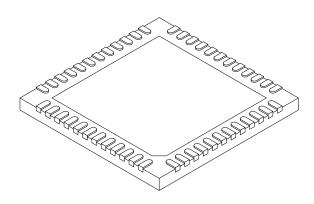
NNN Alphanumeric traceability code


e3 Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 5x5x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX			
Number of Pins	N		48				
Pitch	е	0.40 BSC					
Overall Height	Α	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.127 REF					
Overall Width	Е	6.00 BSC					
Exposed Pad Width	E2	4.45	4.60	4.75			
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	4.45	4.60	4.75			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2